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ABSTRACT In a multi-label dataset, an instance is given a single representation across all possible labels.
Despite the mutual sharing of instances among the labels, the membership of the instances vary from
label to label. This diversifies the intrinsic class geometries of the labels. Multi-label datasets are often
found to be class-imbalanced as well. The varying membership of the instances coupled with the imbalance
phenomenon gives rise to varying imbalance ratios across the labels. We address these two key aspects in
this work, Lattice and Imbalance Informed Multi-label Learning (LIIML) in a two step procedure. Firstly,
we obtain the imbalance ratios and the intrinsic positive and negative class lattices of each label.We capitalize
on these two information to obtain a dedicated feature set for each label. In the second step, to handle
the class-imbalance further, we employ a scheme of imbalance-adaptive misclassification cost across the
labels. We have evaluated the competence of the proposed method in a generic as well as class-imbalanced
framework. The elaborate empirical study establishes the competence of the proposed method in both the
contexts.

INDEX TERMS Class imbalance learning, multi-label learning, relative neighborhood graph, cost sensitive
learning, classification.

I. INTRODUCTION
Contemporary datasets differ from the class of traditional
datasets in a number of aspects –multi-label nature of the data
being one of them. In multi-label datasets a single instance
in a given input space can belong to one or more of the
possible class labels. The need for efficient processing of
multi-label data is backed by the availability of datasets with
multi-label characteristics from several real-world applica-
tions. Beginning with text categorization by [1] and [2], data
with multi-label characteristics have emerged from different
genres namely images [3], [4], music [5], bioinformatics [6],
chemical data analysis [7], tag recommendation systems [8]
and video [9]. Consequently, multi-label classification and
learning grabbed the attention of the data science com-
munity. Let a multi-label dataset be denoted by D =

{(xi,Yi), i = 1, 2, . . . , n} and the label set cardinality be L.
Yi = {yi1, yi2, . . . , yiL}. Let us assume that each label has
exactly two classes positive (1) and negative (0) that is
Yij can be either 1 or 0, j = 1, 2, . . . ,L. An instance xi has to
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be rightfully classified into either positive (1) or negative (0)
class for L labels.
In a multi-label dataset, a single set of instances though

sharing a same representation across the labels can belong
to different classes for different labels. This leads to a vari-
able class partition of the same instance set across different
labels. To tackle this aspect of multi-label datasets, selecting
dedicated and discriminating features for different labels has
been a popular and choice. A number of works has been done
following this paradigm whose details can be found in [10].

Class imbalance is the quantitative disproportion between
the number of instances belonging to the possible classes of
a dataset. For binary classification problems, the class with
higher and lesser share of instances are called majority class
and minority class respectively. Imbalance ratio is the ratio
of number of instances in the majority class to the number
of instances in the minority class. Let us assume that we
have exactly two classes - positive (1) and negative (0) for
each label. In multi-label datasets, the positive class is under-
represented for most of the labels in a dataset. This issue
is further compounded by the varying class membership of
the instances across different labels. A natural outcome is
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FIGURE 1. This illustration depicts the phenomenon of variable class
geometries and varying imbalance ratios in a toy multi-label dataset. The
dataset comprises of 23 two-dimensional points. Fig A shows the set of
feature points. We assume this dataset to have 3 binary labels - 1,
2 and 3. Each instance can belong to the positive or the negative class
with respect to labels 1, 2 and 3 individually. We have used pink and
green color to represent positive and negative class-memberships of a
point. Figures 1, 2 and 3 shows the classification of the given instances
with respect to labels 1, 2 and 3 in order. These figures show that the
membership of these instances vary from label to label. For example,
instance marked x is positive for labels 1 and 2 while negative for label 3.
On the other hand, instance y is positive with respect to label 1 only. The
consequence of this varying membership is two-fold. Firstly, as figures 1,
2 and 3 indicate, we get varying positive and negative class geometries
for different labels. We may also note that out of the 23 given points,
labels 1, 2 and 3 have 5, 12 and 10 positive points respectively.
Accordingly, the their imbalances are 3.6, 0.92 and 1.3 in order. So, we get
a set of varying imbalance ratios across different labels by virtue of the
differential class membership of the instances. Labels 1 and 3 have
somewhat similar imbalance ratios (imbalance ratio of label 1 and 3 are
0.92 and 1.3 ). Despite that, the class geometries of these two labels are
fairly diverse. These observations serve as the motivation of this work.
We address the issue of differential class geometry as well as varying
imbalance ratio to have a fruitful learning of multi-label datasets.

differential degree of class imbalance for different labels. For
example, in yeast dataset [11] (with 14 labels), the minimum
imbalance ratio and maximum ratio is 1.32 (for label 12) and
50.74 (for label 14) respectively. A single framework with a
single set of parameters may not work well across the two
diversified labels. Figure 1 illustrates this phenomenon on a
toy multi-label dataset.

In this work, we employ feature extraction followed by an
imbalance-adaptive cost sensitive classification to learn the
multi-label datasets. We propose that while handling class-
imbalance of a dataset we should not overlook or distort its
original class geometry. A standard solution of handling the
class-imbalance problem is by undersampling the majority
class or oversampling the minority class. These two tech-
niques modify the set of representaive points of a dataset and
can lead to the distortion of the it’s original class-geometries.
We propose a two-step procedure for obtaining a geometry
preserving and imbalance-aware multi-label learner. In the
first part of our work, we extract a dedicated feature set from
the intrinsic class lattice of the labels. We obtain the overall

structure of a dataset from its Relative Neighborhood Graph
(RNG). Next, we detect the regions of homogeneous class
memberships of RNG and select the label specific lattice
points from those. To preserve the original class geometry,
we select a differing number of positive and negative lattice
points for the labels. When we have significant difference in
the class cardinalities of positive and negative classes, select-
ing equal number of lattice points from both may not preserve
the class geometries. It can lead to a distorted representation
which in turn may affect the learning. For a label which is
well balanced across positive and negative classes, selecting
equal number of lattice points for both classes can work well.
But for an imbalanced label (with more number of negative
points), we have to select more number of negative lattice
points than that of positives for proper representation. The
ratio of the number of negative lattices to that of the positive
lattices for a label is dependent on its imbalance ratio. This
helps us preserving the original class geometries. Next, as in
LIFT [12], we compute a distance based feature extraction for
the points. The extracted features are used to model the set of
classifiers (one for each label) and predict the test data.

Class-imbalance is a fundamental feature and issue
of multi-label datasets. Cost-sensitive learning [13] was
one of primal techniques for tackling the issue of class-
imbalance and consequently detecting the ’hard-to-learn’
positive or minority instances. To nullify the natural bias of
the classifier towards the quantitatively abundant majority
class, a higher mis-classification penalty is set for the quan-
titatively scare minority class. The main goal is to bias the
classifier towards identifying the minority samples.

In the second part of our work, to address differential class-
imbalance further, we adopt a cost-sensitive learning scheme
where the misclassification cost is adaptive to the imbalance
ratio of the labels. As said earlier, a multi-label dataset has
differing values of imbalance ratios across the labels. In such
a situation, selecting a single misclassification cost for the
minority class across will not yield proper learning. Instead,
we select a set of misclassification cost values of the minority
(positive) class, one for each label. Between two labels with
differing degree of imbalance, we set a higher misclassifica-
tion penalty for the one with higher imbalance than that of the
other.

We summarize the contributions of this paper as follows.
• We propose a scheme which works on two perspectives
of multi-label learning –i] dedicated feature extraction
and ii] handling differential class-imbalance.

• For feature extraction, intrinsic class geometries of the
labels are explored. The concept of Relative Neighbor-
hood Graph is used for capturing the class geometries.

• To tackle the differential class-imbalance ratios of the
labels, we adopt a simple yet effective imbalance-
adaptive misclassification penalty across the labels.

• The efficaciousness of the feature extraction scheme of
LIIML is demonstrated empirically on 11 real-world
multi-label datasets against generic multi-label learners.
It indicates the competitiveness of the proposed scheme.
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• From the perspective of class-imbalance, the proposed
imbalance-adaptive misclassification cost scheme has
given remarkable improvement in multi-label perfor-
mance. In the empirical study, we have compared with
class-imbalance dedicated multi-label learner COCOA,
RNNOML and three more generic multi-label learners
in addition to class-imbalance learners SMOTE, USAM
and RML.

• The imbalance-adaptive misclassification cost’s effec-
tiveness is also demonstrated on two extant first-order
works, namely Binary Relevance [14] and LIFT [12].

In the next section, we present the literature review.
In Section 3 and 4, we present the approach and algorithm
of our work respectively. Section 5 and Section 6 present the
experimental study and the experimental results respectively.
The article is wrapped by the Conclusions in Section 7.

II. RELATED WORK
Multi-label learning methods are broadly classified into
two types –Problem transformation approach (PT) and
Algorithm Adaptation Approach (AA) [15]. On the other
hand, studies such as the one in [16] differentiate the multi-
label learners into three groups, namely Problem transfor-
mation, Algorithm Adaptation and Ensemble of multi-label
classifiers.
Problem transformation approaches modify or decompose

a multi-label dataset to fit it in a framework of regular
decomposition. Depending on the number of decompositions
and number of labels involved in a classifier, this class of
learners are further sub-divided into first order, second order
and higher order paradigms [17]. In first-order PT, only one
label is involved in a classifier while for second-order and
higher-order approaches, two and more number of labels are
involved in a classifier respectively. Notable problem trans-
formation approaches are namely Binary Relevance [14],
power set of labels [3], pruned problem transformation [18]
and calibrated label ranking [19]. Binary relevance, (BR) is
the most primitive form of PT approach, where a series of
binary classifiers is generated, one for each label. Though
computationally sound (linear with label cardinality), BR is
criticized for its inability to capture label correlations [20].
The solution proposed in [3] accommodated label correla-
tions by employing Label Powerset. It generated 28 = 256
classifiers for learning 8 labels. Despite involving label corre-
lations, the scheme lacked computational feasibility as it gen-
erated an exponential number of classifiers. A more feasible
approach was given in RAKEL [21], which considered ran-
dom subsets of labels. Calibrated Label ranking [19] scheme
provided multi-label outputs on the basis of pair-wise classi-
fication, considering a synthetic label to distinguish the rele-
vant and irrelevant groups of labels. Ensemble of classifiers
like RAKEL [21], ensembles of classifier chains [22]–[24]
and ensembles of pruned sets are also popular and effective
in learningmulti-label datasets. In addition to these, a number
of feature selection and extraction methods transform the fea-
tures in context of each label and follow first-order approach

to complete the learning. They are discussed in the detail
in the next paragraph. In Algorithm-Adaptation approach,
an existing classifier is adapted in the context of multi-
label scenario. Quite a number of classifier paradigms like
k-nearest neighborhood classifier [25], naive bayes
algorithm [26], back-propagation of neural networks [27]
are adapted to facilitate multi-label learning. In [25], the
k-nearest neighbors of a test point are identified. Following
that, their label configurations and the principles of maximum
posteriori are used to determine the label predictions of
the test instance. In [27], the usual back-propagation algo-
rithm is used with small modifications to accommodate the
multi-label characteristics. The error function of the back-
propagation algorithm is replaced with a ranking loss mini-
mization function which operates on the fact that a relevant
label of an instance is ranked higher than another label to
which the instance dose not belong. Another scheme [28] uses
the cross-entropy error function in back-propagation neural
network for facilitating multi-label learning. Table 1 outlines
the basic principles of a number of state-of-the-art multi-label
methods.

Apart from the above, multi-label datasets are analyzed
from newer perspectives like feature or dataset preprocessing
and class distribution of the labels. Label specific feature
extraction was proposed in LIFT [12]. In LIFT, following
the clustering of the positive and negative classes of each
label, the authors extract a label-specific feature set. Fea-
ture selection is also done by a number of works on the
basis of class characteristics of the labels. Works dealing
with feature extraction and selection of multi-label datasets
include [29] and [30]. A detailed account and comparative
analysis of the extant works in multi-label feature extrac-
tion and selection in first-order framework can be found
in [10]. Joint feature selection and classification (JFSC) [31]
and [32] performs label-correlated feature selection of multi-
label datasets. Class distribution of the various of a multi-
label dataset is a probable data mine and gives a number of
pertinent information. As said earlier, multi-label datasets are
class-imbalanced and they are differently imbalanced also.
COCOA [33] has addressed the imbalance issue in their work
by considering an ensemble of classifiers using pair-wise
label correlation. A few more works, [34] and [35] have
used cost-adaptive paradigm to address multi-label problems.
In [36], authors have integrated the data gravitational model
with multi-label lazy learner for improving the minority class
performances of imbalanced multi-label datasets. In our very
recent work [37], we have used a reverse-nearest neighbor-
hood oversampling to curb the problem of differential imbal-
ance in multi-label datasets. Several other techniques like
convex relaxation [38], ensembles of random graph [39] and
graph classification [40] are also employed to address multi-
label classification.

The proposed method LIIML is a hybrid method which
involves i]. a dedicated feature-extraction for the labels
(like LIFT [12] and JFSC [31]) and also ii]. adapts the
cost-sensitive learning in multi-label context. From first
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TABLE 1. This table describes the approaches of state-of-the-earth multi-label learners BR, RAKEL, CLR, MLKNN, Naive Bayes and BPMLL. The last
column outlines the working principles of the proposed method, LIIML.

perspective, LIIML is a first-order PT method and from the
latter it is an algorithm-adaptation method.

III. APPROACH
A. MULTI-LABEL NATURE OF DATA, ITS CONSEQUENCES
AND OUR THOUGHTS
A multi-label dataset is characterized by the member-
ship of a set of feature points to more than one label.
A class-imbalanced dataset is typified by the quantitative dis-
proportion in the number of instances representing its classes.
Multi-label datasets are often found to be class-imbalanced.
In this work, we deal with binary multi-label dataset where
each label can take exactly one of the two classes (1 - pos-
itive class and 0 - negative class). Typically, class 1 and
class 0 are the minority and majority classes respectively.
The class membership of each instance varies from label to
label. An instance which is positive for some label A can be
negative for some other label B. A similar phenomenon for all
the instances will lead to a different combinations of positive
and negative sets for each label (even though the union of the
positive and negative set of instances is same for all labels).
From spatial perspective, this leads to variable positive and
negative class geometries and variable class boundaries for
the labels. Figure 1 illustrates this phenomenon. The quanti-
tative consequence of this phenomenon is the variable degree
of class imbalance across the labels. The key idea of this work
is to design an imbalance-informed scheme which also takes
into account the differential class geometries of different
labels. For each label, we will extract an imbalance-informed
feature set from the positive and negative class geometries
of that label. The learning is wrapped up with a set of cost-
sensitive, first-order learners, one for each label.

B. EXTRACTING THE CLASS GEOMETRIES OF LABELS
Our first goal is to extract the positive and negative class
geometry of each label. To perceive the geometry, we gen-
erate a Relative Neighborhood Graph (RNG) of the entire
set of training dataset where the edge weights are the

distance between the points. RNG shows the connectivity of
a data point or vertex to its adjacent neighborhood and the
interconnectivity the points gives the overall anatomy of the
feature points. A RNG of G is an undirected graph defined
from G where xi and xj are connected whenever there is no
third point xk such that d(xi, xk ) < d(xi, xj) and d(xj, xk ) <
d(xi, xj). For a given set of points, it’s MST is a subgraph of
it’s RNG. We may note that this Tree will be same for all the
labels. But the membership of the vertexes or the data points
vary from label to label and leads to a differential positive and
negative class structures for the labels. Let X = {x1, . . . , xn}
be the training data and Yi = {yi1, . . . , yiL} be the class
label vector associated with instance xi. We have assumed
that there are L labels in the dataset.

We will extract the positive and negative class geometries
(with respect to each label) from the RNG. To extract the
above-said, we need to look at the membership of the vertexes
to each label. For a label, the membership of a vertex can be
either positive (1) - if it belongs to that label or negative (0) -
if it does not belong to that label. The class-memberships of
the data points will likely vary across the labels.

Let us consider an edge eij between two vertices, vi and vj.
If the class-membership of xi and xj with respect to label k
are same (both 0 or both 1), we term edge eij as a homoge-
neous edge. If yik and yjk (the memberships of xi and xj) are
both 1, we term eik to be a positive homogeneous edge. If the
class-memberships (yik and yjk ) are 0, we call it negative
homogeneous edge. So, for each label, we will have a set
of homogeneous edges which is a subset of the RNG edges.
We can further partition this homogeneous edge set into two
mutually exclusive sets of positive homogeneous edges and
negative homogeneous edges. For each label, we will have
a set of positive homogeneous edges and a set of negative
homogeneous edges which is described in the next para-
graph. We will extract the positive and negative class lat-
tices of the label from its respective sets of homogeneous
edges. Homogeneous edges lie in the regions of same class
memberships.
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A homogeneous edge (belonging to a certain class) with
smaller weight will likely be a better representative of that
class than another with higher weight. It is because, with
increasing edge weight, the vertexes (associated with the
edge) become sparser in the feature space and eventually
overlap with the vertexes associated with a different class.
But a vertex associated with a shorter edge will has another
vertex near its vicinity which affirms its class-membership.
Hence, to get the positive class lattice (for a label), we arrange
the positive homogeneous edges in increasing order of their
weights. For a certain label k , we select a NPk number of pos-
itive homogeneous edges in increasing order of their weights
and compute their midpoints. The set of NPk midpoints rep-
resents the positive lattice of label k . Similarly, we compute
NNk lattice points to represent the negative lattice of label k .
In case of extreme imbalance when we do not get any positive
homogeneous edge, we select the positive points themselves
to represent the positive lattices.

We determine the values of NPk and NNk in light of the
degree of class-imbalance of label k . Let the degree of imbal-
ance of label k be imbk . For the negative class (generally
the majority class) of label k , we select the value of NNk
as NPk*(log2(imbk ) + 1). The logarithm function allows us
to add deviations in the figures in a controlled manner. Let
us consider two scenarios to analyse the aspect. If there is
no imbalance in two classes of label k, that is imbk = 1,
(log2(imbk )+1) value will be 1 and we will select NPk points
as the negative class. On the contrary, if imbk is 16 (dataset is
highly imbalanced with respect to label k), (log2(imbk )+ 1)
will be 5 and we will select 5× NPk points to represent the
negative class. We can also select different figures of NPk
and NNk . We present a discussion in Remarks 1 at the end
of this section.

C. EXTRACTING THE FEATURES
Now,we extract the features for each label. For that, we obtain
the distance of a data point from the sets of positive and
negative lattice points of a label. In order to make the positive
information stand out in a pool of negative data, we multiply
the distances from the positive lattices with the respective
class imbalance ratio of that label. The above computed
distances gives the imbalance-informed mapping of a data
point for that label. The set of NPk positive distances an
NNk negative distances give the transformed mapping of x
with respect to label k .

D. HANDLING IMBALANCE FURTHER - COST SENSITIVE
CLASSIFICATION
Cost-sensitive learning is one of the ways of handling
imbalanced data. As stated earlier, in multi-label datasets,
the degree of imbalance varies across labels. After generating
the imbalance-informed representations for each data point,
we proceed with a cost-sensitive linear SVM based classifi-
cation. Let the misclassification cost of a minority instance to
the majority class for label k be denoted by Costk . To improve
the detection of minority class (generally the positive class),

for label j, Costk value is fixed to cf × (log2(imbk ) + 1).
cf is a cost-factor whose increasing value gives increasing
misclassification cost for the minority class. Remark 5 dis-
cusses the details on choice of cf . The misclassification cost
of a majority instance to the minority class is set to 1 for
all labels. The misclassification cost Costk value increases
with increase in imbalance value of a label and is adaptive
to various and diversified ranges of imbalance values in a
single dataset. For a label which has no imbalance or the
imbalance ratio is 1, themisclassification costs of both classes
(no class is minority or majority to be precise) is 1. For an
imbalanced label with Costk > 1, the misclassification cost
of the minority instances to the majority class is greater than 1
and it increases with increase in imbalance value. Hence,
we have an imbalance-informed misclassification cost for
each label. The log2 function allows us restrict themisclassifi-
cation costs within an admissible yet varying limit depending
on the imbalance ratios.
Remarks:

1) Values of NPk and NNk : The number of lattice points
for the positive class and the negative class are given by
NPk and NNk respectively. The feature set cardinality in
the extracted feature set will increase with the increase
in the number of lattice points. Increasing the number
of lattice points will give better discernible and classi-
fication capabilities of the learner. But this is accom-
panied with an increase in computational complexity.
While setting the values of NPk and NNk , we have
to make a trade-off between complexity and perfor-
mance. Experiment 4 in the empirical study explores
this aspect.

2) Distance function used: We have used Euclidean dis-
tance and Jaccard distance functions for numeric and
nominal datasets respectively.

3) Learning with cost: The scheme that we have
presented here can be carried out in a equal misclas-
sification cost framework as well as in an enhanced
cost (formisclassifyingminority instances) framework,
the latter presented in subsection 3.4. The equal mis-
classification cost variant shows the intrinsic capabil-
ity of the scheme. The enhanced cost variant helps
us in handling the class-imbalance of the labels bet-
ter. We report the outcomes of both the variants to
investigate the efficaciousness of our method in both
contexts. The utility of the enhanced cost can be also be
investigated on existing multi-label learners like LIFT
and BR. We have presented a study on this aspect.

4) Choice of cf: In experiment 4, we have explored the
choice of cf value. Increase in cf value gives increased
misclassification cost for the minority class.

IV. ALGORITHM
Let the multi-label dataset be denoted by D and
the number of class labels for D be L. D =

{(xi,Yi), |1 ≤ i ≤ n, Yi denotes class label vector of xi}.
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Yi = {yi1, yi2, . . . , yil}. yij is 1 when label j is positive for
instance xi, otherwise the value of yij is 0. Let each xi ∈ Rp.
We randomly equi-partition D into a training set, Dtr and a
test set, Dte. Let X be the set of training instances (without
the label information).

X = {xi, i=1, 2,. . . , n} (1)

We calculate class-imbalance ratio of each label j,
j = 1, 2, . . . , l denoted by imbj.

imbj =
Number of negative training instances for label j
Number of positive training instances for label j

⇒ imbj =
||{xi such that Yij = 0, i = 1, 2, . . . , n}||
||{xi such that Yij = 1, i = 1, 2, . . . , n}||

(2)

In multi-label datasets, we have a single set of observations
covering all labels. We construct a Relative Neighborhood
Graph (RNG)whose vertexes are represented by themembers
of X .

Tree = RNG(X ) (3)

To extract more refined information about the class struc-
tures, we have to extract a label-specific lattice from these
graphs. Firstly, we extract the homogeneous edges of the
graph. As explained earlier, homogeneous edge is one whose
both vertexes belong to the same class, there are two classes
of homogeneous edges, positive and negative.

Let xi denotes the ith vertex of the graph and cj(xi) denotes
the class-membership of xi to label j.

cj(xi) =

{
1, if yij = 1
0, else

(4)

Let an edge of Tree between two vertices xi and xk be repre-
sented by eik . wik denotes the edge-weight of eik .

eik = {(xi, xk ),wik}, i, k = 1, 2, . . . , n, i 6= k (5)

Spj and Snj are the sets of positive and negative homoge-
neous edges of label j respectively.

For each label j, j = 1, 2, . . . ,L,

Spj = {eik , cj(xi) = cj(xk ) = 1} (6)

Similarly,

Snj = {eik , cj(xi) = cj(xk ) = 0} (7)

We arrange the elements of Spj and Snj in increasing order
of their edge-weights to get the ranks of their respective
elements. Let, for an edge eik , its rank in its respective set
(the set where it belongs) be denoted by R(eik ). We obtain
the ranks of the edges because we will select the lattice
points from the shorter homogeneous edge weights. Shorter
homogeneous edges have lower ranks than longer edges.

Themid-points of edges in Spj are stored inMpj.Mnj stores
the mid-points ofMnj. Let NPj and NNj denote the number of
negative and positive lattice points of label j respectively.

Mpj =
⋃

eik∈Spj
R(eik )≤Npj

xi + xk
2

(8)

Mnj =
⋃

eik∈Snj
R(eik )≤Nnj

xi + xk
2

(9)

Let the representations ofMpj andMnj be as follows.

Mpj = {m1j, m2j, . . . , mkpj} (10)

Mnj = {m′1j, m
′

2j, . . . , m′knj} (11)

m1j, m2j, . . . , mkpj represent the individual members
of Mpj.

Similarly, m′1j, m
′

2j, . . . , m′knj represent the elements
of Mnj. It is easy to note that the number of elements of
Mpj and Mnj depends on data distribution and are likely
unequal. We have represented their cardinalities with kp and
kn respectively.

The transformed mapping of instance xi with respect to
label j denoted by zij is as follows:

zij = fj(xi) = {d(xi,m1j), . . . , d(xi,mkpj ), d(xi,m
′
1j), . . . ,

d(xi,m′knj )} (12)

zij is a kp+kn dimensional vector or feature. Its first kp compo-
nents are generated by taking distance from the midpoints of
the positive homogeneous edges and multiplying them with
the imbalance ratio of label j. The remaining kn components
by taking distance from the negative homogeneous edges.

Let Zj = {zij, i = 1, 2, . . . , n}. Zj represents the trans-
formed feature mapping of the training instances in Dtr for
label j.
Let Min and Maj be the minority and majority classes of a

label respectively. Let Costj(Min, Maj) and Costj(Maj, Min)
denote the misclassification costs of a minority instance to
the majority class for label j and vice versa. For each label,
Costj(Min,Maj) is equal to the product of a cost factor
(cf) and logarithm of the it’s imbalance ratio. In this work,
we have fixed the value of cf to 1.

For each label j,

Costj(Min, Maj) = cf×max((log2(imbj)+ 1), 1) (13)

Costj(Maj, Min) = 1, i = 1, 2, . . . , n (14)

For each label j, we train a learner Wj by invoking Zj and
the above defined cost function for label j. For classifying
a test instance t with respect to label j, we first obtain its
transformed mapping for label j and invokeWj to predict it’s
class. We have used linear SVM classifier implementation of
LIBSVM ( [41]) for modeling and classification.
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TABLE 2. Description of Datasets. This table is universal for all experiments in this work. D the number of instances for all experiments. L.Card
and L.Uniq gives the values of average number of instances per label and the number of unique label combinations respectively. att.type gives the
information about nominal or numeric nature of the features. The number of labels and features associated with these datasets in Experiment 1 are
denoted by L and F respectively. L.Card and L.Uniq represents label cardinality and number of unique labels in regular setting. (L.Card )I and (L.Uniq)I
denotes these two values in the class-imbalanced framework (Experiment 2, 3, 4). LI , FI gives the number of labels and features of these datasets in
Experiment 2, 3 and 4 ( experiment on imbalance). min IR, max IR and avg IR gives the minimum imbalance ratio, maximum imbalance ratio and average
imbalance ratio associated with the labels of the datasets with respect to the label information of LI .

A. COMPLEXITY ANALYSIS
We analyse the complexity of the proposed scheme of feature
extraction and class-imbalance handling separately below.
• Feature Extraction: We compute the Relative Neigh-
borhood Graph of the given set of points. For N given
points, the complexity for RNG formation isO(N logN ).
Let the number of labels be L. The complexity for com-
puting the lattice points for L labels is O(N · L). For
L labels, extraction of features from the lattice points
require operations of order O(N · L). So, the overall
complexity of feature extraction for N points and L
labels is O(N logN ) (if L ≤ logN ) or O(N · L) (if
L > logN ).

• Class imbalance handling: In our method, we add a
dedicated misclassification cost for each label. We set
the misclassification cost according to the imbalance
ratios of the labels. For L labels and N points, we cal-
culate the misclassification ratios by going through the
class labels of N points just once. Hence, for N points
and L labels the complexity for calculating the class
imbalance ratio and misclassification cost is O(N · L).

V. EXPERIMENTAL SETUP
In this section, we have presented a detailed empirical study
where four sets of experiments are carried out. Motivation of
each experiment and its experimental layout are presented in
the next three subsections.

A. FIRST EXPERIMENT: FEATURE EXTRACTION
In the first experiment, we demonstrate the relative compe-
tencies of the proposed and compared methods in a gen-
eralized multi-label framework. Eleven regular multi-label
datasets are used. The detailed statistics of the datasets
is given in Table 2. These datasets are obtained from
MULAN [42] and MEKA [43] repositories.

For the comparative analysis, we have considered five
multi-label learners from different genres.
• Binary Relevance (BR) ([14]): It is a first-order approach
which considers one classifier for each label. Basically

we transform the multi-label classification problem into
L binary classification problems for L labels.

• Calibrated Label Ranking (CLR) ([19]): It is second-
order approach which considers pairwise correlation of
labels. It also considers a synthetic label to distinguish
the set of relevant and irrelevant labels of the instances.

• Random k-Labelsets (RAKEL) ([21]): A higher order
approach, which considers a number of subsets of
labels and learns the full correlations within the subsets.
We have considered the overlapped version of RAKEL
as it considers more number of subsets and captures
greater degree of correlation among labels. We have
used paper recommended settings of k = 3 and number
of subsets m = 2q.

• Ensembles of Classifier Chains [24]: It is a higher order
approach which uses binary classifiers for each label.
Label correlation is facilitated by the inclusion of pre-
dictions of preceding labels into the succeeding ones.
Ensembles with randomized label order is considered to
distribute the learning of correlations. We have consid-
ered ensemble size 100.

• Multi-label learning with label specific features (LIFT)
( [12]): This work is based on a feature extraction
scheme, where a dedicated set of features is learned for
each label. The label-specific features are used to invoke
L binary classifiers, one for each label. As recommended
in the paper, r value is set to 0.1.

In this experiment, we have considered equal mis-
classification cost of minority and majority classes in LIIML
to test the inherent efficacy of the proposed method. We have
taken the number of positive lattice points to be 100 and
varied the cardinality of negative lattice set according the
imbalance of the labels.

Evaluating metrics: Six metrics namely Hamming Loss,
Coverage, One Error, Ranking Loss, Average Precision and
Macro-averaging AUC are employed to evaluate the relative
efficacies of the comparing and proposed methods. Let xi,
i = 1,2,. . . ,N be the set of N test instances and Yi be the
L-dimensional label vector of xi. Let Yi be the complement
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label set of xi. Let αi be the label prediction vector for xi.
We denote the label specific predicted score of xi for label j
by fj(xi).
• Hamming Loss: It measures the fraction incorrect pre-
dictions for all instances across the entire label set.
Lower the value achieved by a learner, better is its
performance.

Hamming Loss =
1
NL

N∑
i=1

Yi ⊕ αi (15)

• Average Precision: It calculates the fraction of labels
ranked higher (predicted) than a particular labels cor-
rectly by a learner. ri(j) denotes the rank of label j
for xi instance predicted by a learner.

Average Precision =
1
N

N∑
i=1

1
|Yi|

×

∑
γ∈Yi

|{γ ∈ Yi:ri(γ ) ≤ ri(γ ′)}|
ri(γ )

(16)

• One-Error: One error counts the number of instances
for which the predicted top-rank label is not present in
the actual label set. Lower the value of one-error, better
is the performance of the learner.

One Error =
1
n

n∑
i=1

[arg maxlabelj∈αi fj(xi) /∈ Yi] (17)

• Coverage: Let us considered an ordered list of predicted
labels for each instance, where the top-ranked label is
label is numbered one. Coverage evaluates the number
of steps we need to move down the list to get the set of
all true labels of the instance. It can easily intuited that
lesser the value of coverage better is the performance.
Let lj be the jth label. Let rank(xi, lj) be the rank of jth

label w.r.t. instance xi.

Coverage =
1
L
(
1
n

n∑
i=1

maxlj∈αi rank(xi, lj)− 1) (18)

• Ranking Loss: Ranking Loss calculates the average
percentage of mis-ordered pair of labels. Lower value
of ranking loss is desirable for a classifier.

Ranking loss

=
1
n

t∑
i=1

|{(lk , lj), fk (xi) ≤ fj(xj), (lk , lj) ∈ Yi × Y i}|

|Yi||Y i|

(19)

• Macro-averaging AUC: Let AUCj be the AUC score
for label j. We calculate the average AUC score of all
labels in Macro-averaging AUC. Higher the value of

Macro-averaging AUC, better is the performance of the
learner.

Macro-averaging AUC =
1
L

L∑
i=1

AUCi (20)

B. SECOND EXPERIMENT: CLASS-IMBALANCE
We present the empirical study on class-imbalance aspect
of multi-label datasets in this subsection. The same eleven
multi-label datasets used in the first experiment are used
in this section but with some preprocessing. In all of these
datasets, we have removed the labels whose imbalance ratio
(number of negative instances / number of positive instances)
is more than 50 or the number of positive instances is less
than 20. A similar protocol has been suggested in [33]. For
the nominal datasets, we have performed reduction in the
feature set according the same recommendation. The attribute
information of the datasets with respect to this experiment are
presented on Table 2. Since this work deals with differential
class imbalance ratio of multi-label datasets, we have also
showed the minimum (min IR), maximum (max IR) and aver-
age imbalance (avg IR) statistics of each dataset in Table 2.
These datasets are obtained from MULAN [42] and
MEKA [43] repositories.

For comparative analysis, we consider RAKEL ( [21]),
LIFT ([12]) and CLR ([19]) of multi-label learners which
are used in the first experiment. In addition to that, we have
also included COCOA [33] and RML [44]. COCOA specif-
ically addresses class-imbalance problem in multi-label
datasets. Additionally, we have also included Reverse-nearest
neighborhood based oversampling for multi-label dataset
(RNNOML) [37] in this empirical study. MLKNN invokes
a set of k-nearest neighbor based classifiers for multi-label
datasets. Besides these, we have included a couple of meth-
ods - namely SMOTE ( [45]) and Random Undersampling
(USAM) which are dedicated to general class-imbalance
problem and used them in multi-label setting. The proposed
method is run in a cost-sensitive learning framework, where
an imbalance adaptive misclassification cost is assigned for
each label.

For evaluating their performances we have employed
Macro-averaging F1 and Macro-averaging AUC. They are
described below.
• Macro-averaging F1: It calculates the average of F1
values across all labels. Let tpj, tnj, fpj and fnj denote
the number of true positive, true negative, false positive
and false negative predictions for label j respectively.
We calculate F1 for label j,

F1j =
2× tpj

2× tpj + fpj + fnj
(21)

Macro-averaging F1 =
1
L

L∑
j=1

F1j (22)

• Macro-averaging AUC: Let AUCj be the AUC score
for label j. We calculate the average AUC score of all
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TABLE 3. This table shows the predictive performance of the proposed method (LIIML) and the competing methods on 11 multi-label datasets in
Experiment 1. The performances are reported on six evaluating metrics — ↑ beside a metric indicates that higher value is better and ↓ indicates
superiority with a lower score, we have indicated the best outcome in a background highlighted rectangle. On Hamming Loss and One Error, LIIML has
achieved the best scores on 10 and 9 datasets respectively. On Ranking Loss and Coverage, the performance of LIIML is mot as good as on the previous
two metrics. LIIML gets 5 best scores on Ranking Loss and only 4 best scores on Coverage. LIIML achieves 8 best scores on Average Precision metric and
6 best scores on Macro-averaging AUC.

labels in Macro-averaging AUC. Higher the value of
Macro-averaging AUC, better is the performance of the
learner.

Macro-averaging AUC =
1
L

L∑
i=1

AUCi (23)

C. THIRD EXPERIMENT: COMPETENCE OF THE
IMBALANCE ADAPTIVE MISCLASSIFICATION COST
We analyze the utility of the proposed scheme of imbalance-
adaptive misclassification cost in this study. We consider two
first-order methods LIFT and BR in their default settings
where the mis-classification costs of the classes are equal.
We compare their performances with an enhanced cost ver-
sion of each of them, LIFT-cost and BR respectively, where
the cost of misclassification of the minority instances is set
according to the proposed scheme.We evaluate the difference
in performances using Macro-averaging F1 metric.

D. FOURTH EXPERIMENT: PARAMETER OPTIMIZATION
In this experiment, we have studied the effect of variation of
cost factor and number of lattice points on class-imbalance
focused multi-label learning. Cost factor is varied between
0.5, 1, 2 and 4. Variation of the number of positive and
negative lattice points is also explored.

E. STATISTICAL SIGNIFICANCE TEST
We have conducted Wilcoxon Signed Rank Sum Test to
measure the statistical significance of the difference in per-
formance given by the proposed method, LIIML with respect
to a competing method. In this work, we have a number of
experiments and each is evaluated with more than one metric.
Experiment 1 and 2 are the key ones of this work. We have
constituted the statistical tests for these two experiments.
We report the p value at which the performance of the two
methods are different. Lower the p value, more significance is
the difference or more certain we are about rejecting the null
hypothesis. The null hypothesis assumes that the performance
of two methods are same. p value 0.05 or 5% significance
level is the standard threshold for rejecting or accepting a null
hypothesis. We have used p value 0.05 as the threshold for
statistical significance of difference.

VI. RESULTS AND ANALYSIS
In this section, we summarize the results of LIIML with that
of the state-of-the-art multi-label learners. Table 3 record the
results of Experiment 1, which is dedicated to evaluate the
efficacy of the methods in a regular setting. In Table 4 we
present the outcomes of Experiment 2, where we have evalu-
ated enhanced-cost versions of LIIML in a class-imbalanced
setting. The outcomes of Experiment 3 is presented in Table 5.
Outcomes of experiment 4 are portrayed graphically
in Figures 2-5.
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TABLE 4. This table records the observations of experiment on class-imbalance aspect of multi-label dataset (Experiment 2). Result are reported for
2 metrics (Macro-averaging F1 and Macro-averaging AUC), 11 datasets and 9 methods (including LIIML). For both the metrics, a higher value means better
result ( as indicated by the ↑ ). On Macro-averaging F1 and Macro-averaging AUC, LIIML has achieved best scores among all methods on 8 and 7 datasets
respectively.

TABLE 5. This table records the results of applying the proposed cost-sensitive learning paradigm on two first order approaches LIFT and BR. We have
used Macro-averaging F1 and Macro-averaging AUC as the evaluating metrics. The original results ( without added cost ), results with enhanced cost and
the corresponding improvement on each dataset are reported in the table. The instances where the enhanced cost version achieves an improvement of
greater than 20% over the original result are highlighted through darkening of their backgrounds. — ↑ indicates higher is better and ↓ indicates lower is
better, best outcome is indicated in bold-face.

TABLE 6. This table corresponds to the outcomes of Experiment 1
(Table 3). It reports the p value at which LIIML’s performance is
statistically superior to that of a comparing method for a given metric.
Each row corresponds to a metric and each column to a method. Lower
the p value, more significant is superiority. We have selected p = 0.05 as
the threshold for statistical significance. Outcomes at which p < 0.05 are
indicated in boldface. LIIML achieves statistical superiority with respect
to BR, CLR, RAKEL, ECC and LIFT on 5, 2, 5, 4 and 4 cases respectively.

Experiment 1: Table 3 shows the performances of LIIML
and the competing methods on the 11 multi-label datasets.
OnHamming Loss, the proposed scheme has achieved lowest
error value on 10 out of 11 (90.90%) datasets. On One error,
Coverage and Ranking Loss, either of LIIML have achieved
best scores on 9 (81.81%), 4 ( 36.36 %) and 5 (45.45%)
datasets respectively. On Average Precision, LIIML has
achieved best scores on 8 (72.72%) datasets. LIIML’s perfor-
mance is superior to other datasets on Macro-averaging AUC
metric across 6 (54.54%) datasets. On Table 3, each method
has 66 observations ( 11 datasets× 6 metrics ). We have sum-
marized the cumulative observations of Table 3 as follows.

• LIIML has out performed BR on 63 out of 66 cases
(91.66%).

• LIIML’s performance is better than CLR on 46 out of 66
(69.69%) pairwise observations. We note that LIIML
could not outperform CLR on Ranking Loss and Cover-
age metrics. The working principles of CLR is based on
ranking of labels and this aspect has likely contributed
to it’s efficiency.

• LIIML has outperformed RAKEL on 65 occasions
(98.48%).

• ECC achieves better performance as compared to LIIML
on 5 cases. Hence, LIIML has outperformed ECC on 61
(92.42% cases).

• LIIML has performed better than LIFT on 50 (75.76%)
occasions. For 2 pair-wise observations, the scores of
LIFT and LIIML are tied. On remaining 14 cases, LIFT
has outperformed LIIML.

Experiment 2: Table 4 shows the performance of the
proposed and comparing methods on Macro-averaging F1
and Macro-averaging AUC. LIIML achieves the best score
on a total of 8 out of 11 cases ( 72.72% cases) on
Macro-averaging F1. On one remaining dataset Corel5k,
RML has obtained the best results of Macro-averaging F1.
On 2 datasets, RNNOML has performed best. On Macro-
averaging AUC, LIIML performs better than all other meth-
ods on 7 out of 11 datasets (63.63%). The remaining 4 best
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FIGURE 2. Macro-averaging AUC results of four datasets subject to
varying and increasing misclassification costs for the minority class.
We have varied the cost factor between 0.5, 1, 2 and 4. It can be observed
that increasing the cost factor value upto 2 improves the learning of
minority classes of each label. The graphs of these figures indicate a loss
of performance on cost factor beyond 2 on all the four datasets. On using
a value beyond 2, the classifier is getting over-biased towards the
minority class. The optimal cost factor value is 2 for three datasets and
1 for one dataset.

scores of Macro-averaging AUC are shared by COCOA (2),
CLR (1) and RNNOML (1).

Experiment 3: Table 5 records the Macro-averaging F1
scores of LIFT and BR in regular cost framework and
enhanced misclassification cost framework. The results indi-
cate certain effectiveness of the enhanced cost scheme in
handling class-imbalance and recognition of the positive

FIGURE 3. Macro-averaging F1 results of four datasets subject to varying
and increasing misclassification costs for the minority class. We have
varied the cost factor between 0.5, 1, 2 and 4. The observation and
analysis of this figure’s data is in congruence with our findings from
Figure 2. On all four cases, Macro-averaging F1 value increases on
increasing the cost factor value upto 2. It marks the optimal value for
learning the given datasets. An increase beyond cost factor value 2 is
observed to cause a loss of minority performance.

(minority) class of the multi-label datasets.Macro-averaging
F1 performance of LIFT has improved by over 20% on 8 out
of 11 datasets using the misclassification cost-enhancement
learning. On BR, the improvement using this scheme is also
pronounced as we witness the improvement in results by over
20% on 8 out of 11 datasets also. For two datasets Corel5k
andCAL500 the percentage of improvement is more than 100
(w.r.t both BR and LIFT).
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FIGURE 4. Macro-averaging F1 results of four datasets subject to varying
number of lattice points. We have varied the number of positive lattices
between 50, 100, 150 and 200. Number of negative lattices is
proportional to the number of positive lattice points and vary accordingly.
The figures indicate that increasing the lattice points result in
improvement in macro-averaging F1 performance.

Experiment 4: Figures 2 and 3 shows the variation of
Macro-averaging AUC and Macro-averaging F1 scores on
varying ranges of cost factor. Increasing the value of the cost
factor promotes the recognition of minority class instances
at the cost of majority class performance dataset. Macro-
averaging AUC and Macro F1 scores also indicate the same.
Increasing the cost factor beyond 2 results in sharp fall of
Macro-averaging F1 and Macro-averaging AUC scores for
all four datasets. Number of lattice points is important for
perceiving a functional geometry of the data points. Consid-
ering a lower number of lattice points will give a distorted

FIGURE 5. Macro-averaging AUC results of four datasets subject to
varying number of lattice points. We have varied the number of positive
lattices between 50, 100, 150 and 200. Number of negative lattices is
proportional to the number of positive lattice points and vary accordingly.
For three datasets (Enron, Yeast and Slashdot) Macro-averaging AUC
scores increase with increasing the lattice points. We get an exception
with Medical dataset, where the performance degrades as number of
lattices.

geometry. This in turn causes a fall in performance. On the
other hand increasing the cardinality of the lattice point set
is computationally more intensive. Th findings demonstrated
in Figures 4 and 5 are somewhat in agreement with the above.
The only exception is Medical dataset, which has shown falls
in performance with increasing number of lattice points.

Statistical Tests: Tables 6 and 7 show the results of sta-
tistical significance test on outcomes of Experiment 1 and
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TABLE 7. This table corresponds to the outcomes of Experiment 2
(Table 4). It reports the p value at which LIIML’s performance is
statistically superior to that of a comparing method for a given metric.
Each row corresponds to a method and each column to a metric. A lower
p value more significant difference in performance. We have selected
p = 0.05 as the threshold for statistical significance. Outcomes at which
p < 0.05 are indicated in boldface. On Macro-averaging F1, LIIML
achieves statistical superior performance over 7 out of 8 methods.
On Macro-averaging AUC metric, LIIML’s performance is statistically
superior to 4 out of 7 methods.

Experiment 2 respectively. For analyzing results of Experi-
ment 1 (Table 6), we have performed 30 (5 × 6) tests for
5 comparing methods and 6 metrics. LIIML has achieved
statistically superior performance on 22 (73.33%) occasions.
For analyzing results of Experiment 2 (Table 7), we have
conducted 15 tests for 8 comparing methods (RML did not
output Macro-averaging AUC scores) and 2 metrics. On 11
(73.33%) cases, LIIML has achieved statistically superior
performance.

VII. CONCLUSION
In this paper, we have proposed a novel multi-label learner
which takes into account the class imbalance and class
geometries of the multi-label datasets. The simple and
naive framework of imbalance-adaptive misclassification
cost framework has given a new direction in the field of
class-imbalanced multi-label learning. The detailed experi-
mental evaluation indicates the performance of the proposed
method as comparable to superior across different evaluating
metrics. The novelty of LIIML is two fold. First one is the
feature extraction method which takes into account both class
imbalance and class geometries of the labels. The other key
contribution is the imbalance-adaptive cost sensitive learning.
It is an effective yet simple tool for handling diversified
imbalance ratios of the labels. Moreover, it has a general
framework which can be used with any first order multi-
label approach. Our future studies are directed at exploring
and finding out the optimal number of lattice points across
different labels to represent the class geometries of a multi-
label dataset.
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