
Received November 28, 2019, accepted December 21, 2019, date of publication December 25, 2019,
date of current version January 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962155

A Review of Quantum-Inspired Metaheuristics:
Going From Classical Computers
to Real Quantum Computers
OSCAR H. MONTIEL ROSS , (Senior Member, IEEE)
Centro de Investigación y Desarrollo de Tecnología Digital—Instituto Politécnico Nacional (CITEDI-IPN), Tijuana 22435, México

e-mail: oross@ipn.mx

This work was supported in part by the Instituto Politécnico Nacional, and in part by the Consejo Nacional de Ciencia y
Tecnología (CONACYT).

ABSTRACT This paper presents a review of quantum-inspired population-based metaheuristics. Quantum-
inspired algorithmswere born when there were no quantum computers; they demonstrated to have interesting
characteristics providing good results in classical computers. At present, when the first quantum computers
are available, scientists are working to confirm the quantum supremacy in different fields. After almost
20 years that the first metaheuristic inspired in quantum phenomena was published, a large number of
works have been proposed. This paper aims to look back to see which quantum-inspired metaheuristics
could be translated to be used in the existing quantum computers based on the circuit model programming
paradigm. Reviewed metaheuristics were classified according to their main source of inspiration; just some
representative works of each classification were selected because of the vast number of existing works on
each one. The analysis was done for the circuit model and metrics as width, size, and length were used to
determine their viability of being implemented in a real quantum computer. Moreover, comparative results
using metrics such as performance and running time for quantum-inspired metaheuristic were included.

INDEX TERMS Quantum metaheuristic, quantum-inspired, circuit model, metaheuristic for quantum
computer, binary coded quantum-inspired metaheuristic, real coded quantum-inspired metaheuristic.

I. INTRODUCTION
Mathematical optimization plays a crucial role in solving
science, engineering, economics, and life problems since they
can be formulated as a search or optimization problems. Tra-
ditional optimization methods can solve some simple prob-
lems using exact methods. Most problems are complex, and
exact methods fail to solve them because they have prop-
erties such as multimodality, high-dimensionality, and non-
differentiability.

An approximation algorithm is a procedure that can pro-
vide an approximate solution to a given problem. Rather
than spending an exponential amount of time searching the
optimal solution, approximation algorithms run in polyno-
mial time according to the input size and settle solutions
near the optimal [70]; they can be divided into heuristics
and metaheuristics algorithms. Heuristics stands for the art

The associate editor coordinating the review of this manuscript and

approving it for publication was Kun Wang .

of discovering new strategies for solving problems based
on experience. They can give a satisfactory solution that
might not be optimal in an acceptable quantity of time; in
this category, we can found many exact and approximation
algorithms. The term metaheuristic is formed by the words
‘‘meta’’ meaning upper level, and ‘‘heuristic’’. Therefore,
metaheuristic refers to a collection of methodologies concep-
tually positioned above heuristics [16]. Metaheuristics can be
of a single solution or population-based. In the first case, they
are based on a single solution proposal and regarded to be
more exploitative and embrace methods such as simulated
annealing; in contrast, metaheuristics based on populations
comprise methods such as evolutionary algorithms (EAs)
and swarm-based algorithms; these metaheuristics are more
oriented to the exploitation of the search space.

The importance of metaheuristic algorithms was fully
understood until the NP-completeness theory was established
in 1971. In this theory was determined that many well-known
problems are intractable in the sense that in polynomial time,

814 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7060-9204
https://orcid.org/0000-0002-9099-2781

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

no optimal solution can be computed for them [10]. As a
consequence, approximation algorithms that provide near-
optimal solutions are the best option when trying to solve
these problems. In the past decades, the area of approxi-
mation algorithms experienced an explosive rate of growth.
Several factors, such as the development of the field of data
mining, bioinformatics, deep learning, and others, triggered
this growth. As a result, a significant number of intractable
optimization problems surged, most of which have direct
application to real-world problems.

Overall, to evaluate and compare algorithms, it is necessary
to use objective metrics that measure howwell the algorithms
are behaving and tell us what to expect for the general case.
For exact (non-approximate) algorithms, an important metric
when finding exact solutions is the running time. The eval-
uation of approximate algorithms requires a second metric
that measures the performance of the algorithms. That is,
it is essential to measure how close the output of the approx-
imation algorithm is from the optimal solution. Therefore,
it is common to test the algorithmic proposals using sets of
benchmark functions. These functions face the algorithms to
different challenges, and the metrics help to determine the
strengths and weaknesses of the approximation algorithms.

Nature has inspired many approximation algorithm meta-
heuristics that can solve successfully hard problems. Nat-
ural computing is concerned with computational processes
inspired by nature. Some well-known examples of this
discipline are: neural networks, swarm intelligence, arti-
ficial immune system, evolutionary computation, cellular
automata, molecular, membrane, and quantum computing.
These, together with other paradigms in the same line con-
stitute the discipline of computational intelligence.

As we mentioned, execution time is an essential met-
ric when designing exact and approximation algorithms.
Undoubtedly, advances in computer architecture have played
a significant role that has impacted this metric positively.
Algorithms designed for sequential processing have been
modified to take advantage of parallel processing. These new
modified algorithms use multicore microprocessor architec-
tures, and more recently, computer cards containing thou-
sands of processing units known as GPU cards and spe-
cialized software such as the CUDA [17]. The development
of quantum computers by companies like the IBM [30],
D-Wave Systems [11], Google [21], QuTech [55], Intel [31],
and Rigetti [59] is becoming a watershed in some fields
like optimization, machine learning, material sciences, and
Monte Carlo simulations. The interest in developing quantum
applications is justified since there is experimental evidence
that shows that one D-Wave quantum computer system out-
performed software as the CPLEX of IBM when solving
three instances in the NP-hard problem domain. In one of the
tests, the quantum computer solved 3600 times faster than the
CPLEX software [43].

Quantum metaheuristics are approximate algorithms
designed to impact both metrics, running time, and perfor-
mance, since they will be executed by a quantum computer.

However, quantum-inspired metaheuristics were designed
to run in classical computers that simulating phenomena
of quantum physics like superposition and entanglement
allow us to explore quantum programming and predict future
behavior and results.

This paper aims to present a review of state-of-the-are
about quantum-nature-inspire metaheuristics. The number of
existing proposals is very extensive to include all of them.
We made a selection based on criteria such as: including
pioneer works, representative works of every classification,
state-of-the-art works, and other interesting proposals that
reported good results. We tried to increase the number of
the included works; unfortunately, we had to leave out many
interesting works that have contributions so as not to extend
so much this paper. The review is divided into five groups,
according to their source of inspiration, all of them are
quantum-inspired. We provide a summary and analysis of the
reported results of the chosen metaheuristics. We comment
on which ones could be susceptible to be adapted for being
executed by a quantum computer that uses the circuit model.

There are some surveys about quantum-inspired meta-
heuristics that contains useful information about the perfor-
mance [35], [75]. We did not find a survey that reported
the comparison of running times. In this paper, the reader
could discover some newer works, which were not included
in the surveys because they were published after; we present
information about the performance and running times. The
main contribution is the analysis regarding looking back and
see which of the existing metaheuristics could be translated
for being used in today’s quantum computers. This study
is limited to those quantum computers based on the circuit
model, and objective metrics are used to make the discussion.

In Section II, we provide the minimal theoretical back-
ground of quantum computing to make more understand-
able quantum algorithms. In Section III, we present the
pioneering work of all the quantum-inspired population-
based metaheuristics. This section also includes other binary
and real coded evolutionary algorithms. Section IV is ded-
icated to quantum-inspired swarm evolutionary algorithms.
In Section V the quantum social evolutionary algorithm is
explained. In Section VI, we explain the quantum-inspired
multiobjective evolutionary algorithm. In Section VII,
the algorithms inspired by other sources of inspiration such
as the gravity force. In Section VIII, the analysis of the
revised method is achieved. Finally, Section IX contains the
conclusions of this work.

II. THEORETICAL BACKGROUND
Any evolutionary algorithm, in its more basic representation
can be modeled for computer simulation using the difference
equation shown in (1) [18], where t is the generation counter,
P(t + 1) is the new population obtained from the current
population P(t) after being modified by random variations v
and a selection process s. This equation can also represent
other nature-inspired population-based algorithms, which,
rather than using the evolution mechanism, are based on

VOLUME 8, 2020 815

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

different mechanisms such as swarm behavior; it is also valid
for quantum metaheuristic algorithms inspired on physical
phenomena

P(t + 1) = s(v(P(t))). (1)

Real-life applications require to use classical information
based on bits. Data from a quantum register memory cannot
be directly used because it can have any possible value.
An observer can obtain classical information from a quantum
register. The observer must be equippedwith the appropriated
measurement apparatus to determine the outcome of variables
representing observable physical quantities such as energy,
momentum, position, and others. These variables are replaced
by linear operators named observables in the Hilbert space.
The system has associated an element ψ of the Hilbert space,
and it describes the quantum state of the system. ψ is known
as the system’s state vector or wavevector or wavefunction.
The only values that can be observed from ψ for physical
quantities are the eigenvalues of the corresponding operators
on the Hilbert space. In agreement with the Copenhagen
interpretation of Quantum Mechanics, an abstract wavefunc-
tion allows calculating probabilities outcomes of particular
experiments. |ψ |2 is a probability density function (PDF).
As an example, we will consider a particle; the PDF will
describe the probability than an observation of such a particle
will be found at a given time in a region of the space. ψ
satisfies the Schrödinger linear equation

i}
∂

∂t
ψ = Hψ; (2)

where i =
√
−1, } is the reduced Planck’s constant, andH is

the Hamiltonian. Equation (2) describes the time evolution of
the wavefunction along with the PDF. At each point, as time
passes, the PDF becomes more disperse over space, and our
capacity to determine the position of the particle becomes
less precise. This dispersion or spreading will continue until
an observation is achieved. Then, ψ collapses to a particular
eigenstate (classical state), in the case of the particle, in a
particular position, then, the dispersing of the PDF starts all
over again.

Before a quantum system is observed, it is a linear com-
bination of all possible states. When we performed an obser-
vation (measurement), one classical state is chosen, with a
probability given by the PDF. The likelihood of finding the
observed particle is more significant at locations where |ψ |2

is large, and the probability is zero if |ψ |2 = 0. Finding a
particle in any place in space has a probability value of 1;
therefore, the normalized wavefunction ψ is used. All the
operators in the Hilbert space are unitary.

Quantum computing uses the Dirac notation; hence, a qubit
|ψ〉 is a two-state system defined as shown in (3); the complex
coefficient a is the amplitude of the |0〉 component, and
b is the amplitude of the |1〉. It is required that qubits be
normalized, so they must fulfill that |a|2+ |b|2 = 1 to ensure
properly this condition.

Quantum algorithms work with quantum bits (qubits).
A qubit is an elementary information unit, and it is analog to a
bit in classical computation. Qubits can be in a superposition
of the orthogonal states |0〉 and |1〉 simultaneously; hence,
a qubit |ψ〉may be defined as the complex C combination of
both states in the Hilbert space,

|ψ〉 = a|0〉 + b|1〉 where a, b ∈ C. (3)

The state of a qubit can be visualized inside of a bounding
sphere, known as the Bloch sphere. Therefore, a qubit can be
expressed in the spherical coordinate system (r, θ, φ). r is the
radial distance; θ is the latitudemeasuredmonotonically from
North-pole to South-pole, 0 ≥ θ ≤ φ ; and π is the longitude
measured monotonically as we rotate around the z-axis in
a clockwise fashion. Because the normalization condition,
we have that x2 + y2 + z2 = r2 = 1, hence r = 1. To switch
from spherical coordinates to Cartesian coordinates, we have
that,

x = r sin(θ) cos(θ) (4)

y = r sin(θ) sin(φ)) (5)

z = r cos(θ). (6)

In the Cartesian coordinate system, in the z-axis, a qubit is
in the north-pole when its state is |1〉 when z = 1, and in the
south-pole for the state |0〉 when z = −1.
Any pair of vectors φ and ψ that are linearly indepen-

dent ∈ C2 can form a basis. It is very common to use the
orthonormal basis |0〉 and |1〉 known as the computational
basis. Some other bases are the Bell, Chiral, and Diagonal
basis. To extract answers from quantum computers is nec-
essary to read the quantum computing register; so, we must
measure the quantum state of the register, and the result must
be expressed on a specific basis. Therefore, the bases are
essential to the definition of the measurement operator. The
measurement will destroy the pure quantum state collapsing
to non-quantum values on the selected basis.

Classical computing works with a set of bits to form reg-
isters, some of them known as nibbles, bytes, and words.
A three-bit system of classical bits, say 000 or 101, always has
the same value unless we intentionally modify them, and to
represent all the possible combinations, we require a system
with eight registers. In quantum computing, a set of qubits
forms a quantum register, which can have all the possible
combinations that their binary counterpart could have with
the same number of bits. Hence, one quantum memory reg-
ister with 16 qubits will hold the same information that 216

binary memory registers.
In general, a pure state of an n-qubit quantum memory

register in the computational basis is written as

|9〉 = c0|00 . . . 0〉 + c1|00 . . . 1〉 + · · ·

+c2n−1|11 . . . 1〉 =
2n−1∑
i=0

ci|i〉; (7)

816 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

where
∑2n−1

i=0 |ci|
2
= 1 to satisfy the normalization condition,

and |i〉 is the computational basis eigenstate whose bits cor-
respond those of the decimal number i in base-2 notation; for
example, for a three qubit system |2〉 corresponds to |010〉.

The state of a quantum register is determined by calculating
the direct product symbolized by ⊗, which is also known as
tensor or Kroenecker product of the n quantum states of the
individual qubits. If |φ〉 =

∑2m−1
j=0 aj|j〉 is an m-qubit register

and |ψ〉 =
∑2n−1

k=0 bk |k〉 is an n-qubit register, both in pure
state, their direct product |φ〉 ⊗ |ψ〉 is calculated as shown
in (8)

|φ〉 ⊗ |ψ〉 =

2m−1∑
j=0

aj|j〉 ⊗
2n−1∑
k=0

bk |k〉

=

a0
a1
...

a2m−1

⊗

b0
b1
...

b2m−1

 . (8)

Most of the quantum-inspired algorithms follow the circuit
model of a computer as an abstraction of the computing
process. In the most general form, in this model, the com-
putations are achieved by the application of different gates
(binary or quantum) to transform the inputs in some fashion.

There are different gates that can be built from unitary
matrices to act on qubits. In this paper, we will focus mainly
on those unitary matrices and quantum gates that will be
used in the explanation of the included algorithms. Therefore,
we have included the Pauli matrices: Identity I =

(
1 0
0 1

)
, single

qubit rotation around x-axis π radians X =
(
0 1
1 0

)
, rotation

around y-axisπ radians Y =
(
0 −i
i 0

)
, and rotation around z-axis

π radiansZ =
(
1 0
0 −1

)
. The Hadamard gate (H) that acts on the

computational basis according toH |x〉 = 1
√
2
(|0〉+(−1)x |1〉).

Rotation gates: Rx(θ) that allows rotation of θ radians around
the x-axis, Ry(θ) that allows rotation of θ radians around
y-axis, and Rz(θ) that allows rotation of θ radians around
z-axis; their definition is as follows,

Rx(θ) =
(

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
(9)

Ry(θ) =
(
cos(θ/2) sin(θ/2)
sin(θ) cos(θ/2)

)
(10)

Rz(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
. (11)

The Hadamard gate is very important. We can prepare
n-qubits in the state |0〉 and apply to each qubit in parallel
its own H gate as shown in (12) to produce an equal superpo-
sition state of all the qubits in the register

H |0〉 ⊗ H |0〉 ⊗ · · · ⊗ H |0〉 = H⊗
n
|0〉 =

1
√
2n

2n−1∑
j=0

|j〉. (12)

In (12), the number j is in base-10 notation, and |j〉 is
the computational basis state, in such a way that in an

FIGURE 1. Quantum chromosome structure. Each gene represents a
decision variable.

8-qubit register the state |18〉 corresponds to the compu-
tational basis state |00010010〉. It is important to prepare
n − qubits registers in the state |0〉, and then apply to each
one the H gate. With this operation, we create one regis-
ter containing 2n component eigenstates that represents all
the possible combinations of bit-strings one can store in
2n different memory registers [69].
All the metaheuristic algorithms explained in this work

used the computational basis; therefore, we limit the expla-
nation of observing the states of qubits or quantum register to
this basis. In the computational basis, the measurements of a
qubit are achieved in the z-axis, corresponding to |0〉 or |1〉,
as more significant the value of |a|2, the probability of being
‘‘0’’ in the classical state increases. If the measurement is
applied to an n-qubit quantum memory register, all the possi-
ble 2n bit string configurations can be obtained.
Fig. 1 describes a quantum chromosome conveniently

defined as a quantum register containing n qubits. Therefore,
it is possible to modify standard metaheuristics to work with
few or even a single chromosome (quantum register) instead
of having a large population of solution encoded as is done
in non-quantum evolutionary algorithms. The capacity of a
quantum register to represent multiple states simultaneously
helps to maintain diversity during the search process of the
evolutionary algorithm.

III. QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM
Narayanan and Moore in 1996 introduced the concept and
principles of quantum mechanics to obtain more efficient
evolutionary methods [51]. Specifically, they proposed a
quantum-inspired form of fixed-point interference crossover
operator that was applied to solve the traveling salesman
problem (TSP). In [50], the first guidelines as an attempt to
characterize a methodology to design and develop quantum
algorithms were provided, and it was explained the feasibility
and potential use of quantum-inspired methods in tackling
NP-hard problems.

The first two pioneer works based on concepts and prin-
ciples of quantum computing, such as quantum bits and the
superposition of states that include pseudocode are genetic
quantum algorithm (GQA) proposed in [22], and quantum
inspired evolutionary algorithm (QEA) introduced in [23].

A. THE GENETIC QUANTUM ALGORITHM (GQA)
Algorithm 1 shows the canonical structure of the GQA [22].
Analogously to the classical binary GA, a quantum

VOLUME 8, 2020 817

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

chromosome qj at generation t is a set of qubits |ψi〉; such
that,

qtj =
[
αt1 αt2 · · · αtm
β t1 β t2 · · · β tm

]
; (13)

where j is the chromosome identifier and m is the number
of qubits in qtj . A quantum chromosome qtj |t=0 represents
the linear superposition of all possible states with the same
probability, such that the state of the quantum chromosome
|9q0j
〉 is,

|9q0j
〉 =

2m∑
k=1

1
√
2m
|Xk 〉; (14)

where Xk represents the k-th state of a binary string
(x1x2 · · · xm), and the bit value of xi, for i = 1, 2, . . . ,m,
is either 0 or 1. A population of quantum chromosomes is
denoted by Q(t) = {qt1,q

t
2, . . . ,q

t
n}; n is the size of the

population.

Algorithm 1 Genetic Quantum Algorithm (GQA)

1 ProcedureGQA
2 t ← 0
3 initialize the population of quantum chromosomes

Q(t)
4 make P(t) by observing Q(t) states
5 evaluate each binary solution in P(t)
6 store the best solution b among P(t)
7 while not termination-condition do
8 t ← t + 1
9 make P(t) by observing Q(t − 1) states
10 evaluate each binary solution in P(t)
11 update Q(t) using quantum gates U (t)
12 store the best b solution among P(t)
13 end
14 QEnd_GQA

Algorithm 2 Procedure Make for the GQA

1 Proceduremake(x)
2 i← 0
3 while i < m do
4 i← i+ 1
5 if random[0, 1) > |αi|2 then
6 xi← 1
7 else
8 xi← 0
9 end
10 end
11 End_make

Some specific details of Algorithm 1 are described next:
1) The generation counter t is initialized in 0.

Algorithm 3 Procedure Update of the GQA

1 Procedureupdate(q)
2 i← 0
3 while i < m do
4 i← i+ 1
5 determine θi with the lookup table
6 obtain (α′iβ

′
i) as:

7 [α′iβ
′
i]
T
= U (θi)[αiβi]T

8 end
9 q=q’

10 End_update

Algorithm 4 Repair Operator Used by the GQA, and the
QEA

1 Procedurerepair(x)
2 knapsack-overfilled← false
3 if

∑m
i=1 wixi > C then

4 knapsack-overfilled← true
5 end
6 while knapsack-overfilled do
7 select an i− th item from the knapsack
8 xi← 0
9 if

∑m
i=1 wixi ≤ C then

10 knapsack-overfilled← false
11 end
12 end
13 while not knapsack-overfilled do
14 select an i− th item from the knapsack
15 xi← 1
16 if

∑m
i=1 wixi > C then

17 knapsack-overfilled← true
18 end
19 end
20 xj← 0
21 End_repair

2) In line 3, a population of quantum chromosomes Q(t)
is created such that q0j for all j = 1, 2, . . . , n are
initialized with 1/

√
2 using (14).

3) The initial population P(0) = {x01, x
0
2, · · · , x

0
n} is

obtained by observing Q(0) states. Each x0j , j =
1, 2, · · · , n, is a solution, i.e, a binary chromosome of
length m. The observations of quantum chromosomes
are performed using the procedure make shown in
Algorithm 2, it uses the probabilities of each qubit of
q0j to be 0 or 1, i.e., |α0i |

2 or |β0i |
2, respectively.

4) Each binary solution x0j in P(0) is evaluated to obtain a
quality measure through a fitness function.

5) The best binary solution in P(0) is selected and stored
into b.

6) The while loop contains the next steps.

a) The generation counter t is incremented.

818 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

TABLE 1. Lookup table to find the appropriated rotation angle 1θi .

FIGURE 2. Polar plot that illustrates the angle 1θi when the rotation gate
is applied to a qubit.

b) The procedure make creates a new population
P(t) by observing Q(t − 1) states.

c) Each binary solution of P(t) is evaluated through
a fitness function.

d) The aim of the update procedure is improv-
ing Q(t) through generations. Its implementation
will depend on the given problem. For example,
Algorithm 3 was used in [22]; where the update
procedure uses the actual qtj , the binary solution
xj = {x1, . . . , xn}, an the best solution b =
{b1, . . . , bn} to calculate f (x) as well as f (b). The
rotation angle θi and sign are determined with
the lookup table shown in Table 1. The update
of each qubit of qtj is carried out in line 7 of
Algorithm 3 where the quantum gate U (ξ1θi) is
applied as shown in (15). Fig. 2 illustrates this
concept. The angle 1θi of Table 1 is chosen in
compliance with the application problem. Note
that ξ (1θi) = s(αi, βi) ∗ 1i, where the terms
s(αi, βi) and 1θi are the direction and rotation
angles, respectively.

e) The best solution among P(t) is stored in b.

[
α′i
β ′i

]
=

[
cos ξ (1θi) − sin ξ (1θi)
sin ξ (1θi) cos ξ (1θi)

] [
αi
βi

]
(15)

The GQAwas adapted and tested to solve the 0-1 knapsack
problem; which is defined as ‘‘given weights and values

of n items and a knapsack, find a subset of the items that
maximize the profit f (x)’’; i.e.,

f (x) =
m∑
i=1

pixi

subject to

m∑
i=1

wixi < C

where the vector x = (xi, . . . , xm), xi ∈ {0, 1}, ∀i ≤ i < n,
wi is the weight of item i, pi is the profit of item i, and C is
the knapsack capacity.

To adapt Algorithm 1 for solving the 0-1 kanpsack prob-
lem, it is necessary to add the repair operator described by the
Algorithm 4 between lines (4 - 5) and (9-10). A first version
of the repair operator was originally proposed in [44].

B. QUANTUM-INSPIRED EVOLUTIONARY
ALGORITHM (QEA)
The QEA [23] is the upgrade of the GQA of [22]; sim-
ilarly to its predecessor, the QEA was tested with the
0-1 knapsack combinatorial optimization problem. A notable
difference between both proposals is the concept ofmigration
introduced by the QEA, which is a process that can induce a
variation of the probabilities of a quantum chromosome. The
migration condition is a design parameter defined in the paper
as follows:

‘‘A migration in QEA is defined as the process of coping
btj in B(t) or b to B(t). A global migration is implemented by
replacing all the solutions in B(t) by b. A Local migration is
implemented by replacing some of the solutions in B(t) by
the best one of them [23].’’

This work introduced the concept of ‘‘Q-bit individual’’
defined as a string of qubits (Q-bit); i.e., a Q-bit individual is
a quantum chromosome defined by (13). The overall structure
of the QEA is shown in Algorithm 5. This algorithm has
similarities with its predecessor GQA (Algorithm 1). Hence
the explaining of lines 2 to 5 of Algorithm 5 is the same
of Algorithm 1.

In line 6 of Algorithm 5, the initial best solutions among
P(0) are saved into B(0). This will form a list of binary
solutions B(0) = {b01,b

0
2, . . . ,b

0
n}. At the initial generation

x0j is the same as b0j .

VOLUME 8, 2020 819

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

Algorithm 5 Quantum-Inspired Evolutionary
Algorithm (QEA)

1 ProcedureQEA
2 t ← 0
3 initialize the population of quantum chromosomes

Q(t)
4 make P(t) by observing the states of Q(t)
5 evaluate P(t)
6 store the best solutions among P(t) into B(t)
7 while not termination-condition do
8 t ← t + 1
9 make P(t) by observing the states of Q(t − 1)
10 evaluate the population of solutions P(t)
11 update Q(t) using quantum gates
12 store the best b solutions among B(t − 1) and

P(t) into B(t)
13 store the best solution b among B(t)
14 if migration-condition then
15 migrate b or btj to B(t) globally or locally

respectively
16 end
17 end
18 AEnd_QEA

Algorithm 6 Procedure Update of the QEA

1 Procedureupdate(q)
2 i← 0
3 while i < m do
4 i← i+ 1
5 determine 1θi with the lookup table
6 obtain (α′iβ

′
i) from the following

7 if q is located in the first/third quadrant then
8 [α′iβ

′
i]
T
= U (1θi)[αiβi]T

9 else
10 [α′iβ

′
i]
T
= U (−1θi)[αiβi]T

11 end
12 end
13 q=q’
14 End_update

The while loop contains the next steps:
1) The generation counter t is updated.
2) A binary population P(t) is created by observing

the states of Q(t − 1) using the procedure make
shown in Algorithm 2; in this version, the authors
changed the original line 5 by the next pseudocode ‘‘if
random[0, 1] < |β|2 then’’. This expression produce
almost the same result than the original proposal.

3) The binary population P(t) is evaluated using a fitness
function.

4) The procedure update shown in Algorithm 6, mod-
ifies the quantum chromosomes Q(t) using quantum
gates. In [23], the procedure update is an upgrade

TABLE 2. Lookup table of 1θi . xi and bi are the i − th bits of the binary
solution x and the best solution b, respectively. f (·) is the fitness function
(profit). For the knapsack problem the next values were used: θ1 = 0,
θ2 = 0, θ3 = 0.01π , θ4 = 0, θ5 = −0.01π , θ6 = 0, θ7 = 0, θ8 = 0.

of the equivalent procedure shown in Algorithm 3 of
the GQA. The new procedure update (Algorithm 6)
reduces the size of the original lookup Table 1. The
new lookup table to solve the 0-1 knapsack problem
is shown in Table 2.

5) The best solution b among B(t − 1) and P(t) are saved
into B(t); if the best solution saved in B(t) is better than
the stored best solution b then the saved solution b is
substituted by the new one.

6) In the last step of the while loop, the algorithm verifies
if there exists a migration condition. If the conditional
is satisfied, the best solution b is migrated toB(t), or the
best one in B(t) is migrated to them.

The adaptation of Algorithm 5 to solve the 0-1 knapsack
problem besides the modification above mentioned; similarly
to the GQA, it is also necessary to add the procedure repair
(Algorithm 4) between lines (4-5) and (9-10).

The selection process of the vector of angles 2 =

[θ1 · · · θ8]T is intuitive.

C. REAL-CODED QUANTUM-INSPIRED EVOLUTION
ALGORITHM
The first successful work that used real-values in a quantum
evolutionary algorithm was [1]; here, an algorithm with bet-
ter convergence times when optimizing real-valued bench-
mark functions was presented. Based on the previous work,
in [2] a simplified representation was used, and the pro-
posal was named Real-coded quantum-inspired evolution
algorithm (RQIEA); it was presented as an alternative to
the binary-coded QIEA since the real-coded algorithm works
better when real numbers are directly encoded into the chro-
mosome. Additionally, the demand for memory is reduced.

Similarly to the binary-valued QIEA, the RQIEA main-
tains two different populations. In other words, the RQIEA
maintains a distinction between the population formed by
quantum chromosomesQ(t) and the observed population that
contains the real-valued solution vectors. In the RQIEA, Q(t)
has N quantum individuals qi, i = 1, 2, . . . ,N . Each individ-
ual is composed by G genes gij where j = 1, 2, . . . ,G. Each
gene is represented by a pair gij = (ρij, σij) of real numbers
where the mean and width of a squared pulse are symbolized
by ρij and σij, respectively. In the quantum individual, each
gene represents an interval in the search space. The main

820 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

idea is to have similitude with quantum concepts like the
superposition of states and collapsing to a value.

Algorithm 7 shows the pseudocode of the RQIEA. Sim-
ilarly to other population-based optimization algorithms,
a quantum chromosome is a specific solution vector, in this
case of real numbers, made up of several quantum genes. The
number of genes of the quantum chromosome is determined
by the required dimension of the solution vector. The expla-
nation of this algorithm is as follows:

Algorithm 7 Real Quantum-Inspired Evolutionary
Algorithm (RQIEA)

1 ProcedureRQIEA
2 t ← 1
3 initialize the quantum chromosomes Q(t) with N

individuals with G genes
4 while t < T do
5 create the PDF’s using the quantum individuals
6 E(t)← generete classical population observing

Q(t) and using CDF’s
7 if t = 1 then
8 C(t)← E(t)
9 else
10 E(t)← Crossover between E(t) and C(t)
11 evaluate E(t)
12 C(t)← K best individuals from

[E(t)+ C(t)]
13 end
14 with the N best individuals from C(t)
15 Q(t + 1)← apply translate operation to Q(t)
16 Q(t + 1)← apply resize operation to

Q(t + 1)
17 t ← t + 1
18 end
19 end
20 End_RQIEA

1) At the start, all the genes in the quantum chromosome
are initialized randomly, considering for each gene that
its value must be within the range of allowable values
for that dimension. The idea is to set the value of each
gene within the allowable values for the corresponding
dimension. For example, if we know that the allowable
values for the dimension j on the solution vector are
[−80, 80], then the quantum gene i at dimension j is
gij = (pij, 160); the mean of the squared pulse is
initialized randomly selecting a value within this range,
say −40, then gij = (−40, 160). At the initialization,
the squared pulse does not need to be completed within
the allowable range for a dimension because the algo-
rithm will systematically adjust for this as it executes.
The pulse’s height from a gene j in the quantum chro-
mosome i, hij, is calculated using (16)

hij =
1/σij
N

. (16)

Algorithm 8 Procedure Crossover of the RQIEA

1 Procedurecrossover
2 for i← 1 to K do
3 select individual ei from E(t)
4 select individual ci from C(t)
5 for j← 1 to G do
6 r ← choose random number in [0.1)
7 if r < ξ then
8 e′ij← eij
9 else

10 e′ij← cij
11 end
12 end
13 end
14 End_crossover

2) The while loop will iterate the steps within it during
T generations, t is the generation counter. Inside the
loop are the next steps:
a) The interference between the quantum individ-

uals is obtained by summing up all members
ofQ(t); i.e., the quantum population. This process
generates a probability density function (PDF)
that ensures that the area under this PDF is 1.
For the gene j on iteration t the PDF is given
by (17), where ḡij symbolizes the phenotype and
it is composed by the pair (gij, hij),

PDFj(t) =
N∑
i

ḡij. (17)

b) A classical population E(t) is generated by
observingQ(t) and using the cumulative distribu-
tion function CDF . First, to obtain an observation
it is necessary to calculate the cumulative distri-
bution function (CDF) of a gene using (18); L ij and
Lsj are the upper and lower limit of function PDFj.
Individual qi’s are formed by N genes, hence, it
is mandatory to construct a CDF for each gene
considering the whole population,

CDFj(x) =
∫ LSJ

Lij

.PDFj(x)dx (18)

The value of a gene in the classical population is
generated using (19), where r is a random number
in the interval [0, 1]. With this process, a classic
temporary population E(t) with K individuals is
generated,

x = CDF−1(r). (19)

c) In the first generation (line 8), an exact copy C(t)
of E(t) is created.

d) For all cases after the first generation, a crossover
operation among the individuals of E(t) and C(t)

VOLUME 8, 2020 821

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

is applied. Algorithm 8 depicts the crossover
operator.

e) The population E(t) is evaluated.
f) The new classical population C(t) is formed by

selecting theK best individuals fromE(t)
⋃
C(t).

g) The N best individual from C(t) are used to
update the quantum population Q(T). This pro-
cess consists of two operations named ‘‘translate’’
(line 15) and ‘‘resize’’ (line 16), and it is achieved
in two steps:
i) The translate operation modifies the center
ρ of the quantum genes. The procedure is
achieved by making the gene’s mean value ρij
of the center of the j − th gene of the i − th
quantum individual in Q(t) equal to the corre-
sponding values in the classical individual cij;
mathematically we have that,

ρij = cij. (20)

ii) The resize operation updates the correspond-
ing width value of the j − th gene of the
i − th quantum individual in Q(t). The oper-
ation is applied to all the quantum genes
for all the individuals; this is done to vary
the exploration and exploitation abilities of
the quantum search algorithm. The heuris-
tic to decide if the new width σij should be
shrunk or enlarged is ‘‘1/5th’’ (Rechenberg
rule [44]); this rule says that if less than 20%
of the actual generation has improved, then
the gene width is reduced to try to improve
the local search. If the rate is precisely 20%,
no changes are made; otherwise, the width
is enlarged to try to improve the global
search. The rule can be expressed mathemati-
cally using (21),

σij =

σij · δ ϕ < 1/5
σij ϕ = 1/5
σij/δ ϕ > 1/5.

(21)

The crossover operator depicted in Algorithm 8 uses
a K number of individuals in the classical population C(t),
and G as the number of genes in each individual. The param-
eter ξ is the crossover rate; if ξ = 1 all the genes of the created
individual will be copied to the offspring. A rate of ξ = 0 will
not modify the individuals.

The RQIEA was tested in [32] using four bench-
mark functions; two are unimodal functions (Sphere and
Schwefel 2.21), and the others are multimodal (Griewank and
Ackley 1). The results were compared against the Stochastic
Genetic Algorithm (StGA) [66], Fast Evolutionary Program-
ming (FEP) [73], Fast Evolutionary Strategy (FES) [74], and
Particle Swarm Optimization (PSO) [3]. The reported results
were that the RQIEA outperformed the FEP, FES, PSO with
fewer evaluations, and the StGA with the same number of
evaluated functions, numerically.

FIGURE 3. Life cycle of ants.

D. QUANTUM INSPIRED ACROMYRMEX EVOLUTIONARY
ALGORITHM
The quantum-inspired Acromyrmex evolutionary algorithm
(QIAEA) proposed by [48] was motivated by the colony
behavior of the Atta and Acromyrmex, also known as leafcut-
ter ants. This paradigm is different from the ant colony opti-
mization (ACO) metaheuristics proposed by [15] and [63].
In Fig. 3, the life cycle of ants is shown; it consists of
four stages: eggs, larva, pupa, and adult. Fertilized eggs pro-
duce female ants, which eventually become queens, work-
ers, or soldiers. Unfertilized eggs produce male ants. The
workers and the soldiers are sterile. Typically, these advanced
social insects leave in nests, and they have well-organized
colonies form by the queen Q, males M’s, workers and
soldiers S, and sometimes virgin queens V . Depending on the
species, there are slight variations in their behavior. Queens
are the only ants with reproductive capabilities.

This algorithm was defined as follows,

• P↓ defines an ant population, which consists in a set ofN
individuals (ants) pi sorted in descending order; i.e., the
best individuals are first.

• ci to denote the chromosome representing a colony
member of C.

• pi = ci ∪ fi is a conventional individual containing its
fitness value f .

• The population of individuals P↓ is described as,

P↓ =
{
pi : i ∈ N , pi ≥ pi+1

}
=

⋃
i∈N ,

pi≥pi+1

pi. (22)

• The fitness functionF assigns the corresponding fitness
value f to each element of P; i.e., F =

⋃
i∈N fi, and

F :P↓→ F↓.
• The QIAEA is formally defined by five main elements:
queens Q, virgin queens V , males M , and the rest of
the ant population R.

• A particular implementation for the QIAEA with one
queen is P↓ = {Q1,Ml

k=2,R
N
l=l+1,F

N
i }. N , k , and l,

are numbers that defines the quanty of each kind of ants.
• The algorithms use the symbol O to indicate quantum
measurements.

822 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

• OSQM means single qubit measurement. This procedure
is very similar to the procedure shown in Algorithm 2 of
the GQA; however, in OSQM the algorithm specifies
that random numbers must be generated using a uniform
probability distribution.

• OFM means full-measurement; i.e., it used to measure
the whole quantum chromosome. This procedure is
given in Algorithm 11.

The pseudocode of QIAEA is shown in Algorithm 9, next,
a brief explanation of the main steps is given:

1) The iteration counter t is set to 0.
2) A binary ant colony C of sizeN is initialized in lines 3-8

as follows,
a) The queen Q0 is set in the zero state (s0 = 1).
b) Q0 is set in the superposition state (QH) by apply-

ing the Hadamard gate to Q0. The probability of
the outcomes to be zero or one will be 50-50.

c) The binary chromosome ci is obtained by per-
forming the full measurement of QH .

3) An ant (colony member) pi is formed by its corre-
sponding chromosome ci and fitness fi. In lines 9-11,
a population P of pi binary ants is created.

4) The population P is sorted in descending order; now,
the fittest individual is p1; hence the queen is Q1.

5) P is divided in two subpopulations, a queen Q1, and a
set of males Ml

k=2 of size l − 1.
6) Best individuals are saved in Bj1, where j indicates the

number of individuals to be saved.
7) The repeat-until loop (lines 16-28) will repeat the next

steps until the termination criterion is achieved.
a) The iteration counter is incremented.
b) New colony members’ chromosomes are cre-

ated using only the Queen Q1 and Ml
k=2

chromosomes excluding their fitness values;
i.e., Q1\fi and Ml

k=2\f
l
k . The crossover algo-

rithm is invoked N − 1 times to achieve recom-
bination of the queen, considering all the males
in P .

c) In line 22, the new individuals pi are created by
adding to the chromosomes the fitness values.

d) In line 24, the population P is sorted in descend-
ing order.

e) In line 25, the queen Q1 is chosen.
f) In line 26, the set of males Ml

k=2 of size l − 1 is
chosen.

g) Best individuals are saved inBj1, where j indicates
the number of individuals to be saved.

Algorithm 10 shows the crossover procedure. The input
parameters of this algorithm are the binary chromosomes of
the queen andmale. It also uses the parameter a to indicate the
number of qubits of the quantum chromosome of the queen
that will be changed. First, the algorithm sets a quantum
chromosome Q0 that can be in any state. The state sq is
determined with the binary queen, and it is used to set Q0
in the state that must be. In line 5, a random number in the

range 0 to size(q− a) is generated, and the value is assigned
to r . The random number r is used to determine the point
position to start the r + a comparisons in the quantum chro-
mosome to apply quantum operations to the corresponding
qubits (alleles). In other words, we want to compare sub-
strings of the queen and the selected male, bit by bit. When
a coincidence exist, a Hadamard operation is applied to the
corresponding bit; otherwise, the quantum X-gate is applied
to the quantum allele.

Algorithm 9 The Quantum Inspired Acromyrmex
Evolutionary Algorithm
Data: Quantum chromosome

Q0 = s0|0 . . . 000〉 + · · · + s2n−1|1 . . . 111〉, n is
the number of qubits, and s is the probability for
every state

Result: Q1(t)
1 ProcedureQIAEA
2 t ←− 0
3 for i← 1 to N do
4 s0← 1
5 QH ←− H (Q0)
6 Q←− OFM (QH)
7 ci(t)←− Q
8 end
9 for i← 1 to N do
10 pi(t)←− ci(t)

⋃
fi(ci)

11 end
12 P↓(t)←− P(t)
13 Q1(t) = p1(t)
14 Ml

k=2(t) = [p2(t), · · · , pl(t)]
15 Bj1 = [p1(t), · · · , pj(t)]
16 repeat
17 t ← t + 1
18 for ι← j to N do
19 cι(t)←Crossover(Q1\f1,Ml

k\f
l
k)

20 end
21 for i← 1 to N do
22 pi(t)←− ci(t)

⋃
fi(ci)

23 end
24 P↓(t)← P(t)
25 Q1(t)←− p1(t)
26 Ml

k=2(t) = [p2(t), · · · , pl(t)]
27 Bj1 = [p1(t), · · · , pj(t)]
28 until stop criteria
29 AEnd_QIAEA

E. OTHER QUANTUM BASED EVOLUTIONARY
ALGORITHMS
In [67], a modification to the GQAwas proposed, and the new
algorithm was named AQGA. It consisted in auto-adjust the
rotation angle θt using θt = θmax−(θmax−θmin)∗t/tmax . In the
AQGA, the value of θt ∈ {θmin, θmax} depends on the current

VOLUME 8, 2020 823

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

Algorithm 10 Crossover Algorithm. Crossover(q,m)
Data: q: queen, m: male, a: number of qubits to swap
Result: cnew: new chromosome

1 ProcedureCrossover
2 Q0 = s0|0 . . . 000〉 + · · · + s2n−1|1 . . . 111〉
3 sq← 1
4 r ←− N (0, sizeof(q− a))
5 for κ ← r to r + a do
6 if q[κ] == m[κ] then
7 Q0← H |κ〉
8 else
9 Q0← X |κ〉

10 end
11 end
12 cnew← OFM (Q0)
13 End_Crossover

Algorithm 11 Full Measurement of a Quantum
Chromosome (FM)
Data: qc: a quantum chromosome, nq: number of qubits

to measure
Result: cnew: new chromosome

1 ProcedureFM
2 for ι← 0 to nq− 1 do
3 cnew[ι]← OSQM (qc[ι])
4 end
5 End_FM

generation t ∈ {1, tmax}, initializing in θmax and decreasing
over time to θmin. In [25], the first parallel programmed ver-
sion of a quantum genetic algorithm (QGA) named parallel
QGA (PQGA) appeared. It proved to be superior to the QGA
optimizing the knapsack problem. In [7], the adaptive QIAG
was proposed. It uses strategies to choose the best operators
parameter. The algorithm was tested with the knapsack prob-
lem proving its superiority to the QIGA. Other quantum evo-
lutionary works focused on solving combinatorial problems
that demonstrate to be superior to the classical genetic algo-
rithmGA are [12], [23], [24]. In [42], a quantum evolutionary
clustering algorithm based on the watershed for texture image
and SAR segmentation, was proposed. In this algorithm,
the original image is divided into small pieces, and the quan-
tum algorithm searches the optimal clustering center. In [40],
the hybrid quantum-inspired genetic algorithm (HQGA) was
proposed to solve the multiobjective flow shop scheduling
problem (FSSP) [20]; which is an NP-hard combinatorial
optimization problem. The HQGA fused the QGA [23] and a
permutation-based genetic algorithm to obtain an integrated
framework with the best of each algorithm.

IV. QUANTUM SWARM EVOLUTIONARY ALGORITHM
Swarm intelligence studies the collective behavior of nat-
ural and artificial systems that work collectively using

decentralized control and self-organization. It is a branch of
artificial intelligence. Some natural system examples stud-
ied by swarm intelligence are colonies of bees, ants, ter-
mites, a flock of birds, school of fish, fireflies, bats, and
others. These swarm systems have inspired many algo-
rithms to mimic their collective intelligence. The original
proposals were developed for classical computing based on
bits. At present, these swarm methods have been rethought
inspired in quantum mechanics producing new algorithms to
be used in classical computers. Next, we describe a selection
of these swarm quantum-inspired algorithms.

A. QUANTUM-INSPIRED PARTICLE SWARM
OPTIMIZATION
The quantum swarm evolutionary algorithm (QSwE) [68] is
based on the QEA and in the particle swarm optimization
method (PSO). The QSwE uses a different Q-bit expression
called quantum angle as well as an improved PSO method to
update quantum angles automatically. Thismethodwas tested
with the 0-1 knapsack problem and the traveling salesman
problem (TSP).

1) PARTICLE SWARM OPTIMIZATION
Artificial swarm intelligence is inspired by the study of
colonies or swarms of social organisms. Its objective is to
model the simple conduct of individuals and the local iter-
ations with neighboring individuals and the environment.
Particle swarm optimization (PSO) is an efficient and pop-
ular stochastic optimization approach that models the social
behavior of birds within a flock [36], [62]. A PSO system
is a population-based search method where individuals are
referred to as particles that are flown through a hyperdimen-
sional search space grouped into a swarm. A PSO algorithm
maintains a set of particles named the swarm, and each par-
ticle is a potential solution. Generally, if xi(t) denotes the
position of a particle i at time t , the position of the particle
i is changed by a velocity term vi(t) added to the current
position, according to (23). The velocity vector leads to the
optimization process. It reflects the experimental knowledge,
usually referred to as the cognitive component, and is propor-
tional to the distance of the particle from its own best position
(personal best position) found since the first time step. The
socially exchanged information from the particle’s neighbor-
hood is the social component of the velocity equation,

xi(t + 1) = xi(t)+ vi(t + 1). (23)

The first two PSO developed algorithms were the global
best (gbest) and the local best (lbest) PSO. In the gbest PSO,
the neighborhood for each particle is the entire swarm, and the
social network reflects a star topology. The lbest PSO uses a
ring social network topology where smaller neighborhoods
are defined for each particle.

2) THE QUANTUM SWARM EVOLUTIONARY ALGORITHM
The quantum swarm evolutionary algorithm (QSwE) [68]
uses the gbest PSO where the velocity of a particle i is

824 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

calculated as shown next,

vij(t + 1) = vij(t)+ c1r1j(t)[yij(t)− xij(t)]

+ c2r2j(t)[ŷj(t)− xij(t)]; (24)

where the personal best position yi is the best position that
the particle i has visited since the first time step, the best
position found in the swarm is ŷ(t), the velocity of the particle
i in dimension j, j = 1, . . . ,∞, at time t is denoted by vij,
xij(t) indicates the position of the particle i in dimension j
at time t , c1 and c2 are positive acceleration constants that
are used to scale the contribution of the cognitive and social
components, respectively. The random values r1j(t) and r2j(t)
introduce stochastic elements to the algorithm, they are in the
range [0, 1], sampled from uniform distribution.
In the QSwE, a quantum particle is an array of quantum

angles. Hence to use the PSO to update a qubit automatically,
we need the following definition: ‘‘A quantum angle is an
arbitrary angle θ , and a qubit is presented as [θ]’’.

Therefore, [θ] = [sin(θ) cos(θ)]T is equivalent to the
original qubit, since it satisfies that | sin(θ)2 + cos(θ)2| = 1.
Then, the equivalent of the quantum chromosome q of the
QEA for the PSO is q = [[θ1] | [θ2] . . . [θm]].

Algorithm 12 Procedure Make for the QSwE, and the
QIFAPSO

1 Proceduremake(x)
2 j← 0
3 while i < m do
4 j← i+ 1
5 i← 0
6 while j < k do
7 i← j+ 1
8 if random[0, 1] > | cos(θij)|2 then
9 xi← 1
10 else
11 xi← 0
12 end
13 end
14 end
15 End_Make

Using the definition of quantum particle q. A quantum
swarm is defined as Q(t) = {qt1,q

t
2, . . . ,q

t
n}, where qti =

[[θ ti1] | [θ ti2] . . . [θ tim]]. The QSwE uses similar pseu-
docode of the QEA shown in Algorithm 5, the differences
are in the make and update procedures, they changed to work
with quantum particles instead of the quantum individuals of
the QEA.

In this make procedure version (Algorithm 12), each
binary particle x tij might have a value of 0 or 1 in P(t)
which is achieved by observing the states of Q(t) and using
| cos(θij)|2 or | sin(θ2ij)|.

The update procedure was reformulated to use velocities
and positions instead of using the rotation quantum gateU (θ)

Algorithm 13 Procedure Update of the QSwE

1 Procedureupdate(q)
2 i← 0
3 j← 0
4 while i < m do
5 i← i+ 1
6 while j < k do
7 j← j+ 1;
8 vt+1ij = χ [w vtij + c1 rand()[θ

t
ij(pbest)−

θ tij]]+ c2 rand()[θ
t
j (gbest)− θ

t
ij]

9 θ t+1ij = θ
t
ij + v

t+1
ij

10 end
11 end
12 q=q’
13 End_update

that calculates [θ ′i = θi + ξ (1θi)]. In the QSwE a velocity
formula very similar to the Clerk proposal was used [8], [9].
The update procedure of the QSwE is given in Algorithm 13,
it uses the next equations,

vt+1ij = χ [w vtij + c1r1[θ
t
ij(pbest)− θ

t
ij]]

+ c2r2[θ tj (gbest)− θ
t
ij] (25)

θ t+1ij = θ tij + v
t+1
ij . (26)

In the mentioned work, the following values were used:
χ = 0.99, w = 0.7298, c1 = 1.42, and c2 = 1.57;
these values satisfies the convergence conditions of the par-
ticles w > (c1 + c2)/2 − 1. Because c2 > c1 the parti-
cles will converge faster to the global optimal position in
the swarm than the local optimal position of each particle,
therefore, the QSwE based on the PSO has global searching
property [29].

The QSwE was tested solving the 0-1 knapsack problem
and the TSP; in the first case, the same repair procedure
described byAlgorithm 4was used, for the second case, a new
repair procedure was proposed.

3) THE QUANTUM-INSPIRED FIREFLY ALGORITHM
WITH PSO
Motivated by the natural behavior of the firefly (FF) insect,
in [61], the Firefly Algorithm (FA) for global optimization
was proposed [72]. It is based on the behavior and flashing
patterns of FFs. The main idealized rules are:

• One FF can attract other FFs regardless of their gen-
der because artificial fireflies are unisex. In nature,
FFs send signals to the opposite sex; however, the ideal-
ized mathematical model considers unisex FFs.

• The attractiveness of the FFs is correlated to the bright-
ness, and they increase as the distance decreases. Con-
sidering two FFs, a brighter FF will attract the less bright
one. If there no exist brighter one, the existing will move
randomly.

VOLUME 8, 2020 825

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

• The brightness of a FF is determined by the landscape
of the objective function.

In the FA, there are two essential issues: the light intensity
variation and the mathematical formulation of the attrac-
tiveness. For simplicity, it is assumed that the attractiveness
of the FF is proportional to its brightness. A different FF
perceives the brightness degree and is inversely proportional
to the distance. The objective function to optimize determines
the brightness. For example, for a maximizing problem,
the brightness I at a particular position x of a FF can be
selected as I (x) ∝ f (x).

Basically, the light intensity Ib(r) varies according to

Ib(r) =
Is
r2
, (27)

where Is is the intensity at the source and r is the distance.
Considering a medium with fixed light absorption coefficient
γ , and that I0 is the original light intensity, then the light
intensity is given by

I (r) = I0e−γ r . (28)

The attractiveness β of a FF is proportional to I (r), then it
is defined by

β = β0e−γ r
2
, (29)

where the attractiveness at r = 0 is denoted by β0. The expo-
nential function can be calculated faster using the approxima-
tion 1/(1+ r2); then (29) can be rewritten as

β =
β0

1+ γ r2
. (30)

The Cartesian distance between two FFs i and j at xi is
calculated with

rij = ||xi − xj||. (31)

The movement of a FF i is attracted to another more
attractive FF is given by,

xi = xi + β0 e
−γ r2ij (xj − xi)+ αεi; (32)

in the second term, the attractiveness and the distance give the
attraction factor; in the third term α is a random parameter,
εi was defined as a vector of random numbers drawn from
uniform or Gaussian distribution, in the simplest form εi is
replaced by rand − 0.5. Most of the implementations use
β0 = 1 and α ∈ [0, 1].

The attractiveness given by (29) and in (30) defines a
characteristic distance γ = 1/

√
0 over which the attrac-

tiveness changes significantly from β0 to β0 e−1 in the case
of (29), or β0/2 in the case of (30). It is practical an attrac-
tive function β(r) that can be any monotonically decreasing
function, such as

β(r) = β0e−γ r
m
(m ≥ 1). (33)

For a fixed value of γ , the characteristic length is

0 = γ−1/m→ 1m→∞. (34)

Conversely, for a known length scale, 0 in an optimization
problem, γ can be used as an initial value, it is given by,

γ =
1
0m
. (35)

The parameter γ characterizes the variations in attractive-
ness, and it is of crucial importance to determine the speed
of convergence. Theoretically, γ ∈ [0,∞); in practice, γ is
obtained using the characteristic length 0 of the system to be
optimized.

Algorithm 14 Procedure of the QIFAPSO

1 Procedureqifapso
2 initialize quantum fireflies
3 make quantum fireflies by quantum measure
4 evaluate the fitness of binary fireflies
5 if ¬ stop then
6 if Bfi < Bfj then
7 apply FFA formulas to update the quantum

firefly solution Qfi
8 else
9 apply the PSO formulas to update the

quantum firefly solution Qfi
10 end
11 make binary firefly solution Bfi by quantum

measure from quantum firefly solution Qfi
12 evaluate the fitness and update the brightness of

binary firefly solution Bfi
13 end
14 store the current best binary firefly solution
15 End_qifapso

The quantum-inspired firefly algorithm with the PSO
(QIFAPSO) was proposed in [80]. As the name suggests,
the QIFAPSO uses both metaheuristics; therefore, they use
a similar quantum coding scheme.

In the binary representation, each FF solution Bfi (the i− th
FF in a binary population) is coded using a vector of lengthm,
which is the size of the solution; hence,Bfi = (Bfi1, . . . ,Bfi2).
As an example, Bfi = (1, 0, 0, 1) represents the solution
vector (1001). A population of n FFs at iteration t is denoted
by BF(t) = {Bf t1 , . . . ,Bf

t
n } for 1 ≤ i ≤ n.

On the other hand, in the quantum representation, a quan-
tum bit is defined as [θ] = [cos(θ) sin(θ)]T where the
probability amplitude satisfies | cos(θ)2+sin(θ)2| = 1, where
the angle θ ∈ [0, π2]. A quantum FF solution Qfi is a vector
of qubtis, in concordance with the binary solutions, each
FF solution Qfi (the i − th FF in a quantum population) is
associated with the vector of angles 2i = (θi1, . . . , θim) of
length m. At iteration t , each quantum FF Qfi is a set of
quantum bits, given by

Qf ti =
[
cos(θ0i1) | cos(θ0i2) | · · · | cos(θ0im)
sin(θ0i1) | sin(θ0i2) | · · · | sin(θ0im)

]
;

(36)

826 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

where 1 ≤ i ≤ n, n is the number of FF in the population,
and m is the length of each quantum FF solution Qfi.

The pseudocode of this proposal is depicted in
Algorithm 14. The decision point break about using the
FA or the PSO is given in line 6, here the brightness of the
binary FFs Bfi and Bfj are compared as follows:

If the value ofBfi is smaller thanBfj then line 7 is executed,
and the formulas of the FFA (line 7) shown in (37) are used
to update the quantum FF solution Qfi,

θ t+1ik =

{
θ tik + β0e

−γ r2ij (θ tik − θ
t
ik)+ αtε

t
ik if Bf tik 6= Bf tjk

θ tik otherwise.
(37)

In any other case, the line 9 is executed, where the formulas
of the PSO (38) and (39) are used to update the quantum
FF solution Qfi,

1θ t+1ik = w 1θ tik + c1 r1[θb
t
ik − θ

t
ik]+ c2 r2[θg

t
j (k)− θ

t
ik]

(38)

θ t+1ij =

{
θ tik +1θ

t+1
ik if Bfik 6= FgtkorBfik 6= Bf tik

θ tij otherwise.

(39)

Themake procedure to obtain binary FF by observing the
quantum ones is the same that the PSO uses (Algorithm 12).

The calculus of the distance depends on the kind of prob-
lem. In particular, the QIFAPSO algorithm, instead of using
the distance formula (31), it uses a variant of the Hamming
distance, which permits us to quantify the difference between
two sequences of strings.

The QIFAPSO algorithm was evaluated using the multi-
dimensional knapsack problem. It was compared with the
QEA, QSwE, and the adaptive quantum-inspired differential
evolution algorithm (ADQE).

B. OTHER QUANTUM SWARM-BASED ALGORITHMS
In 2004 appeared the first proposal of a quantum swarm opti-
mization (QPSO) algorithm to solve a code division multiple
access (CDMA) problem [71].

Bee colonies are another source of swarm inspirationmeta-
heuristics where the motivation is to model the intelligent
behavior of natural honeybees. In nature, the bee swarm
searches for the food collectively by three classes of honey-
bees, the employed, onlookers, and scout bees. The employed
bees that exploit the food source take the information about
food source back to the hive to share it with the onlooker
bees. The information is shared into the hive through a
dance performed by the employed bees, and the dance is
proportional to the food quality. The onlookers decide for a
source; good food sources attract more onlooker bees. When
a food source has been exploited fully, all the employed bees
associated with this source abandon it becoming scout bees.
Scout bees are responsible for searching for new sources of
food [19]. This natural behavior was defined algorithmically

for computer simulation for solving benchmark SO numer-
ical optimization problems in [34]. Regarding the quantum-
inspired version of artificial bee colonies, in [5], ametaheuris-
tic named quantum-inspired artificial bee Colony (QABC)
was proposed, and similarly to the original proposal, it was
tested for solving benchmark functions, mainly the algo-
rithmwas tested with Sphere, Rosenbrock and the Grienwank
function. According to the reported results, optimizing the
mentioned functions, the QABC outperformed the QSEA and
conventional genetic algorithm.

The fish movement in colonies inspired the artificial fish
swarm algorithm (AFSA) [41], which shows intelligent social
behavior while searches for food and escape from danger.
Artificial fish optimization methods are based on popula-
tions, and similarly than other global optimization methods;
they can work without gradient information of the objec-
tive function; hence, they can solve complex nonlinear high
dimensional problems. It is known that AFSAs require few
parameters to be adjusted and have high convergence speeds.
At present, there are many algorithm variations, all motivated
by the same basic ideas of praying, swarming, following,
movement, and leaping. An artificial fish (AF) is an entity that
has all its data and behaviors encapsulated. The AF accepts
information of environment by sense organs, this is using an
emulation of a vision system, and react to the stimulus by
the control of tail and fin. An AF mainly lives in its solution
space and the states of other AFs. Typically an AFSA starts a
set of randomly generated potential solutions, then applies the
behavior operators to achieve the search for the optimum one
interactively. The quantum artificial fish swarm algorithm
(QAFSA) was proposed in [78]. This quantum version has
demonstrated to improve results of AFSA when optimizing
the benchmark functions such as the Schwefel F7, and others.

V. SOCIAL EVOLUTION ALGORITHM
Human interactions, knowledge, and opinions inspired social
evolution algorithms [54]. The first algorithm that used these
concepts is the human evolutionary model (HEM) [46]. It has
a particular fuzzy inference system named mediative fuzzy
logic (MFL) [47] that uses consensus knowledge from experts
to infer the best parameters of the algorithm to guide evo-
lution intelligently. HEM through MFL maintains a mini-
mum population size to exploit search space regions very
fast; when diversity is lost, the population size increases to
recover the exploration ability until a new promising region
is found. In [54], a mechanism to incorporate human bias in
the selection of individuals through a second opinion when
interactions between individuals are indecisive was proposed.
Algorithm 15 shows the pseudocode of the quantum-inspired
social evolution algorithm (QSE) [52]. The decision-making
process is biased by subjective or objective knowledge. This
algorithmwas divided into the following three phases: Initial-
ization, evaluation, interaction.

1) The initialization phase (lines 2-5) has the next three
steps:

VOLUME 8, 2020 827

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

• Initialize the QSE control parameters, which
are:

– A set of best individuals B(t) to interact with
P(t). At iteration 0, it is randomly initialized;
i.e., B(t = 0) = ψ .

– MCN is the maximum number of iterations for
which the interaction phase is executed.

– IP is the number of individuals of the
population.

– NFC is a threshold value used to decide
whether to interact objectively in the whole
population or subjectively within its
neighborhood.

– SFL is the learning factor that represents a
global bias threshold.

– IDF is a threshold value used to represent
whether on not an iteration is decisive.

2) The evaluation phase (lines 6 and 7) perform the next
two activities:
• The fitness of each individual is calculated though
a fitness function. The fitness is normalized over
the whole population, and the best individual is
saved.

• Add in B(t) the best solution in P(t). At the
start (t=0), B(t) is initialized to global −
best .

3) In the iteration phase (lines 10-21), the probabilistic
fitness nf of Xi is compared with a random value R1,
if nf < R1 then individual has decided not interact.
Otherwise, the iterationNumber parameter is incre-
mented, the individual I is selected to interact with,
the Procedure-1 is executed, and the based on the
quality of interactions is decide to take a second opinion
executing Procedure-2, or not.
• Procedure-1 depicted by Algorithm 16 was devel-
oped to model subjective/objective bias. Objec-
tive bias is selected in line 2 when the condition
(I_SOB < SOB) is true. In this case, the global −
best individual is selected. The interaction is per-
formed using a strategy similar to the QEA, where
a rotation gate is used. For this algorithm, there
are three angles, and they will behave according
to Table 3 with 1θ3 and 1θ5 set between 0.08π
and 0.1π and other ′1θ ′i is set between 0.001π and
0.1π . Subjective bias is selected when the condi-
tion (I_SOB < SOB) is false. Here the condition
I_SFL() < SLF is also checked. If it is true,
a random solution from the list of the previous
generation’s best solution is selected. Otherwise,
the local − best individual in the current popula-
tion is selected, and the interaction is performed
using the quantum rotation gate with ′1θ ′i between
0.001π and 0.1π .

• Procedure-2 After performing the subjective iter-
ation Algorithm 17 is executed.

Algorithm 15 Quantum Inspired Social Evolution Algo-
rithm (QSE)

1 ProcedureQSE
2 t ← 0
3 initialize control parameters
4 initialize Q(t)
5 observe Q(t) to obtain P(t)
6 compute fitness and normalized fitness (nf) of

individuals in P(t)
7 store the best solution among P(t) into global − best

and its iteration count in B(t)
8 repeat
9 t ← t + 1

10 interactionNumber ← 0
11 foreach individual I ∈ P(t) do
12 R1← randomnumber[0, 1]
13 if nf > R1 then
14 iterationNumber ←

iterationNumber + 1
15 select individual I to interact with
16 establish interaction based on

subjective/objective bias using
Procedure-1 for all subjective
interactions, evaluate quality of
interactions

17 if quality of interaction is not
satisfactory then

18 take second opinion using
Procedure-2

19 end
20 end
21 end
22 observe Q(t) to obtain P(t)
23 compute the fitness and nf of each individual in

P(t)
24 store the best solution among P(t) into

global − best and its iteration count in B(t)
25 until t < MCN
26 EEnd_QSE

VI. MULTIOBEJTIVE QUANTUM-NATURE-INSPIRED
ALGORITHMS
Single objective optimization (SOO) deals with only one
objective function (OF), and the only goal is to find the
optimal global solution. In contrast, multiobjective optimiza-
tion (MOO) deals with more than one OF, and it has two
goals. One goal is to find the optimal set of solutions in the
Pareto front. The second goal is that the optimal set has a
big diversity among solutions. Another difference is that SOO
works only in the decision variables space that can bemultidi-
mensional; whereasMOOworks in a multidimensional space
formed by theOFs, it is commonly named the objective space.

The methods to solve MOO problems (MOOP) can be
divided into classical and metaheuristic methods. The first

828 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

TABLE 3. Lookup table to find the appropriated rotation angle 1θi .

Algorithm 16 QSE - Procedure 1

1 Procedure Procedure_1
2 if I_SOB < SOB then
3 Select the global − best identified till now
4 Interaction is performed using Random search

based QEA rotation gate as described in Table 3
with 1θ3 and 1θ5 set between 0.08π and 0.1π
and other 1θi set between 0.0001π and 0.π .

5 else
6 if I_SFL() < SelectiveLearningFactor(SLF)

then
7 Select random solution from the list of

previous generation’s best solutions
8 else
9 Select the local − best individual in the

current population
10 Interaction is performed using quantum

rotation gate with 1θi set between 0.001π
and 0.1π

11 end
12 end
13 End_Procedure_1

approach uses classical single objective optimization meth-
ods to provide solutions for each OF and then use a
preference-based method to establish a trade-off among the
OF and provide a solution or a set of solutions. The meta-
heuristic approach use population-based methods, such as
evolutionary algorithms or swarm optimization-based meth-
ods; these methods have the ability to find multiple optimal
solutions at each iteration, improving the set of solutions in
the Pareto front [13].

A. QUANTUM-INSPIRED MULTIOBJECTIVE
EVOLUTIONARY ALGORITHM (QMEA)
The quantum-inspired multiobjective evolutionary algorithm
(QMEA) was based on the QEA. It is an approach proposed
to solve the 0-1 knapsack problem [37]. The main procedure
of the QMEA is depicted in Algorithm 18, where lines 1-9
are the same as the GQA. Lines 10-14 are different, and they
are explained next.

1) Line 10. The QMEA runs the fast nondominated
sorting procedure described in Algorithm 19 [14].

Algorithm 17 QSE - Procedure 2

1 Procedure Procedure_2
2 if I_SOB > SOB then
3 Assign a random indecisive factor (I_IDF) for

every individual’s interaction
4 end
5 if I_IDF < IDF then
6 Interact with the global − best using quantum

rotation gate with 1θi set between 0.0001π and
0.1π

7 end
8 End_Procedure_2

For each solution p, we calculate a domination count np
to keep track of the number of solutions that dominates
the solution p, and a set of solutions Sp, which are
dominated by p. All solutions that have the domination
count as zero belongs to the first nondominated front.
For each solution p with np = 0 of this first front,
we visit each member q of Sp, and the domination
count is reduced by one. By doing this, if for any
member q the domination count np becomes zero, that
member is saved into a separated listQ. Thesemembers
are elements of the second nondominated front. Now,
the above process is repeated with each member of Q,
and the third front is identified.

2) Line 11. The crowding distance and sorting are
achieved using Algorithm 20. It is used to maintain
diversity within the population in each non-dominated
frontier; for each individual, a density estimator named
crowding distance is used. An estimate of the density
of solutions neighboring a particular solution can be
obtained by averaging the distance of two solutions
on either side of the particular solution along each
of the objectives. The parameter idistance is called the
crowding distance, and its computation requires having
the population sorted according to each OF value in
ascending order. After that, an infinite distance value
is assigned to the boundary solutions. The intermediate
solutions are designated with a distance value equal to
the absolute normalized difference in the function val-
ues of two adjacent solutions. The same process contin-
ues with the other OFs. The global crowding-distance

VOLUME 8, 2020 829

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

Algorithm 18 Quantum-Inspired Muliobjective
Evolutionary Algorithm (QMEA)

1 ProcedureQMEA
2 t ← 0
3 initialize the population of quantum chromosomes

Q(t)
4 make P(t) by observing Q(t) states
5 evaluate each binary solution in P(t)
6 while not termination-condition do
7 t ← t + 1
8 make P(t) by observing Q(t − 1) states
9 evaluate each binary solution in P(t)
10 run the fast nondominated sort algorithm for

P(t)
⋃
P(t − 1)

11 calculate crowding distance and sort
12 P(t) is formed by the first N elements in the

sorted pupulation 2N
13 Q(t) is classified into several groups
14 update Q(t) using quantum gates refer to best

group
15 end
16 EEnd_QMEA

value is computed as the sum of individual distance
values corresponding to each objective. Therefore,
the procedure calculates the crowding distance of all
solutions in a nondominated set I. The m − th OF
value or the i − th individual in the set I is denoted
by I[i].m. The parameters f minm and f maxm are the mini-
mum and maximum values of the m− th OF. Once all
the members in the set I were assigned with distance
metric, the comparison of two solutions for their extent
of proximity with another solution can be achieved.

3) Line 12. The new population P(t) is form by selecting
the first N elements from the sorted population of size
2N since (P(t)

⋃
P(t − 1)).

4) Line 13. Q(t) is classified in several groups. The popu-
lation is divided into several groups, G1,G2, . . . ,Gn,
starting in the top front in the stored population
P(t). It is expected that G1 be the best group since
solution were selected using the crowding distance
already sorted, hence G1 is used to update the quan-
tum individual of other gropus. The best solution b
is in G1. Quantum individual in groups of lower rank
(G2,G3, . . . ,Gn) are updated using the best group G1.
Because it is an elitist strategy, quantum individuals in
G1 are retained.

5) Line 14. update Q(t) using Q-gates refered to best
group; for example, the rotation gate is used to per-
turb the Q-bit. This is done instead using the classical
crossover and mutation operations.

The QMEA incorporates concepts of multiobjective opti-
mization (MO) based on the Pareto front, particularly the
fast nondominated sorting procedure (Algorithm 19) and the

Algorithm 19 Fast Nondominated Sorted

1 Procedurefast-non-dominated-sort(P)
Input: Population P
Output: Pareto fronts F1, . . . ,Fi

2 foreach p ∈ P do
3 Sp← ∅
4 np← 0
5 foreach q ∈ P do
6 if p ≺ q then
7 Sp← Sp ∪ {q}
8 else if q ≺ p then
9 np← np + 1

10 end
11 if np = 0 then
12 prank ← 1
13 F1← F1 ∪ {p}
14 end
15 end
16 i← 1
17 while Fi 6= ∅ do
18 P̂← ∅
19 foreach p ∈ F1 do
20 foreach p̂ ∈ Sp do
21 np̂← np̂ − 1
22 if np̂ = 0 then
23 p̂rank ← i+ 1
24 P̂← P̂ ∪ {p̂}
25 end
26 end
27 end
28 i = i+ 1
29 Fi = P̂
30 end
31 End_fast-non-dominated-sort(P)

crowding distance assignment procedure (Algorithm 20) used
by the NSGA-II framework.

B. OTHER MULTIOBJECTIVE QUANTUM-INSPIRED
ALGORITHMS
A multiobjective QPSO to solve combinatorial logic circuits
to obtain the feasible design of circuits with the minimal
number of gates was proposed in [49]. TheQPSOwas applied
to solve successfully linear array antenna problems. The
results were compared against an improved version of the
PSO. Other applications of QPSO in different fields such
as economic load dispatch, image watermarking, and auto-
matic image annotation using feature selection, can be found
in [27], [64], and [33].

VII. OTHER SOURCES OF INSPIRATION
This category is dedicated to those algorithms inspired by
different sources of inspiration that were not covered in the
other sections.

830 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

Algorithm 20 Procedure to Assign Crowding Distances

1 Procedurecrowding_distance_assignment
Input: Set of individuals I

2 l ← |I|
3 foreach i ∈ I do
4 I[i]distancia← 0
5 end
6 foreach objetive m do
7 I ← sort(I,m)
8 I[1]distance←∞
9 I[l]distance←∞
10 for i = 2 to (l − 1) do
11 I[i]distance←

I[i]distance + (I[i+1].m−I[i−1].m)
(f maxm −f minm)

12 end
13 end
14 End_crowding_distance_assignment

A. QUANTUM-INSPIRED GRAVITATIONAL SEARCH
ALGORITHM
The natural force of gravity inspires the gravitational
search algorithm (GSA) introduced in [56], and it is a
swarm optimization strategy. A binary-valued variant named
binary gravitational search algorithm (BGSA) was published
in [57]. The GSA uses Newton’s law of gravity and motion.
At present, there are several variants developed to improve
the original proposal like [60], and [58]. The first quantum
computing of theGSAnamed quantum-behaved gravitational
search algorithm (QGSA) was proposed in [45].

In Algorithm 21, the pseudocode of the standard GSA
is shown. Individuals in the population are named agents.
In line 3, an array Xi is initialized with N agents xdi ; where
D is the dimension of the search space. In steps 5 to 7,
a fitness value is assigned to all the population agents.
The next process is repeated t number of iterations. Cal-
culate the values of G(t), best(t), worst(t), Mi(t) related
to the gravity, best and worst individuals in the popula-
tion, and the mass of the i individual, respectively. As is
shown in step 10, the gravitational constant is reduced by
time. In step 15, the calculus of the total force in dif-
ferent directions is achieved. In step 16, the calculus of
acceleration and velocity is achieved. In step 17, the posi-
tion of the agents is updated. In lines 19-20, the fitness
of the new agents is calculated. Then, the iteration counter
is updated, and the process is repeated a tmax number of
iterations.

In the GSA, similarly to Newtonian mechanics, an indi-
vidual is described by its position and velocity vectors, xi and
vi, respectively; they determine the trajectory of the individ-
ual. However, in quantum mechanics, the term trajectory is
meaningless because according to the uncertainty principle,
the position and velocity cannot be determined simultane-
ously. Therefore, now we will analyze the necessary changes

Algorithm 21 Standard GSA

1 ProcedureGSA
2 t ← 0 for i=1 to N do
3 [Xi]← xDi
4 endFor
5 for i=1 to N do
6 fiti← fobj(xDi)
7 endFor
8 do
9 for i=1 to N do

10 G(t)← G(G0, t)
11 best(t) = max

j∈{1,...,s}
fitj(t)

12 worst(t) = min
j∈{1,...,s}

fitj(t)

13 qi(t) =
fiti(t)−worst(t)
best(t)−worst(t)

14 Mi(t) =
qi(t)∑s
j=1 qj(t)

15 Fdi (t) =∑
j∈kbest,j 6=i

randjG0(t)
Mj(t)Mi(t)
Rij(t)+ ε

(xdj (t)−

xdi (t))

16 adi =
Fdi (t)
Mi(t)
=∑

j∈kbest,j 6=i

randjG(t)
Mj(t)

Rij(t)+ ε
(xdj (t)− x

d
i (t))

vdi (t + 1) = randi vdi + a
d
i

17 xdi (t + 1) = xdi (t)+ v
d
i (t + 1)

18 endFor
19 for i=1 to N do
20 fiti← fobj(xDi)
21 endFor
22 t ← t + 1
23 while (t < tmax)
24 End_GSA
25 while

made to Algorithm 21 to pass the GSA to the quantum
world.

In quantum mechanics, the general time-dependent
Schrödinger equation is given by,

j}
∂

∂t
ψ(r, t) = H (r)ψ(r, t); (40)

where } is Planck’s constant, 9 is the wave function, and
H (r) is the Hamiltonian operator given by,

H (r) = −
}2

2m
∇

2
+ V (r); (41)

where ∇2 is the Laplacian operator, m is the mass of the
agent, and V (r) is the potential energy distribution.
In the Schrödinger equation, the wavefunction ψ(r, t) is

the unknown. Its amplitude squared, |ψ |2 = Q, is a prob-
ability measure for the agent’s motion. It allows computing
the probability of finding an object in a particular region at a

VOLUME 8, 2020 831

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

specific time. |9|2 as the probability density function (PDF)
should satisfy the following condition∫

+∞

−∞

|ψ |2dr =
∫
+∞

−∞

Qdr = 1. (42)

Now, we consider that the GSA is a quantum system.
We can assume that an individual mass is moving in a
Delta potential in a feasible search space, where the center
is the weighted average of all the best individuals (kbest).
To simplify, we are studying an agent in one-dimensional
space; therefore, the potential energy of the mass in the Delta
potential well is,

V (r) = −γ δ(r); (43)

where the positive number γ is proportional to the depth of
the potential well.

For this model, the Schrödinger equation is,

Eψ(r) =
(
−

}2

2m
∇

2
− γ δ(r)

)
ψ(r). (44)

For X 6= 0, we can write the above equation as,

d2ψ
dr2
+

2m
}2
Eψ = 0. (45)

The following boundaries are uses to prevent divergence of
the agents,

|r| → ∞↔ ψ → 0; (46)

and equation (45) is calculated as shown next to satisfy the
bound conditions,

ψ(r) = e
√
−2mE
} |r|whenr 6= 0. (47)

In the QGSA, the evaluation of the fitness value requires
to know the precise information of the agent. However, ψ(r)
can only provide the PDF of the mass to appear at the desired
position. So, we need to measure the position of the agent,
which is done by collapsing the quantum state to a classical
state. To this aim, it is necessary to simulate the measurement
process using the Monte Carlo method to evaluate uncer-
tainty. Hence, it is possible to generate a random number
‘‘rand’’ uniformly distributed between 0 and 1, in such a way
that (47) can be simplified by substituting a random number
instead of that equation. Therefore,

Q(r) = |ψ(r)|2 = e
2
√
−2mE
} |r|

= rand . (48)

By simple mathematics, we have:

−
2
√
−2mE
}

|r| = ln(rand) (49)

|r| =
}

2
√
−2mE

ln
(

1
rand

)
(50)

r = x − best = ±
}

2
√
−2ME

ln(rand). (51)

Thus, the accurate position of an agent is measured as
follows,

x = best±
}

2
√
−2mE

ln(rand). (52)

Themass (agent)move according to the next iterative equa-
tions, where the design parameter δ is called the contraction-
expansion coefficient, rand and S are random parameters
with uniform distribution probability in range [0, 1].
Xi(t + 1) = Besti+δ|Besti − Xi(t)| ln

(
1

rand

)
if S ≥ 0.5

Xi(t + 1) = Besti−δ|Besti − Xi(t)| ln
(

1
rand

)
if S < 0.5.

(53)

In [6], a modified binary quantum-behaved gravitational
search algorithm with differential mutation (MBQGSA-DM)
was proposed; in general, this algorithm and the QGSA have
similitudes; because the MBQGSA-DM also includes differ-
ential mutation. Its pseudocode is shown in Algorithm 22.
Comparing this pseudocode against the pseudocode of the
standard GSA shown in Algorithm 21, it can be noted that
the most essential difference is that in the GSA the update
the location of agents use velocity and position formulas,
whereas in the quantum versions, based on the Heisen-
berg principle of uncertainty, it is impossible to evaluate
both the velocity and the position simultaneously. Therefore,
the quantum-inspired gravitational search algorithms only
use the position formula in the update equation.

In Algorithm 22, Xpbesti(t) is the position with best fitness
value of the i-th particle up to iteration t . Xkbestj(t) is the
position of the j-th particle that belongs to the set of K
particles having the best fitness at iteration t . The fitness of a
particle i at iteration t is defined as the ratio (see line 6 of the
Algorithm) of the intraclass distance (Dintrati) given by the
equation shown in line 7 to the interclass distance (Dinter ti)
calculated as shown in line 8. The differential mutation
factor F is defined as F = t

T as shown in line 20.

VIII. ANALYSIS OF THE METHODS
The analysis of the revised quantum metaheuristics is not
an easy task; there are many considerations to observe since
all the reported results in the different works were achieved
under different conditions, ranging from computer technol-
ogy, programming languages, translation of algorithms to
programs, kind of benchmark problems, reliability of results,
interpretation of results, comparison among methods, met-
rics to report results, and others. All the mentioned condi-
tions could produce different outcomes, even for the same
algorithms.

The study of the different sources of inspiration ini-
tially conceived for classical computer implementation that
evolved to the corresponding quantum version is important.
However, there are hundreds of papers that have comparisons
of these metaheuristics for solving different problems in prac-
tically all the scientific and technological fields. According to

832 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

Algorithm 22 MBQGSA-DM

1 ProcedureMBQGSA-DM
2 Create p particles and make randomized initialization of their n dimensional positions X ∈ {0, 1}. Total number of

iterations = T. Iteration counter = t .
3 t ← 1
4 repeat
5 for i=1 to p do

6 Calculate fitness fit ti =
Dintrati
Dinter ti

7 where Dintrati =
∑

c
∑

u,r∈c,u 6=r ||F
t
u,i − Fr , i

t
||

8 and Dinter ti =
∑

c,c′
∑

u∈c,r∈c′,c6=c′ 6=r ||F
t
u,i − Fr , i

t
||

9 endFor
10 Calculate Xgbesti(t)
11 for i=1 to p do
12 Find Xpbesti(t)

13 Xmbesti(t) =
∑p

j=1
1

||Xi(t),Xj(t)||Xj(t)∑p
j=1

1
||Xi(t),Xj(t)||

14 Xbesti(t) =
c1 Xmbesti(t)+c2 Xpbesti(t)+c3 Xgbest(t)

c1+c2+c3
15 Consider uniform random numbers r ∈ [0, 1]andR ∈ [0, 1]
16 if r < 0.5 then

17

Xi(t + 1) = Xbesti + δ|Xbesti − Xi(t)| ln

(
1

rand

)
ifS ≥ 0.5

Xi(t + 1) = Xbesti − δ|Xbesti − Xi(t)| ln
(

1
rand

)
ifS < 0.5

18 end
19 else
20 F = t

T
21 Xi(t + 1) = Xj(t)+ (1− F)× [Xj(t)− Xm(t)]+ F × [Xgbest(t)− Xj(t)]
22 end
23 end
24 for d=1 to n do

25 xdi (t + 1) =

{
1, 1

1+e−x
d
i (t+1)

> rand

0, otherwise
26 end
27 until t = T
28 SEnd_MBQGSA-DM

the reported results in the quantum versions of the mentioned
metaheuristics, the results are at least as good as their classical
version counterpart. In many cases, the quantum version
outperforms the classical ones.

Since the concepts and principles to achieve the first quan-
tum evolutionary metaheuristics to solve a combinatorial
optimization problem [51] were settle, almost a quarter of
a century has elapsed. In those days, there was not possible
to develop and test algorithms for a real quantum computer
such as the D-Wave or the IBM Q system. Hence the term
‘‘quantum-inspired’’ was coined to specify that any algorithm
tagged with the term was developed using concepts from
quantum physics for a classical computer as the target system.

At present, an important point to consider is which ones of
the proposed metaheuristics are more suitable to be imple-
mented in a real quantum computer with small changes,

following the proposed algorithm. One of the most popu-
lar quantum computers is the IBM Q; this system uses the
circuit model codification scheme to implement quantum
algorithms. If we consider the circuit model as our target
programming paradigm, complexity can be defined in terms
of width, size, and length of the quantum circuit. Width is
the total number of qubits of the circuit. Size is the total
number of gates that the circuit uses. Length is the circuit
depth; it refers to the longest path from the input to the output
(when the measure is performed). Frequently, the length of
the quantum circuit is the main indicator of the complex-
ity of the quantum circuit. The mentioned complexity mea-
sures can be used to analyze and evaluate this subjective
selection objectively about the possible translation of the
reviewed algorithms to the circuit model for a real quantum
computer.

VOLUME 8, 2020 833

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

TABLE 4. Benchmark functions.

Considering the width as the first complexity measure.
In the reviewed works, the metaheuristics coded the possible
solutions using either quantum registers containing qubits,
real numbers instead qubits, or the concept of quantum angle.
The first parameter that we can use to exclude possible
metaheuristics to be translated to the circuit model with few
modifications to the original algorithm is the coding of the
quantum-register. Hence, we will exclude those metaheuris-
tics that use quantum registers using real numbers instead
of qubits, and those that use the concept of quantum angle.
The metaheuristics that offer an easy translation with few
modifications from the original algorithm to the circuit model
for being used in a real quantum computer are those that
use quantum-registers coded with qubits, contrary to using
quantum-angle or real numbers to form a kind of qubit out of
its original mathematical definition.

Taking as an example, a continuous optimization problem.
Its width is given by three things: the numeric range of
decision variables, the numerical resolution to express values
of decision variables, and the number of variables of the
problem. Hence, if we have an optimization problem with
two decision variables, and each variable can be represented
satisfactorily using ten classical bits, we will require a classi-
cal register of 20 bits, which corresponds to 20 qubits in the
quantum world. At present, the maximal number of qubits

that handles IBM Q is 20; therefore, this is a limitation for
most of the analyzed metaheuristics.

Concerning the size of the quantum circuit, the mentioned
metaheuristic algorithms work with quantum register con-
taining several qubits. It is desirable that the quantum circuit
grows as a polynomial of size nk with k > 0. If the quantum
circuit size grows exponentially, as functions like en, or 2n,
we can expect, at least in the case of metaheuristics, that the
algorithm behaves inefficiently. Fortunately, the input size of
all the analyzed binary-coded algorithms grows linearly, for
example, in the case of continuous optimization. We have a
population of quantum registers given by popsize · n · nvar
where popsize is the population size handled by the algo-
rithm, n is the number of qubits that requires each decision
variable to be coded, and nvar is the number of variables
to be optimized. Almost all the viable analyzed algorithms
need to maintain a population of quantum chromosomes.
The exception is the QIAEA that uses only one quantum
chromosome, hence the size complexity of the QIAEA is also
smaller than the other ones.

Regarding the lenght of the quantum circuit of the trans-
lated quantum-inspired metaheuristics. In [48] was reported
that the QIAEA had a lower median than the other QIEAs
requiring 11 generations to achieve a precision constraint
in the objective value of 10−3, whereas the AQGA by [67]

834 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

TABLE 5. Mean and standard deviation of the GQA, AQGA and QIAEA. Best results in bold [48].

required 18 generations and the QGA 24 generations when
optimizing the benchmark function shown in Table 4. Based
on the mentioned values, one could expect that the QIAEA
be ≈ 64% less complex than the AQGA, and ≈ 118% less
complex than the QGA.

The RQIEA was tested using four benchmark
functions [32]; two are unimodal functions (Sphere and
Schwefel 2.21), and the other is multimodal (Griewank and
Ackley 1). The results were compared against the stochastic
genetic algorithm (StGA) [66], fast evolutionary program-
ming (FEP) [73], fast evolutionary strategy (FES) [74], and
particle swarm optimization (PSO) [3]. The reported results
demonstrated that the RQIEA outperformed the FEP, FES,
PSO with fewer evaluations, and the StGA with the same
number of evaluated functions numerically.

Regarding the quantum-inspired version of artificial bee
colonies, in [5], a metaheuristic named quantum-inspired
artificial bee colony (QABC) was proposed. Similarly to
the original proposal, it was tested for solving benchmark
functions; particularly, the algorithm was tested with Sphere,
Rosenbrock, and the Grienwank function. According to
the reported results, optimizing the mentioned functions,
the QABC outperformed the quantum swarm evolutionary
algorithm and conventional evolutionary algorithms.

Other work that reported a common test for several algo-
rithms is the QSE [54]. Here the QSE was compared against
the GQA [22], QEA [23], QEAwith probabilistic termination
conditions [24], two phases TPQEA [24], advanced quantum
genetic algorithm (ANQGA) [77], random search and greedy
selection based GQA (RSGS_GQA) [53], quantum-inspired
evolutionary algorithm based on p-system (QEPS) [76],
adaptive quantum-inspired differential evolution algorithm
(AQDE) [28], quantum-inspired cuckoo algorithm (QICSA)
[38], quantum-inspired harmony search algorithm (QIHSA)
[39], quantum-inspired DE and PSO algorithm (QDEPSO)
[79], quantum-inspired Swarm Evolution (QSwEv) [68], dis-
crete binary differential algorithm [28], binary artificial bee
colony optimization and binary PSO (BABCNBPSO) [26],
different binary PSO variants (DBPSO) [4]. In [54], the QSE

TABLE 6. Hit accuracy of 10−3. Population size 40, 50 generations,
40 runs. Best results in bold [48].

was tested using the 0-1 knapsack problem, and it was
reported that the QSE has better performance than the GQA,
QEA, QEA with different termination conditions, TPQEA,
ANQEA, RSGS_GQA, QEPS, AQDE, QSwEv, DBPSO, and
BABCNBPSO. There was not reported a comparative of
convergence time of each algorithm. For the possibility of
implementing these quantum-inspired metaheuristics, all of
them use several quantum registers to generate the classical
population, which at present is not suitable since the number
of qubits that the quantum computers using the circuit model
are very limited.

In Tables 6 and 7, we provide a comparison of the metrics
performance and execution time for the algorithms GQA,
AQGA, and QIAEA. Table 6 shows the mean value, standard
deviation value, and execution time of each algorithm when
optimizing 15 benchmark functions, see Table 5. The values
were calculated using 50 different experiments for each func-
tion. In order to calculate statistical values, each algorithm
was executed 40 times for each function. The QIAEA used
only one quantum chromosome (one Queen) to create a clas-
sical population. The algorithms GQA, and AQGA, used a
population of 40 quantum chromosomes to create a classical

VOLUME 8, 2020 835

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

TABLE 7. Most difficult functions of the set. Best results in bold [48].

population. All the algorithms used 40 classical individuals
and run 50 iterations. In Table 6, the best results are indi-
cated in bold; the standard deviation value was the decisive
factor for those tests with the same mean value. In general,
the QIAEA performed better and has shorter running times.
Table 7 shows the accuracy of each algorithm for the same
set of experiments. The QIAEA had the best performance
in terms of precision and accuracy; in 10 functions reached
the smallest mean, and in 8 functions achieved the lowest
standard deviation. The second place was the AQGA, and the
worst results were obtained with the GQA. In the same work,
the experiments that reached an accuracy lower than 60% in
the QIAEA was chosen to perform more comparative tests,
in particular, the function 4, 7, 8, 9 and 13 of Table 4 were
selected. The idea was to increase the population number
and iteration number until the QIAEA reached an accuracy
closed to 100% ;the results are shown in Table 7. This table
shows that the QIAEA needed fewer generations than the
other ones to achieve the best results. Hence, we could expect
that this algorithm could have less complexity value since it
is expected to have less depth.

IX. CONCLUSION
In mathematical optimization and computer science, a meta-
heuristic is a procedure that allows finding good solu-
tions to a difficult optimization problem. A characteristic of
metaheuristics is that they make few assumptions about
the optimization problem, and they are useful for a variety
of problems. Metaheuristics are more abstract than simple
heuristics and can use low-level heuristics or search algo-
rithms. Compared to classical optimization algorithms and
iterative search methods, a metaheuristic does not guaran-
tee to find the optimal global solution of a problem. Since
1980 when the field of metaheuristics takes off [65], and from
1996, when the concepts and principles of quantum mechan-
ics were applied to make metaheuristics more efficient, many
papers have also been published. All the quantum-based
metaheuristic proposals were tested in classical computers;
in some cases, the authors provided only performance results
leaving aside execution times.

Many algorithms were developed long before the classical
computer exist; similarly, quantum algorithms existed before

the first quantum computer run; they must run on a realistic
model of computation such as the circuit model. Quantum-
inspired algorithms are in the middle of classical and quan-
tum algorithms. These algorithms follow a finite sequence
of instructions emulating some quantum operations such as
gates, superposition, andmeasurement. Therefore, theymight
be or not distant from the circuit model. As more closed to the
circuit model, more manageable is the translation.

It is worth to mention that implementing a metaheuristic in
a real quantum computing based on the circuit model requires
the evaluation of the fitness function, whichmeans tomeasure
the quantum register that will collapse the quantum register
to a value. Hence, to implement a metaheuristic in a quantum
computer based on the circuit model requires a hybrid pro-
gramming strategy that combines a quantum computer that
handles the quantum chromosome as well as the quantum
operators that modify the register, and a classical computer
that evaluate the fitness function and manipulate the flow of
the algorithm. Additionally, the classical computer at each
generation initialize the quantum register setting it according
to the algorithm that we are handling, for example, it can be
initialized with the state of the best classical chromosome in
the evolution, returning with this action to the quantum state.

In this review, the first point was to analyze the quantum
chromosome encoding. All the proposals based on qubits will
facilitate the work, proposal base on the quantum angle, such
as in the QSwE, also could work although additional steps
will be needed to interpret quantum angles as qubits, and
all the proposals based on real coding will need to much
work to rethink the formulation in qubits. The above, along
with the metrics width, size, and depth, we conclude that the
quantummetaheuristic must have the less number of quantum
chromosomes as be possible to be able to run in an up to
date quantum computer such as the IBM Q; the quantum
inspired acromyrmex evolutionary algorithm (QIAEA) fulfill
this requirement.

The second point was to analyze which metaheuristics
have reported the best results. Metrics such as performance,
execution time, number of comparisons achieved versus other
works were the factor to decide for the real quantum-inspired
evolutionary algorithm (RQIEA) and the QIEA for solving
continuous optimization problems; and the quantum social

836 VOLUME 8, 2020

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

evolution (QSE) for combinatorial optimization problems.
Concerning this point, as it was mentioned in the analysis
of the methods, there are many considerations to observe,
so it is advisable to make more comparative tests includ-
ing a diversity of quantum metaheuristics, using the same
benchmark functions and combinatorial problems to record
performance, and execution times or the maximal number
of fitness function evaluations. Only one of the reviewed
papers contained information about the execution time, but
neither one contained the maximal number of fitness function
evaluations that would have been very useful to make the
fairest decision.

REFERENCES
[1] A. V. A. da Cruz, M. M. B. R. Vellasco, and M. A. C. Pacheco, ‘‘Quantum-

inspired evolutionary algorithm for numerical optimization,’’ in Proc.
IEEE Int. Conf. Evol. Comput., Jul. 2006, pp. 2630–2637.

[2] F. S. Alfares and I. I. Esat, ‘‘Real-coded quantum inspired evolution
algorithm applied to engineering optimization problems,’’ in Proc. 2nd Int.
Symp. Leveraging Appl. Formal Methods, Verification Validation (ISOLA),
Nov. 2006, pp. 169–176.

[3] P. J. Angeline, ‘‘Evolutionary optimization versus particle swarm optimiza-
tion: Philosophy and performance differences,’’ in Evolutionary Program-
ming VII, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds.
Berlin, Germany: Springer, 1998, pp. 601–610.

[4] J. C. Bansal and K. Deep, ‘‘A modified binary particle swarm optimiza-
tion for knapsack problems,’’ Appl. Math. Comput., vol. 218, no. 22,
pp. 11042–11061, Jul. 2012.

[5] A. Bouaziz, A. Draa, and S. Chikhi, ‘‘A quantum-inspired artificial bee
colony algorithm for numerical optimisation,’’ in Proc. 11th Int. Symp.
Program. Syst. (ISPS), Apr. 2013, pp. 81–88.

[6] T. Chakraborti, A. Chatterjee, A. Halder, and A. Konar, ‘‘Automated
emotion recognition employing a novel modified binary quantum-behaved
gravitational search algorithm with differential mutation,’’ Expert Syst.,
vol. 32, no. 4, pp. 522–530, 2015.

[7] J. Chaturvedi, ‘‘Article: Adaptive quantum inspired genetic algorithm for
combinatorial optimization problems,’’ Int. J. Comput. Appl., vol. 107,
no. 4, pp. 34–42, Dec. 2014.

[8] M. Clerc, ‘‘The swarm and the queen: Towards a deterministic and adaptive
particle swarm optimization,’’ inProc. Congr. Evol. Comput. (CEC), vol. 3,
Jul. 1999, pp. 1951–1957.

[9] M. Clerc and J. Kennedy, ‘‘The particle swarm—Explosion, stability, and
convergence in a multidimensional complex space,’’ IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.

[10] S. A. Cook, ‘‘The complexity of theorem-proving procedures,’’ inProc. 3rd
Annu. ACM Symp. Theory Comput. (STOC), New York, NY, USA, 1971,
pp. 151–158.

[11] D-Wave Systems. (2019). Dwave Systems. Accessed: Sep. 15, 2019.
[Online]. Available: https://www.dwavesys.com/home

[12] L. R. da Silveira, R. Tanscheit, and M. M. Vellasco, ‘‘Quantum inspired
evolutionary algorithm for ordering problems,’’ Expert Syst. Appl., vol. 67,
pp. 71–83, Jan. 2017.

[13] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Chichester, U.K.: Wiley, 2001.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[15] M. Dorigo, V. Maniezzo, and A. Colorni, ‘‘Ant system: Optimization by
a colony of cooperating agents,’’ IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

[16] K.-L. Du and M. Swamy, Search and Optimization by Metaheuristics.
Cambridge, MA, USA: Birkhaüser, 2016.

[17] F. Fabris and R. A. Krohling, ‘‘A co-evolutionary differential evo-
lution algorithm for solving min–max optimization problems imple-
mented on GPU using C-CUDA,’’ Expert Syst. Appl., vol. 39, no. 12,
pp. 10324–10333, 2012.

[18] D. B. Fogel, ‘‘An introduction to evolutionary computation,’’ in Evolution-
ary Computation: The Fossil Record. Hoboken, NJ, USA: Wiley, 1998,
p. 656.

[19] W. Gao, S. Liu, and L. Huang, ‘‘A global best artificial bee colony algo-
rithm for global optimization,’’ J. Comput. Appl. Mathematics, vol. 236,
no. 11, pp. 2741–2753, 2012.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman,
1979.

[21] Google LLC. (2019). Quantum, Google AI. Accessed: Sep. 15, 2019.
[Online]. Available: https://ai.google/research/teams/applied-science/
quantum-ai/

[22] K.-H. Han and J.-H. Kim, ‘‘Genetic quantum algorithm and its application
to combinatorial optimization problem,’’ in Proc. Congr. Evol. Comput.
(CEC), vol. 2, Jul. 2000, pp. 1354–1360.

[23] K.-H. Han and J.-H. Kim, ‘‘Quantum-inspired evolutionary algorithm for
a class of combinatorial optimization,’’ IEEE Trans. Evol. Comput., vol. 6,
no. 6, pp. 580–593, Dec. 2002.

[24] K.-H. Han and J.-H. Kim, ‘‘Quantum-inspired evolutionary algorithms
with a new termination criterion, Hε gate, and two-phase scheme,’’ IEEE
Trans. Evol. Comput., vol. 8, no. 2, pp. 156–169, Apr. 2004.

[25] K.-H. Han, K.-H. Park, C.-H. Lee, and J.-H. Kim, ‘‘Parallel quantum-
inspired genetic algorithm for combinatorial optimization problem,’’ in
Proc. Congr. Evol. Comput., vol. 2, May 2001, pp. 1422–1429.

[26] Y. He, H. Xie, T.-L. Wong, and X. Wang, ‘‘A novel binary artificial bee
colony algorithm for the set-union knapsack problem,’’ Future Gener.
Comput. Syst., vol. 78, pp. 77–86, Jan. 2018.

[27] V. Hosseinnezhad, M. Rafiee, M. Ahmadian, and M. T. Ameli, ‘‘Species-
based quantum particle swarm optimization for economic load dispatch,’’
Int. J. Elect. Power Energy Syst., vol. 63, pp. 311–322, Dec. 2014.

[28] A. R. Hota and A. Pat, ‘‘An adaptive quantum-inspired differential evo-
lution algorithm for 0–1 knapsack problem,’’ in Proc. 2nd World Congr.
Nature Biol. Inspired Comput. (NaBIC), Dec. 2010, pp. 703–708.

[29] Y. Huang, Y.Wang,W. Zhou, Z. Yu, and C. Zhou, ‘‘A fuzzy neural network
system based on generalized class cover and particle swarm optimization,’’
in Advances in Intelligent Computing, D.-S. Huang, X.-P. Zhang, and
G.-B. Huang, Eds. Berlin, Germany: 2005, pp. 119–128.

[30] IBM. (2019). IBM Q, Quantum Computing. Accessed: Jul. 2, 2019.
[Online]. Available: https://www.research.ibm.com/ibm-q/

[31] Intel Corporation. (2019). 2018 CES: Intel Advances Quantum and
Neuromorphic Computing Research. Accessed: Sep. 15, 2019. [Online].
Available: https://newsroom.intel.com/news/intel-advances-quantum-
neuromorphic-computing-research/

[32] M. Jamil and X. Yang, ‘‘A literature survey of benchmark functions for
global optimization problems,’’ Int. J. Math. Model. Numer. Optim., Vol. 4,
no. 2, pp. 150–194, 2013.

[33] C. Jin and S.-W. Jin, ‘‘Automatic image annotation using feature selection
based on improving quantum particle swarm optimization,’’ Signal Pro-
cess., vol. 109, pp. 172–181, Apr. 2015.

[34] D. Karaboga, ‘‘An idea based on honey bee swarm for numerical optimiza-
tion,’’ Erciyes Univ., Kayseri, Turkey, Tech. Rep. TR06, Oct. 2005.

[35] S. Karmakar, A. Dey, and I. Saha, ‘‘Use of quantum-inspired metaheuris-
tics during last two decades,’’ in Proc. 7th Int. Conf. Commun. Syst. Netw.
Technol. (CSNT), 2017, pp. 272–278.

[36] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw. (ICNN), vol. 4, Nov. 1995, pp. 1942–1948.

[37] Y. Kim, J.-H. Kim, and K.-H. Han, ‘‘Quantum-inspired multiobjective evo-
lutionary algorithm for multiobjective 0/1 knapsack problems,’’ in Proc.
IEEE Int. Conf. Evol. Comput., Jul. 2006, pp. 2601–2606.

[38] A. Layeb, ‘‘A novel quantum inspired cuckoo search for knapsack prob-
lems,’’ Int. J. Bio-Inspired Comput., vol. 3, no. 5, pp. 297–305, Sep. 2011.

[39] A. Layeb, ‘‘A hybrid quantum inspired harmony search algorithm for 0–1
optimization problems,’’ J. Comput. Appl. Math., vol. 253, pp. 14–25,
Dec. 2013.

[40] B. Li and L. Wang, ‘‘A hybrid quantum-inspired genetic algorithm for
multiobjective flow shop scheduling,’’ IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 37, no. 3, pp. 576–591, Jun. 2007.

[41] X. L. Li, Z. J. Shao, and J. X. Qian, ‘‘An optimizing method based on
autonomous animats: Fish-swarm algorithm,’’ Syst. Eng.-Theory Pract.,
vol. 22, no. 11, p. 32, 2002.

[42] Y. Li, H. Shi, L. Jiao, and R. Liu, ‘‘Quantum evolutionary clustering
algorithm based on watershed applied to SAR image segmentation,’’ Neu-
rocomputing, vol. 87, no. 10, pp. 90–98, Jun. 2012.

[43] C. McGeoch and C. Wang, ‘‘Experimental evaluation of an adiabiatic
quantum system for combinatorial optimization,’’ in Proc. ACM Int. Conf.
Comput. Frontiers (CF), 2013.

VOLUME 8, 2020 837

O. H. M. Ross: Review of Quantum-Inspired Metaheuristics: Going From Classical Computers to Real Quantum Computers

[44] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams. Berlin, Germany: Springer, 1996.

[45] M. S. Moghadam, H. Nezamabadi-Pour, and M. M. Farsangi, ‘‘A quantum
behaved gravitational search algorithm,’’ Intell. Inf. Manage., vol. 2012,
no. 4, pp. 390–395, 2012.

[46] O. Montiel, O. Castillo, P. Melin, A. R. Díaz, and R. Sepúlveda, ‘‘Human
evolutionary model: A new approach to optimization,’’ Inf. Sci., vol. 177,
no. 10, pp. 2075–2098, 2007.

[47] O. Montiel, O. Castillo, P. Melin, and R. Sepulveda, ‘‘Mediative fuzzy
logic: A new approach for contradictory knowledge management,’’ Soft
Comput., vol. 12, no. 3, pp. 251–256, Feb. 2008.

[48] O. Montiel, Y. Rubio, C. Olvera, and A. Rivera, ‘‘Quantum-inspired
acromyrmex evolutionary algorithm,’’ Sci. Rep., vol. 9, Aug. 2019,
Art. no. 12181.

[49] P. Moore and G. K. Venayagamoorthy, ‘‘Evolving combinational logic
circuits using a hybrid quantum evolution and particle swarm inspired
algorithm,’’ in Proc. NASA/DoD Conf. Evolvable Hardw. (EH), Jun. 2005,
pp. 97–102.

[50] A. Narayanan, ‘‘Quantum computing for beginners,’’ in Proc. Congr. Evol.
Comput. (CEC), vol. 3, Jul. 1999, pp. 2231–2238.

[51] A. Narayanan and M. Moore, ‘‘Quantum-inspired genetic algorithms,’’ in
Proc. IEEE Int. Conf. Evol. Comput., May 1996, pp. 61–66.

[52] R. Pavithr and Gursaran, ‘‘Quantum inspired social evolution (QSE)
algorithm for 0–1 knapsack problem,’’ Swarm Evol. Comput., vol. 29,
pp. 33–46, Aug. 2016.

[53] R. S. Pavithr and Gursaran, ‘‘A random search and greedy selection based
genetic quantum algorithm for combinatorial optimization,’’ in Proc. IEEE
Congr. Evol. Comput., Jun. 2013, pp. 2422–2427.

[54] R. S. Pavithr and Gursaran, ‘‘Social evolution: An evolutionary algorithm
inspired by human interactions,’’ in Proc. 2nd Int. Conf. Soft Comput.
Problem Solving (SocProS), B. V. Babu, A. Nagar, K. Deep, M. Pant,
J. C. Bansal, K. Ray, and U. Gupta, Eds. New Delhi, India: Springer, 2014,
pp. 1537–1544.

[55] QuTech. (2019). Research and Development in Quantum Technology.
Accessed: Jul. 2, 2019. [Online]. Available: https://qutech.nl

[56] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, ‘‘GSA: A gravitational
search algorithm,’’ Inf. Sci., vol. 179, no. 13, pp. 2232–2248, 2009.

[57] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, ‘‘BGSA: Binary grav-
itational search algorithm,’’ Natural Comput., vol. 9, no. 3, pp. 727–745,
Sep. 2010.

[58] E. Rashedi, E. Rashedi, and H. Nezamabadi-Pour, ‘‘A comprehensive
survey on gravitational search algorithm,’’ Swarm Evol. Comput., vol. 41,
pp. 141–158, Jun. 2018.

[59] Rigetti. (2019). Rigetti Computing Quantum Cloud Services.
Accessed: Sep. 15, 2019. [Online]. Available: https://www.rigetti.com/qcs

[60] N. M. Sabri, M. Puteh, and M. R. Mahmood, ‘‘A review of gravitational
search algorithm,’’ Int. J. Adv. Soft Comput. Appl., vol. 5, no. 3, pp. 1–39,
2013.

[61] J. Senthilnath, S. Omkar, and V. Mani, ‘‘Clustering using firefly algorithm:
Performance study,’’ Swarm Evol. Comput., vol. 1, no. 3, pp. 164–171,
2011.

[62] Y. Shi and R. Eberhart, ‘‘A modified particle swarm optimizer,’’ in
Proc. IEEE Int. Conf. Evol. Comput. IEEE World Congr. Comput. Intell.,
May 1998, pp. 69–73.

[63] K. Socha and M. Dorigo, ‘‘Ant colony optimization for continuous
domains,’’ Eur. J. Oper. Res., vol. 185, no. 3, pp. 1155–1173, 2008.

[64] M.M. Soliman, A. E. Hassanien, andH.M.Onsi, ‘‘An adaptivewatermark-
ing approach based on weighted quantum particle swarm optimization,’’
Neural Comput. Appl., vol. 27, no. 2, pp. 469–481, 2016.

[65] K. Sorensen, M. Sevaux, and F. Glover, ‘‘A history of metaheuristics,’’ in
Handbook of Heuristics, R. Martí, P. Panos, and M. Resende, Eds. Cham,
Switzerland: Springer, 2018, pp. 1–18.

[66] Z. Tu and Y. Lu, ‘‘A robust stochastic genetic algorithm (STGA) for
global numerical optimization,’’ IEEE Trans. Evol. Comput., vol. 8, no. 5,
pp. 456–470, Oct. 2004.

[67] H. Wang, J. Liu, J. Zhi, and C. Fu, ‘‘The improvement of quantum genetic
algorithm and its application on function optimization,’’ Math. Problems
Eng., vol. 2013, 2013, Art. no. 730749.

[68] Y. Wang, X.-Y. Feng, Y.-X. Huang, D.-B. Pu, W.-G. Zhou, Y.-C. Liang,
and C.-G. Zhou, ‘‘A novel quantum swarm evolutionary algorithm and its
applications,’’ Neurocomputing, vol. 70, no. 4, pp. 633–640, 2007.

[69] C. P. Williams, Explorations in Quantum Computing, 2nd ed. New York,
NY, USA: Springer-Verlag, 2011.

[70] D. P. Williamson and D. B. Shmoys, The Design of Approximation Algo-
rithms, 1st ed. New York, NY, USA: Cambridge Univ. Press, 2011.

[71] S. Yang, M. Wang, and L. Jiao, ‘‘A quantum particle swarm optimization,’’
in Proc. Congr. Evol. Comput., vol. 1, Jun. 2004, pp. 320–324.

[72] X. Yang, Nature-Inspired Metaheuristic Algorithms, 2nd ed. Frome, U.K.:
Luniver Press, 2010.

[73] X. Yao, Y. Liu, and G. Lin, ‘‘Evolutionary programming made faster,’’
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[74] X. Yao and Y. Liu, ‘‘Fast evolution strategies,’’ in Evolutionary Program-
ming VI, P. J. Angeline, R. G. Reynolds, J. R. McDonnell, and R. Eberhart,
Eds. Berlin, Germany: Springer, 1997, pp. 149–161.

[75] G. Zhang, ‘‘Quantum-inspired evolutionary algorithms: A survey and
empirical study,’’ J. Heuristics, vol. 17, no. 3, pp. 303–351, Jun. 2011.

[76] G. Zhang, M. Gheorghe, and C. Wu, ‘‘A quantum-inspired evolutionary
algorithm based on P systems for knapsack problem,’’ Fundam. Inform.,
vol. 87, no. 1, pp. 93–116, 2008.

[77] G. Zhang, N. Li, W. dong Jin, and L. zhao Hu, ‘‘Novel quantum genetic
algorithm and its applications,’’ Frontiers Electr. Electron. Eng. China,
vol. 1, no. 1, pp. 31–36, Jan. 2006.

[78] K. Zhu and M. Jiang, ‘‘Quantum artificial fish swarm algorithm,’’ in Proc.
8th World Congr. Intell. Control Automat., 2010, pp. 1–5.

[79] D. Zouache and A. Moussaoui, ‘‘Quantum-inspired differential evolution
with particle swarm optimization for knapsack problem,’’ J. Inf. Sci. Eng.,
vol. 31, pp. 1779–1795, Sep. 2015.

[80] D. Zouache, F. Nouioua, and A. Moussaoui, ‘‘Quantum-inspired firefly
algorithm with particle swarm optimization for discrete optimization prob-
lems,’’ Soft Comput., vol. 20, no. 7, pp. 2781–2799, Jul. 2016.

OSCAR H. MONTIEL ROSS (Senior Member,
IEEE) received theM.Sc. degree in digital systems
from the Instituto Politécnico Nacional (IPN),
in 1999, the M.Sc. degree in computer science
from the Tijuana Institute of Technology, Tijuana,
México, in 2000, and the D.Sc. degree in com-
puter science from the Universidad Autónoma of
Baja California, Tijuana, in 2006. He is currently
a Researcher with the Centro de Investigación y
Desarrollo de Tecnología Digital (CITEDI), IPN.

He has published articles about quantum computing, evolutionary compu-
tation, mobile robotics, Mediative fuzzy logic, ant colonies, type-2 fuzzy
systems, and embedded systems. He is a member of the International
Association of Engineers (IANG), and the Mexican Science Foundation
CONACYT (Consejo Nacional de Ciencia y Tecnología). He received the
Research Award 2016 from IPN. He is a Co-Founder and an Active Member
of the HAFSA (Hispanic American Fuzzy Systems Association), and the
Mexican Chapter of the Computational Intelligence Society (IEEE).

838 VOLUME 8, 2020

	INTRODUCTION
	THEORETICAL BACKGROUND
	QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM
	THE GENETIC QUANTUM ALGORITHM (GQA)
	QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM (QEA)
	REAL-CODED QUANTUM-INSPIRED EVOLUTION ALGORITHM
	QUANTUM INSPIRED ACROMYRMEX EVOLUTIONARY ALGORITHM
	OTHER QUANTUM BASED EVOLUTIONARY ALGORITHMS

	QUANTUM SWARM EVOLUTIONARY ALGORITHM
	QUANTUM-INSPIRED PARTICLE SWARM OPTIMIZATION
	PARTICLE SWARM OPTIMIZATION
	THE QUANTUM SWARM EVOLUTIONARY ALGORITHM
	THE QUANTUM-INSPIRED FIREFLY ALGORITHM WITH PSO

	OTHER QUANTUM SWARM-BASED ALGORITHMS

	SOCIAL EVOLUTION ALGORITHM
	MULTIOBEJTIVE QUANTUM-NATURE-INSPIRED ALGORITHMS
	QUANTUM-INSPIRED MULTIOBJECTIVE EVOLUTIONARY ALGORITHM (QMEA)
	OTHER MULTIOBJECTIVE QUANTUM-INSPIRED ALGORITHMS

	OTHER SOURCES OF INSPIRATION
	QUANTUM-INSPIRED GRAVITATIONAL SEARCH ALGORITHM

	ANALYSIS OF THE METHODS
	CONCLUSION
	REFERENCES
	Biographies
	OSCAR H. MONTIEL ROSS

