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ABSTRACT Errors are prevalent in time series data, which is particularly common in the industrial field.
Data with errors could not be stored in the database, which results in the loss of data assets. At present, to deal
with these time series containing errors, besides keeping original erroneous data, discarding erroneous data
and manually checking erroneous data, we can also use the cleaning algorithm widely used in the database
to automatically clean the time series data. This survey provides a classification of time series data cleaning
techniques and comprehensively reviews the state-of-the-art methods of each type. Besides we summarize
data cleaning tools, systems and evaluation criteria from research and industry. Finally, we highlight possible
directions time series data cleaning.

INDEX TERMS Data cleaning, data quality, time series.

I. INTRODUCTION
Time series data can be defined [128] as a sequence of
random variables, x1, x2, . . . , xn, where the random variable
x1 denotes the value taken by the series at the first time point,
the variable x2 denotes the value for the second time period,
xn denotes the value for the n-th time period, and so on. Time
series have been widely used in many fields [11], [16], [49]
such as financial economy, meteorology and hydrology, sig-
nal processing, industrial manufacturing, and so on. Time
series data are important in industry, where there are all
kinds of sensor devices capturing data from the industrial
environment uninterruptedly. Owing to the fact that data of
the sensor devices are often unreliable [53], time series data
are often large and dirty. In the financial field, the most
important application of time series data is to predict future
commodity (stock) price movements. However, time series
errors in the financial field are also very prevalent, even
some data sets, which are considered quite accurate, still
have erroneous data. For instance, the correct rate of stock
information on Yahoo Finance is 93%. The costs and risks
of errors, conflicts, and inconsistencies in time series have
drawn widespread attention from businesses and government
agencies. In recent work, the data quality issues in time
series data are studied, since they pose unique data quality
challenges due to the presence of autocorrelations, trends,
seasonality, and gaps in the time series data [25]. According
to Shilakes and Tylman [78], the relevant market growth rate
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of data quality is about 17%, which is much higher than
the 7% annual growth rate of the IT industry. For instance,
approximately 30% to 80% of the time and cost are spent on
data cleaning in data warehousing project development. The
time series errors can be either timestamp errors or observed
value errors. For possible timestamp errors, Song et al. [80]
propose a method for cleaning timestamps. In this survey,
we focus on the existing methods of dealing with observed
value errors, thereby, the time series errors mentioned in
the following are observation errors. There are two types of
processing methods commonly used in the industry when
dealing with time series data errors:

(1) Discarding erroneous data. First, the time series is
detected via using an anomaly detection algorithm, and then
the detected abnormal data are discarded.

(2) Cleaning data. Data cleaning is divided into manual
cleaning and automatic cleaning. There is no doubt that man-
ual cleaning has a high accuracy rate, but it is difficult to
implement because it takes more time and effort.

The existing surveys of data cleaning [23], [50] mainly
summarize the methods of dealing with data missing, data
inconsistence, data integration and erroneous data in the
database. Karkouch et al. [58] review the generation of sensor
data, the reasons for the formation of data quality problems,
and the techniques for improving data quality. However,
Karkouch et al. [58] do not provide a detailed overview
of the existing state-of-the-art of erroneous data cleaning.
Thereby, we review the state-of-the-art of time series data
error value cleaning, which may provide a tutorial for
others.
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A. PROBLEM STATEMENT
In this study, enlightened by related research [48], [86]
and [101] on the classification of time series error types,
we summarize the common error in time series into three
categories, namely, single point big error, single point small
error and continuous errors. This article takes the stock price
of a stock for 30 consecutive trading days as an example.
As shown in Figure 1, the characteristics of these three
types of errors are described in detail. The red line in the
figure indicates the true price of the stock in 30 consecutive
trading days, and the blue line indicates the price of the stock
crawled by a website. For various reasons, the observed value
may not be the same as the actual value. It can be seen that
in the four consecutive trading days of 8-11, the observed
values are all 0, and the true values are 1.3, 1.2, 1.1 and
1.15, respectively, on the 20th trading day, the observed value
is 2.4 and the true value is 1.3, on the 25th trading day,
the observed value is 1 and the true value is 1.3.

FIGURE 1. An example error type.

(1) Continuous errors. The so-called continuous errors,
that is, in the time series, errors occur in several consecutive
time points. Specifically, continuous errors can continue to
be subdivided into several types [86], but no longer detailed
here. The observed values from the 8th to 11th trading days
in Figure 1 are all 0, that is, continuous errors occur here.
Continuous errors are common in real life. For instance,
when someone is holding a smartphone and walking on the
road, nearby tall buildings may have a lasting impact on the
collected GPS information. Besides, system errors can also
cause continuous errors.

(2) A single big error. A single point error is an error that
occurs discontinuously in a time series and only occurs on
a single data point at intervals. A big error means that the
observed value of the data point is far from the true value.
Remarkably, the size of the error is relative and closely related
to the real situation of the data set. As shown on the 20th
trading day in Figure 1, the observed value differs from the
true value by 1.1. Compared with the 25th trading day when
the observed value differs from the true value by 0.3, the error
of this data point is large, so this data point error is a single big
error. The single point big error is also very common in daily

life. For instance, the data of motor vehicle oil level recorded
by cursors may cause a single big error when bumping on the
road.

(3) A single small error. Similar to a single point big
error, that is, errors do not occur consecutively, only on a
single data point at intervals. When the observed value of
the data point differs from the true value by a small distance,
on the 25th trading day in Figure 1, it is a single point small
error. As stated in [10], the rationale behind single-point
small errors is that people or systems always try to minimize
possible errors. For instance, people may only have some
small omissions when copying files.

(4) Translational error. As shown in Figure 2, where x axis
represents time and y axis represents the value of the corre-
sponding time, the red line represents true value, and the blue
line represents error value after the translation, the solution to
this type of error is not as much as mentioned above.

FIGURE 2. An example of translational error.

Ignoring time series errors often results in unpredictable
consequences for a series of applications such as query anal-
ysis. Thereby, time series cleaning algorithms are very impor-
tant for mining the potential value of data. This paper reviews
the cleaning algorithm and anomaly detection algorithm of
time series data. By summarizing the existing methods, a ref-
erence or guidance is given to scholars interested in time
series data cleaning and based on this, the possible challenges
and future work of time series cleaning topics are discussed.

B. PROBLEM CHALLENGE
For the problem of time series data cleaning, the following
four difficulties have been discovered through the survey:

(1) The amount of data is large and the error rate is high.
The main source of time series data is sensor acquisition.
Especially in the industrial field, sensors distributed through-
out the machine are constantly monitoring the operation of
the machine in real-time. These sensors often collect data
at a frequency of seconds, and the amount of data collected
is quite large. For instance, the sensor collection interval
of a wind power company equipment is 7 seconds, each
machine has more than 2000 working status data, and more
than 30 million pieces of data are collected every day, so the
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working status data of one day could exceed 60 billion. How-
ever, the data collected by the sensor are often not accurate
enough, and some because of the physical quantity of the
observation is difficult to measure accurately. For instance,
in a steel mill, with affecting by environmental disturbances
the surface temperature of the continuous casting slab cannot
be accurately measured or may cause distortion due to the
power of the sensor itself.

(2) The reasons for generating time series data errors are
complicated. People always try to avoid the generation of
time series erroneous data, however, there are various time
series errors. Besides the observed errors that we mentioned
above for various reasons, Karkouch et al. [58] also explain
in detail the IoT data errors generated by various complex
environments. IoT data is a common time series of data, and
its widespread existence is really in the world. The complex
reasons of time series errors also are challenges we face in
cleaning and analyzing data that is different from traditional
relational data.

(3) Time series data are continuously generated and stored.
The biggest difference between time series data and relational
data is that the time series is continuous. Thereby, for time
series data, it is important that the cleaning algorithm supports
online operations (real-time operations). The online anomaly
detection or cleaning algorithm can monitor the physical
quantity in real-time, detect the problem and then promptly
alarm or perform a reasonable cleaning. Thereby, the time
series cleaning algorithm is not only required to support
online calculation or streaming calculation but also has good
throughput.

(4) Minimum modification principle [1], [22], [35]. Time
series data often contain many errors. Most of the widely
used time series cleaning methods utilize the principle of
smooth filtering. Such methods may change the original data
too much, and result in the loss of the information contained
in the original data. Data cleaning needs to avoid changing
the original correct data. It should be based on the principle
of minimum modification, that is, the smaller the change,
the better.

C. ORGANIZATION
Different algorithms tackle these challenges in different
ways, which usually include smoothing-based methods,
constraint-based methods, and statistical-based methods as
shown in Table 1. Besides some time series anomaly detection
algorithms can also be effectively used to clean data. The
remainder of this paper is organized as follows. The afore-
said four types of algorithms are discussed from Section II
to V, respectively. In Section VI we introduce existing time
series cleaning tools, systems, and evaluation criteria. Finally,
we summarize this paper in Section VII and discuss possible
future directions.

II. SMOOTHING BASED CLEANING ALGORITHM
Smoothing techniques are often used to eliminate data
noise, especially numerical data noise. Low-pass filtering,

TABLE 1. The overview of methods.

which filters out the lower frequency of the data set, is a sim-
ple algorithm. The characteristic of this type of technology is
that the time overhead is small, but because the original data
may be modified much, which makes the data distorted and
leads to the uncertainty of the analysis results, there are not
many applications used in time series cleaning. The research
of smoothing technology mainly focuses on algorithms such
as Moving Average (MA) [15], Autoregressive (AR) [11],
[51], [97] and Kalman filter model [57], [68], [70]. Thereby,
this chapter mainly introduce these three technologies and
their extensions.

A. MOVING AVERAGE
The moving average (MA) series algorithm [15] is widely
used in time series for smoothing and time series prediction.
A simple moving average (SMA) algorithm: Calculate the
average of the most recently observed N time series values,
which is used to predict the value at time t . A simple defini-
tion as shown in equation (1).

x̂t =
1

2n+ 1

n∑
i=−n

xi+t (1)
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In equation (1), x̂t is the predicted value of xt , xt represents
the true value at time t , 2 ∗ n + 1 is the window size(count).
For a time series x(t) = 9.8, 8.5, 5.4, 5.6, 5.9, 9.2, 7.4, for
simplicity, we use SMAwith n = 3 and k = 4, then calculate
according to equation (2).

xt =
(xt−n + xt−2 . . .+ xt+n)

(2n+ 1)
= 7.4 (2)

To eliminate errors or noises, the data x(t) can be con-
sidered as a certain time window of sliding window, then
continuously calculate the local average over a given interval
2n + 1 to filter out the noise (erroneous data) and get a
smoother measurement.

In the weighted moving average (WMA) algorithm, data
points at different relative positions in the window have dif-
ferent weights. Generally defined as:

x̂t =
n∑

i=−n

ωixi+t (3)

In equation (3), ωi represents the weight of the influence
of the i position data point on the t position data point, other
definitions follow the example above. A simple strategy is
that the farther away from the two data points, the smaller the
mutual influence. For instance, a natural idea is the reciprocal
of the distance between two data points as the weight of their
mutual influence. Similarly, the weight of each data point
in the exponential weighted moving average (EWMA) algo-
rithm [38] decreases exponentially with increasing distance,
which is mainly used for unsteady time series [17], [52].

Aiming at the need for the rapid response of sensor data
cleaning, Zhuang et al. [105] propose an intelligent weighted
moving average algorithm, which calculates weighted mov-
ing averages via collected confidence data from sensors.
Zhang et al. [103] propose a method based onmulti-threshold
control and approximate positive transform to clean the probe
vehicle data, and fill the lost data with the weighted average
method and exponential smoothing method. Qu et al. [74]
first use cluster-based methods for anomaly detection
and then use exponentially weighted averaging for data
repair, which is used to clean power data in a distributed
environment.

B. AUTOREGRESSIVE
The Autoregressive (AR) Model is a process that uses itself
as a regression variable and uses the linear combination of the
previous k random variables to describe the linear regression
model of the random variable at the time t . The definition of
AR model [51], [88] as shown in equation (4).

x̂t =
k∑
i=1

ωixt−i + εt + a (4)

In equation (4), x̂t is the predicted value of xt , xt represents
the true value at time t , k is the order, µ is mean value of the
process, εt is white noise, ωi is the parameter of the model,
a is a constant.

Park et al. [72] use labeled data y to propose an autore-
gressive with exogenous input (ARX)model based on the AR
model:

ŷt = xt +
k∑
i=1

ωi(yt−i − xt−i)+ εt (5)

In equation (5), ŷt is the possible repair of xt , and others are
the same to the aforesaid AR model. Alengrin and Favier [3]
propose Autoregressive moving average (ARMA) model),
which is composed of the AR model and MAmodel. Besides
that, the Gaussian Autoregressive Moving Average model is
defined as shown in equation (6) [86].

8(B)Zt = θ0 + θ (B)xt (6)

In equation (6), 8(B) = 1 − 81B − . . . − 8pBp and
θ (B) = 1 − θ1B − . . . − θqBq are polynomial in B of
degrees p and q, respectively, θ0 is a constant, B is the back-
shift operator such that BZt = Zt−1, and xt is a sequence
of independent Gaussian variates with mean µ = 0 and
variance σ 2

x . Box and Pierce [12] propose a more complex
Autoregressive Integrated Moving Average (ARIMA) model
based on the ARMA model, which is not described in detail
here. Akouemo and Povinelli [2] propose a method com-
bining ARX and Artificial Neural Network (ANN) model
for cleaning time series, which performs a hypothesis test
to detect anomalies the extrema of the residuals, and repairs
anomalous data points by using the ARX and ANN models.
Dilling and MacVicar [30] clean high-frequency velocity
profile data with ARMA model and Chen et al. [21] use the
ARIMA model to clean wind power data.

C. KALMAN FILTER MODEL
Kalman [57] proposes the Kalman filter theory, which can
deal with time-varying systems, non-stationary signals, and
multi-dimensional signals. Kalman filter creatively incorpo-
rates errors (predictive and measurement errors) into the cal-
culation, the errors exist independently and are not affected
by measured data. The Kalman model involves probabil-
ity, random variable, Gaussian Distribution, and State-space
Model, etc. Consider that the Kalman model involves too
much content, no specific description is given here, and only
a simple definition is given. First, we introduce a system of
discrete control processes which can be described by a Linear
Stochastic Difference equation as shown in equation (7).

xt = mxt−1 + nvt + pt (7)

Also, the measured values of the system are expressed as
shown in equation (8).

yt = rxt−1 + qt (8)

In equation (7) and (8), xt is the system state value at
time t , and vt is the control variable value for the sys-
tem at time t . m and n are system parameters, and for
multi-model systems, they are matrices, yt is the measured
value at time t , r is the parameter of the measurement system,
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TABLE 2. Summary of smoothing.

and for multi-measurement systems, r is a matrix, p(k) and
q(k) represent the noises of the process and measurement,
respectively, and they are assumed to be white Gaussian
Noise.

The extended Kalman filter is the most widely used esti-
mation for a recursive nonlinear system because it simply lin-
earizes the nonlinear system models. However, the extended
Kalman filter has two drawbacks: linearization can pro-
duce unstable filters and it is hard to implement the deriva-
tion of the Jacobian matrices. Thereby, Ma and Teng [67]
present a new method of predicting the Mackey-Glass equa-
tion based on the unscented Kalman filter to solve these
problems. In the field of signal processing, there are many
works [18], [33], [45] based on Kalman filtering, but these
techniques have not been widely used in the field of time
series cleaning. Gardner [38] propose a new model, which
is based on the Kernel Kalman Filter, to perform various
nonlinear time series processing. Zhuang et al. [105] use the
Kalman filter model to predict sensor data and smoothed it
with WMA.

D. SUMMARY AND DISCUSSION
As shown in Table 2, there are many methods based on
smoothing, such as the state-space model [56], [68], [87] and
Interpolation [59], [95]. The state-space model assumes that
the system’s change over time can be determined by an unob-
servable vector sequence, the relationship between the time
series and the observable sequence can be determined by the
state-space model. By establishing state equations and obser-
vation equations, the state-space model provides a model
framework to fully describe the temporal characteristics of
dynamic systems. To make this kind of smoothing algorithm
have a better effect, many studies [20], [73], [83] have also
proposed various techniques to estimate the parameters in the
above methods. Most smoothing techniques, when cleaning
time series, have a small-time overhead, but it is very easy to
change the original correct data points, which greatly affects
the accuracy of cleaning. In other words, correct data are
altered, which can distort the results of the analysis and lead
to uncertainty in the results.

III. CONSTRAINT BASED CLEANING ALGORITHM
In this section, we introduce several typical algorithms, which
include order dependencies (ODs) [32], sequential dependen-
cies (SDs) [46] and speed constraints [82], for repairing time
series errors.

A. ORDER DEPENDENCIES
In relational databases, Order Dependencies (ODs) are simple
and effective methods, which have been widely studied [32],
[41]–[43].Wefind that ODs are also suitable for solving some
time series data cleaning problems. The specific explanation
is as follows: Let x(t) = x1, x2 . . . xt be a time series, ODs can
be expressed by<,≤, >,≥. For the number of miles traveled
by the car x(t), the mileage should increase over time. Formal
representation is as follows: t1 < t2 then xt1 ≤ xt2 where x(t)
is mileage, t is timestamp. For instance, consider an example
relation instance in Table 3. The tuples are sorted on attribute
sequence number, which identifies sea level that rapidly
increase from hour to hour.

TABLE 3. An example of order dependencies.

Generally, ODs in the form of equation (9) states that N is
strictly increasing with M . Such as equation (10).

M →(0,∞) N (9)

hour →(0,∞) height (10)

ODs and DCs can also be used as an integrity con-
straint for error detection and data repairing in databases.
Wijsen [92], [93] extends ODs with a time dimension for
temporal databases. Let I = {I1, I2, I3, . . . } be a temporal
relation, which can be viewed as a time series of conventional
‘‘snapshot’’ relations, all over the same set of attributes.
A trend dependency (TD) allows attributes with linearly
ordered domains to be compared over time by using any
operator of {<,=, >,≤,≥, 6=}. Consider the constraint is
specified over (Ii, Ii+1) in I . For each time point i, it requires
comparing employee records at time i with records at the
next time i+ 1, such that salaries of employees should never
decrease. Lopatenko andBravo [65] propose a numerical type
data cleaning method based on Denial Constraints (DCs) as
constraints, whose principle is similar to this one.

B. SEQUENTIAL DEPENDENCIES
The sequential dependency algorithm proposed by
Golab et al. [46] focuses on the difference in values between
two consecutive data points in a time series. Golab et al. [46]
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define the CSD Tableau Discovery Problem as given a rela-
tion instance and an embedded SDM →g N , to find a tableau
tr of minimum size such that the CSD (M →g N , tr ) has
confidence at least a given threshold. A CSD can be

(hour→(0,∞)height,[1961.01.01 00:00–2016.01.01 00:00]).

It states that for any two consecutive hours in [1961.01.01
00:00–2016.01.01 00:00], their distance should always
be > 0.
Generally, a sequential dependency (SD) is in the form of

M →g N . (11)

In equation (11), M ⊆ R are ordered attributes, N ⊆ R
can be measured by certain distance metrics, and g is an
interval. It states that when tuples are sorted on M , the dis-
tance between the N -values of any two consecutive tuples
are within interval g. Casado-Vara et al. [19] propose the
concept of streaming mode to represent the structure and
semantic constraints of data streams. The concept contains a
variety of semantic information, including not only numeric
values, but also attributes between order. The sequential
dependency algorithm can be used not only for traditional
relational database cleaning, but also for time series cleaning.
In fact, there are many dependency-based cleaning algo-
rithms designed for relational databases that are not suitable
for time series data cleaning, such as: Functional Depen-
dencies [6] (FDs) and Conditional Functional Dependen-
cies [36], [37] (CFDs). The sequential dependency is one of
the few algorithms based on dependency that can be used for
time series cleaning.

C. SPEED CONSTRAINTS
To clean time series data, speed constraint-based method
proposed by Song et al. [82] consider the restrictions of speed
on value changes in a given interval. As we have learned some
common sense, e.g., the maximum flying speed of a bird,
temperatures in a day, car mileage, etc. Consider with time
window T is a pair of minimum speed Smin and maximum
speed Smax over the time series x = x1, x2, . . . , xt , where each
xi is the value of the i-th data point, with a timestamp i.
For instance, consider time series:

x(t) = {150, 160, 170, 180, 110, 200, 210, 220, 230}

where timestamps t = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The value
attribute corresponds to x, while the time attribute in Table 4
denotes the timestamps.

Suppose a window size T = 2, Smin = −50, and
Smax = 50 in the speed constraints, for data points x5 and
x4, 110−180

5−4 = −80 < −50. Similarly, x5 and x6 with speed
200−110
6−5 = 90 > 50 are violations to smax = 50. To remedy

the violations (denoted by red lines), a repair on x5 can be per-
formed, i.e., x ′5 = 190, which is represented by the blue ‘‘∗’’
symbol in Figure 3. As illustrated in Figure 3, the repaired
sequence satisfies both the maximum and minimum speed
constraints.

TABLE 4. An example relation instance of time series.

FIGURE 3. An example of speed constraints.

Generally, a speed constraint is in the form of
equation (12).

S = (Smin, Smax) (12)

If time series data x satisfies the speed constraint S, then
for any xi, xj in a time window T , it has Smin <

xj−xi
j−i < Smax.

In practical applications, speed constraints are often valid for
a specific period of time. For instance, when considering the
fastest speed of a car, the time period of the reference is often
in hours, and two data points in different years are not con-
sidered. The value of the speed constraints S may be positive
(the growth rate of the constraint value) or negative (the rate
of decline of the constraint value). Speed constraints are less
effective when dealing with small errors, and Yin et al. [66]
propose a further study of variance constraints, which use the
variance threshold V to measure the degree of dispersion of
the time series in a given W window.

D. SUMMARY AND DISCUSSION
In the field of relational databases, there are many cleaning
algorithms based on integrity constraints, which are difficult
to apply in the field of time series in which the observed val-
ues are substantially numerical, because they follow a strict
equality relationship. A few methods, which we summarize
in Table (5), can be used for time series data cleaning, for
instance ODs and SDs can be used to solve problems in
some scenarios, such as the number of miles in a car is non-
decreasing. Further speed-based constraints can be used to
process data such as GPS and stock prices, but only with
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TABLE 5. Summary of constraints.

relevant domain knowledge can give a reasonable constraint.
Therefore, the constraint-based cleaning algorithm needs to
be further improved to have better robustness. The Similarity
Rule Constraints proposed by Song et al. [119] and the Learn-
ing Individual Models proposed by Zhang et al. [120] are
suitable for repairing missing data. One possible future direc-
tion is to use anomaly detection methods to detect anomalies
first, and then treat outliers as missing to repair. We will
discuss anomaly detection in Section V.

IV. STATISTICS BASED CLEANING ALGORITHM
Statistical-based cleaning algorithms occupy an important
position in the field of data cleaning. Such algorithms
use models, which learned from data, to clean data. The
statistical-based approach involves a lot of statistical knowl-
edge, but this article focuses on statistical-based data cleaning
methods, so we won’t cover statistical-related knowledge in
detail.

A. MAXIMUM LIKELIHOOD
The intuitive idea of the maximum likelihood principle
is a random test, if there are several possible outcomes
x1, x2 . . . xt , if the result xi occurs in one test, it is gen-
erally considered that the test conditions are favorable
for xi, or think that xi has the highest probability of
occurrence.
Notation: For a given time series data x(t), which consis-

tents with a probability distribution d , and assume that its
probability aggregation function (discrete distribution) is Fd ;
consider a distribution parameter θ , sampling x1, x2 . . . xn
from this distribution, then use Fd to calculate its probabil-
ity [13] as shown in equation (13).

P = (x1, x2 . . . xn) = Fd (x1, x2 . . . xn|θ ) (13)

Gogacz and S. Toruńczyk [44] use themaximum likelihood
technique to clean Radio Frequency Identification (RFID)
data. Wang et al. [89] propose the first maximum likelihood
solution to address the challenge of truth discovery from
noisy social sensing data. Yakout et al. [96] argue a new data
repairing approach that is based onmaximizing the likelihood
of replacement data in the given data distribution, which can
be modeled using statistical machine learning techniques, but
this technology is used to repair the data of the database.

For the repairing of time series data errors, Zhang et al. [99]
propose a better solution based on maximum likelihood,
which solves the problem from the perspective of probability.
According to the probability distribution of the speed change
of adjacent data points in the time series, the time series
cleaning problem can be converted to find a cleaned time
series, which is based on the probability of speed change that
has the greatest likelihood.

B. MARKOV MODEL
Markov process is a class of stochastic processes, which
means that the transition of each state in the process depends
only on the previous n states. This process is called a n−order
model, where n is the number that affects the transition state.
The simplest Markov process is the first − order process,
and the transition of each state depends only on the state
before it. Time and state are discrete Markov processes called
Markov chains, abbreviated as Xn = X (n), n = 0, 1, 2 . . ..
The Markov chain [112] is a sequence of random variables
X1,X2,X3 . . .. The range of these variables, that is, the set of
all their possible values, is called the ‘‘state space’’, and the
value of Xn is the state of time n.
TheMarkovModel [113], [114] is a statistical model based

onMarkov chain, which is widely used in speech recognition,
part-of-speech automatic annotation, phonetic conversion,
probabilistic grammar and other natural language processing
applications. In order to find patterns that change over time,
the Markov model attempts to build a process model that can
generate patterns. References [114] and [113] use specific
time steps, states, and make Markov assumptions. With these
assumptions, this ability to generate a pattern system is a
Markov process. A Markov process consists of an initial
vector and a state transition matrix. One thing to note about
this assumption is that the state transition probability does not
change over time.

Hidden Markov Model (HMM) [116], [117] is a sta-
tistical model based on Markov Model, which is used to
describe a Markov process with implicit unknown parame-
ters. The difficulty is to determine the implicit parameters
of the process from observable parameters, and then use
these parameters for further analysis, such as prediction of
time series data. For instance, after rolling the dice 10 times,
we could get a string of numbers, for example we might get
such a string of numbers:1, 4, 5, 3, 3, 1, 6, 2, 4, 5 as shown
in Figure 4. This string of numbers is called the visible
state chain. But in HMM, we not only have such a string
of visible state chains, but also a chain of implied state
chains. In this example, the implicit state chain might be:
D5,D3,D2,D3,D4,D6,D1,D5,D1,D2.
Gupta and Dhingra [118] use HMM to predict the price of

stocks. Baba et al. [4] argue a data cleaning method based
on the HMM, which used to clean RFID data related to
geographic location information. In multi-dimensional time
series cleaning, HMM has more application space than the
single-dimensional cleaning algorithm, because of the corre-
lation between the dimensions.

1872 VOLUME 8, 2020



X. Wang, C. Wang: Time Series Data Cleaning: Survey

FIGURE 4. An example of hidden markov.

C. BINOMIAL SAMPLING
Jeffery et al. [54] propose an adaptive method for cleaning
RFID data, which exploits techniques based on sampling and
smoothing theory to improve the quality of RFID data. Tag
transition detection: tag transition detection refers to the fact
that when the position of the tag changes, the cleaning result
should reflect the fact that the tag leaves. Let’s introduce a
few RFID-related concepts.

(1) Interrogation cycles: the reader’s question-and-answer
process for the tag is the basic unit of the reader’s detection
tag.

(2) Reader read cycle (epoch, 0.2 sec - 0.25 sec): a collec-
tion of multiple interrogation cycles.

Based on the above concept, the following definition: Wi
is smooth window of tag i and is composed of ωi epoch, Si is
the window that tag i is actually detected in the Wi window,
Countt indicates the number of inquiry cycles of t , and R is
the corresponding number of t epoch tag i. For a given time
window, suppose the probability that the tag i may be read
in each epoch is pi = R

Countt
, and the Statistical Soothing

for Unreliable RFID Data (SMURF) [54] algorithm treats
each epoch’s reading of the tag as a Bernoulli experiment
with probability pi. Therefore, pi conforms to the binomial
distribution B(ωi, pi). pi,avg is the average read rate in Si.
Using the model based on the Bernoulli experiment to

observe the tag i, if the average reading rate of the tags in
ωi epoch is (1−pi,avg)ωi . To ensure the dynamic nature of the
tag the size of the sliding windowWi needs to be satisfied as
shown in equation (14).

||Si| − ωipi,avg| > 2
√
ωipi,avg(1− pi,avg) (14)

The SMURF algorithm first sets the initial window size
to 1, and then dynamically adjusts the window length based
on the actual situation of the read. If the current windowmeets
the integrity requirement [54], the SMURF algorithm will
detect the status of the tag.When the detection result indicates
that the tag status changes, SMURF will adjust the current
window length to 1/2 of the original window to react to the
tag’s transition. If the calculated window size that satisfies the
integrity constraint is greater than the current window size,
the algorithm linearly increases the current window size by

2 steps and outputs the point data in the current window. If it
is detected that the label does not move, the algorithm outputs
the current window midpoint as the output point, and then
continues to slide an epoch for the next processing.

SMURF algorithm is widely used to clean RFID data, and
many studies [27], [115] improve it. Leema et al. [27] study
the effect of tag movement speed on data removal results and
Xu et al. [115] consider the impact of data redundancy on
setting up sliding windows.

D. SPATIO-TEMPORAL PROBABILISTIC MODEL
Besides data cleaning, Milani et al. [124] propose
Spatio-Temporal Probabilistic Model (STPM), this method
learns more detailed data patterns from historical data, and
then cleans the current data. STPM not only gives joint
probability distributions that are updated on the data set at dif-
ferent times, but also distinguishes association updates from
association values. STPM based on Dynamic Probabilistic
Relational Models (DRPMs), so we need to state DRPMs
model first. The DRPMs is a graph model used to represent
the relationship between dynamic data sets, its models based
on the dependency relationship between attributes, and gener-
ally uses conditional probability distribution to calculate the
probability of each attribute value in a given parent node value
and forms a relationship chain. For instance, when we need
to estimate the data at time T , we can only use the data before
time T to infer, namely, the current state depends only on the
previous state, which is similar to the Markov Model. STPM
extends DRPMs to model update pattern between different
time data, and captures spatial and temporal update patterns
by modeling updates events to provide update relationships
of possible existence, finally detect and repair data.

E. OTHERS
Firstly, we summarize the methods described above
in Table (6). In fact, Bayesian prediction model is a tech-
nique based on Bayesian statistics. The Bayesian prediction
model utilizes model information, data information, and
prior information, so the prediction effect is good, there
this model is widely used, including in the field of time
series data cleaning. Wang et al. [90] establish a cost model
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TABLE 6. Summary of statistics.

for Bayesian analysis which is used to analyze errors in
the data. Bergman et al. [7] consider the user’s participa-
tion and use the user’s feedback on the query results to
clean the data. Mayfield et al. [69] propose a more complex
relationship-dependent network (RDN [71]) model to model
the probability relationships between attributes. The differ-
ence between RDN and traditional relational dependencies
(such as Bayesian networks [39]) is that RDNs can contain
ring structures. The method iteratively cleans the data set and
observes the change in the probability distribution of the data
set before and after each wash. When the probability distribu-
tion of the data set converges, the cleaning process is aborted.
Zhou and Tung [104] argue a technique for accelerating the
learning of Gaussian models via using GPU. The article
believes that in the case of excessive data, it is not necessary
to use all the data to learn the model. Also, the author
provides a method of automatic tuning. In order to clean and
repair fuel level data, Tian et al. [85] propose a modified
Gaussian mixture model (GMM) based on the synchronous
iteration method, which uses the particle swarm optimization
algorithm and the steepest descent algorithm to optimize
the parameters of GMM and uses linear interpolation-based
algorithm to correct data errors. Shumway and Stoffer [79]
use the EM [28] algorithm combined with the spatial state
model [56], [70] to predict and smooth the time series.

V. TIME SERIES ANOMALY DETECTION
Gupta et al. [48] investigate the anomaly detection meth-
ods for time series data: for a given time series data, there
may be two types of outliers, namely single-point anomalies
and subsequence anomalies (continuous anomalies). In this
section, we first discuss the detection methods of abnormal
points and abnormal sequences, next introduce the applica-
tion of Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm in data cleaning, and then review
the abnormal detection methods related to machine learning.

A. ABNORMAL POINT DETECTION
For single-point anomalies, the most common idea is to use
predictive models for detection. That is, the predicted value
of the established model and the observed value for each
data point is compared, and if the difference between the two

values is greater than a certain threshold, the observed value
is considered to be an abnormal value. Specifically, Basu
and Meckesheimer [5] select all data points with timestamps
t − k to t + k with the timestamp t as the center point,
and the median of these data points is considered to be
the predicted value of data points with timestamp t value.
Hill and Minsker [51] first cluster the data points and take the
average of the clusters as the predicted value of the point. The
AR model and the ARX model are widely used for anomaly
detection in various fields, such as economics, social sur-
veys [11], [16], and so on. The ARX model takes advantage
of manually labeled information, so it is more accurate than
the AR model when cleaning data. The ARIMA model [102]
represents a type of time series model consisting of AR and
MA mentioned above, which can be used for data cleaning
of non-stationary time series. Kontaki et al. [63] propose
continuous monitoring of distance-based outliers over data
streams. One of the most widely used definitions is the one
based on distance as shown in Figure 5: an object p is marked
as an outlier, if there are less than k objects in given distance.
Here k = 4, q is the normal point and p is the abnormal point.

FIGURE 5. An example abnormal point detection.

B. ABNORMAL SEQUENCE DETECTION
Different studies have different definitions of subsequence
anomalies. Keogh et al. [61] proposed that a subsequence
anomaly, that is, a subsequence has the largest distance
from its nearest non-overlapping match. With this definition,
the simplest calculation method is to calculate the distance
between each subsequence with length n and other subse-
quences. Of course, the time complexity of this calculation
method is very high. In the later studies, Keogh et al. [60]
propose a heuristic algorithm by reordering candidate subse-
quences and Wei et al. [91] argue an acceleration algorithm
using local sensitive hash values. In calculating the distance,
the Euclidean distance is usually used, and Keogh et al. [62]
further proposes a method using the compression-based simi-
larity measure as the distance function. As shown in Figure 6,
the data is divided into multiple sub-sequences that over-
lap each other. First, calculate the abnormal score of each
window, and then calculate the abnormal score (AS) of the
whole test sequence according to the abnormal score (AS)
of each window. Window-based techniques can better locate
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FIGURE 6. An example abnormal sequence detection.

anomalies compared to direct output of the entire time series
as outliers. There are twomain types of methods based on this
technique. One is to maintain a normal database [34], [40],
and then compare the test sequence with the sequence in the
normal database to determine whether it is abnormal; the
other is to build an anomalous database [24], [47] and then
compare the test sequence with the sequence in the database
to detect if it is anomalous.

C. DENSITY-BASED SPATIAL CLUSTERING OF
APPLICATIONS WITH NOISE
The DBSCAN [111] algorithm is a clustering method based
on density-reachable relationship, which divides the region
with sufficient density into clusters and finds clusters of
arbitrary shape in the spatial database with noise and defines
the cluster as the largest set of points connected by density.
Then the algorithm defines the cluster according to the set
density threshold as the basis for dividing the cluster, that
is, when the threshold is satisfied, it can be considered as a
cluster.

The principle of DBSCAN algorithm: (1) DBSCAN
searches for clusters by checking the Eps neighborhood of
each point in the data set. If the Eps neighborhood of point
p contains more points than MinPts, create a cluster with
p as the core object; (2) Then, DBSCAN iteratively aggre-
gates objects that are directly reachable from these core
objects. This process may involve the consolidation of some
density-reachable clusters; (3)When no new points are added
to any cluster, the process ends.

WhereMinPts is the minimum number of neighbor points
that a given point becomes the core object in the neigh-
borhood, Eps is the neighborhood radius. For instance, Eps
is 0.5 and MinPts is 3, for a given data set, the effect of
clustering is as shown in Figure 7. Some noise points can be
repaired and clustered into classes adjacent to them. Recent
research [81] has shown that after repairing erroneous data.
They also perform cleaning experiments on GPS data based
on DBSCAN, the accuracy of clustering on spatial data can
be improved. But this method cannot solve continuous errors
and needs further improvement.

D. GENERATIVE ADVERSARIAL NETWORKS
With the rapid development of machine learning technology,
more and more problems are solved using machine learning.
Li et al. [76] use the GANs network to effectively detect
anomalies in time series data. GANs trains two models at
the same time, which are the generation model for capturing

FIGURE 7. An example of DBSCAN clustering.

FIGURE 8. A simple flow chart of generative adversarial networks.

data distribution and the discriminant model for discriminat-
ing whether the data are real data or pseudo data as shown
in Figure 8.

Given a random variable with a probability of uniform
distribution as input, we want to generate a probability dis-
tribution of the output as ‘‘dog probability distribution’’.
The philosophy of Generative Matching Networks (GMNs),
which idea is to train the generative network by directly com-
paring the generated distribution with the true distribution,
is to optimize the network by repeating the following steps:

(1) Generate some evenly distributed input;
(2) Let these inputs go through the network and collect the

generated output;
(3) Compare the true ‘‘dog probability distribution’’

with the generated ‘‘dog probability distribution’’ based on
the available samples (e.g. calculate the MMD distance
between the real dog image sample and the generated image
sample);

(4) Use backpropagation and gradient descent to compute
the errors and update the weights. The purpose of this pro-
cess is to minimize the loss of the generation model and
discriminant.

Li et al. [76] use GANs to detect abnormalities in time
series and a natural idea is to use GANs network to repair
missing values of time series data. Perhaps more machine
learning algorithms are waiting for the cleaning of time series
error values. A simple idea is to treat the detected anomaly
data as missing data and then repair it. Sun et al. [121] first
analyze the similarity between parking space data and park-
ing data, and then use Recurrent GANs to generate parking
data as repair data, which provide a new idea for solving
the problem of time series data repair. Fang et al. [122]
propose FuelNet which is based on Convolutional Neural
Networks (CNNs) and GANs. FuelNet is used to repair the
inconsistent and impute the incomplete fuel consumption
rates over time.
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E. LONG SHORT-TERM MEMORY
Since Recurrent Neural Network (RNN) also has the prob-
lem of gradient disappearance, it is difficult to process
long-sequence data. Gers et al. [106] improve RNN and got
the RNN special case Long Short-Term Memory (LSTM),
which can avoid the disappearance of the regular RNN gradi-
ent. It has been widely used in industry and [107]–[109] use
LSTM to perform anomaly detection on time series data.

FIGURE 9. Simple RNN structure and simple LSTM structure.

The left picture is a simple RNN structure diagram, and the
right picture is a simple LSTM structure diagram in Figure 9,
where given function as shown in equation (15).

F : h, y = f (h, x) (15)

In equation (15), x t is the input of data in the current state,
ht−1 (hidden state) indicates the input of the previous node
received, yt is the output in the current state and ht is the
output passed to the next node. As can be seen from the
Figure 9, the output ht is related to the values of x t and ht−1. yt

is often used to invest in a linear layer (mainly for dimension
mapping), and then use softmax to classify the required data.
As shown in Figure 9, RNN has only one delivery state ht ,
LSTM also has a delivery status ct (cell state). There are three
main stages within LSTM:

(1) Forgotten phase. The forgetting phase is mainly to
forget the input that is passed in from the previous node.
A simple principle is: forget the unimportant, remember the
important one. More specifically, zf is calculated as a forgot-
ten gate, which is used to control the previous state ct−1, and
then decide whether to retain the data or forget it.

(2) Selective memory phase. At this stage, the input is
selectively memorized. Mainly to remember the input x,
the more important the data needs to be more reserved.

(3) Output phase. This phase determines which outputs
would be treated as current states. Similar to the normal RNN,
the output yt is often also obtained by ht change.
Filonov et al. [107] and Pankaj et al. [110] provide recur-

rent neural networks by providing network time series data.
The recurrent neural network understands what the normal
expected network activity is. When an unfamiliar activity
from the network is provided to a trained network, it can
distinguish whether the activity is expected or invaded.

F. SUMMARY AND DISCUSSION
In addition to the methods described above, we also sum-
marize some common methods in Table (7). As shown
in Table (7), Xing et al. [94] show that the cleaned sequence

TABLE 7. Summary of detection.

can improve the accuracy of time series classification.
Diao et al. [29] design LOF [14] based online anomaly detec-
tion and cleaning algorithm. Zhang et al. [100] propose an
iterative minimum cleaning algorithm based on the timing
correlation of error time series in continuous errors and keep
the principle of minimum modification in data cleaning.
The algorithm is effective in cleaning continuous errors in
time series data. Qu et al. [74] first use cluster-basedmethods
for anomaly detection and then use exponentially weighted
averaging for data repair, which is used to clean power data
in a distributed environment. Corizzo et al. [123] use detect
anomalous geographic data by distance-based method, and
then useGradient-boosted tree (GBT) to repair the anomalous
data. We can conclude that anomaly detection algorithms
play an important role in time series data cleaning. It is
also becoming more and more important to design anomaly
detection algorithms for time series repair, and we discuss
future directions in Section VII.

VI. TOOLS AND EVALUATION CRITERIA
In this section, we first give an overview of tools to clean time
series and then summarize evaluation criteria related to time
series cleaning methods.

A. TOOLS
There are many tools or systems for data cleaning, but
they are not effective on time series cleaning problems.
In Table 8 we investigate some tools that might be used for
time series cleaning because they [64], [75], [84], [98] are
originally used to solve traditional database cleaning prob-
lems. Ding et al. [31] present Cleanits, which is an industrial
time series cleaning system and implements an integrated
cleaning strategy for detecting and repairing in industrial time
series. Cleanits provides a user-friendly interface so users can
use results and logging visualization over every cleaning pro-
cess. Besides, the algorithm design of Cleanits also considers
the characteristics of industrial time series and domain knowl-
edge. The ASPA proposed by Rong and Bailis [77] violates
the principle of minimum modification and distort the data,
which is not suitable for being used widely. EDCleaner pro-
posed by Wang et al. [125] is designed for social network
data, detection and cleaning are performed through the char-
acteristics of statistical data fields. Huang et al. [126] propose
PACAS which is a framework for data cleaning between
service providers and customers. Huang et al. [127] present
TsOutlier, a new framework for detecting outliers with expla-
nations over IoT data. TsOutlier uses multiple algorithms to
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TABLE 8. Some examples of tools or systems.

detect anomalies in time series data, and supports both batch
and streaming processing. There is not much research on time
series cleaning tools or systems, and we discuss further in
Future Directions in Section VII.

B. EVALUATION CRITERIA
The Root Mean Square (RMS) error [54] is used to evaluate
the effectiveness of the cleaning algorithm. Let x denotes the
sequence consisting of the true values of the time series, x
denotes the sequence consisting of the observations after the
error is added, and x̂ denotes the sequence consisting of the
repaired values after the cleaning. Here the RMS error [54] is
represented as shown in equation (16).

1(x, x̂) =

√√√√1
n

n∑
i=1

(xi − x̂i)2 (16)

The equation (16) measures the distance between the true
value and the cleaned value. The smaller the RMS error,
the better the cleaning effect.

Other criteria include error distance between incorrect
data and correct data, repaired distance between erro-
neous data and cleaned results (as shown in equation (17)
referring to the minimum modification principle in data
repairing).

1(x, x̂) =
n∑
i=1

|xi − x̂i| (17)

Dasu and Loh [26] propose a statistical distortion method
to evaluate the quality of cleaning methods. The proposed
method directly observes the numerical distribution in the
data set and evaluates the quality according to the variation
of the distribution caused by different cleaning methods.

VII. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we review four types of time series cleaning
algorithms, cleaning tools or systems and related research
on evaluation criteria. Next, we summarize the full text in
Section VII-A and list some advice of future directions in
Section VII-B.

A. CONCLUSION
With the development of technology, people gradually realize
the value contained in the data. Owing to companies want to
derive valuable knowledge from these data, and data anal-
ysis has played an increasingly important role in finance,
healthcare, natural sciences, and industry. Time series data,
as an important data type, is widely found in industrial man-
ufacturing. For instance, a wind power enterprise analyzes
sensor data, which are located throughout the wind turbine,
to determine whether the fan is in a normal state; transport
companies also want to optimize vehicle fleet travel by ana-
lyzing vehicle GPS information. However, due to external
environmental interference, sensor accuracy, and other issues,
time series data often contain many errors that can inter-
fere with subsequent data analysis and cause unpredictable
effects.

B. FUTURE DIRECTIONS
As mentioned above, data is an intangible asset and advanced
technology helps to fully exploit the potential value of data.
Thereby, time series data cleaning methods provide very
important technical support for the discovery of these values
in processing time series error data. Next we list some advice
of future directions based on [101].

The error type illustrates handbook of time series data.
At present, data scientists have a very detailed analysis of the
errors in the traditional relational database. However, there
is still much work to be further studied in the analysis of
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time series data error types. For instance, this paper roughly
divides the types of time series errors into three types, namely
single point big errors, single point small errors and contin-
uous errors. In fact, in continuous errors, there are also a lot
of meticulous types of errors, such as additive errors and the
innovational errors [86]. How to systematically analyze these
error types and form time series data error type illustrated
handbook is very important. The clear error type helps to
develop targeted cleaning algorithms to solve the problem of
‘‘GIGO (Garbage in, garbage out.)’’ that exists in the current
field.

The design of time series data cleaning algorithm. Each
chapter of this paper reviews some time series error clean-
ing algorithms, but further optimizations are possible. The
existing methods are mostly for a single-dimensional time
series (even the GPS data exists two dimensions’ informa-
tion), but each dimension is cleaned separately during clean-
ing [82], [99], [100]. To further improve the practicability
of the algorithm, it is imperative to consider the clean-
ing of multidimensional time series. Besides, with the
development of machine learning technology, more tech-
nical learning techniques should be considered for data
cleaning algorithms, which may lead to better clean-
ing results because of the mathematical support behind
them.

The implementation of time series cleaning tool.
At present, the mainstream data cleaning tools in the industry
are still aimed at relational databases, and these tools are
not ideal for processing time series data. As time series
data cleaning problems become more serious, how to use
the fast-developing distributed technology, high performance
computing technology and stream processing technology to
implement time series cleaning tools (including research
tools and commercial tools) and apply them to real-world
scenarios such as industry is also the key work of the next
stage.

The algorithm design of time series anomaly detection.
In real-world scenarios, efficient anomaly detection algo-
rithms play an irreplaceable role in time series repair. It is
difficult to judge the difference between the error value and
the true value, so it is necessary to specifically design a time
series anomaly detection algorithm that can be applied to
an industrial scene. It is worth noting that more research is
needed on how to perform anomaly detection, cleaning, and
analysis in the case of weak domain knowledge or less labeled
data.

Design of data cleaning algorithms for specific applica-
tion scenarios. With the application of various technolo-
gies in the industry, the application scenarios are becom-
ing more and more clear. The requirements for cleaning
algorithms in different application scenarios have different
focuses. For instance, the data stored in the Blockchain net-
work [19] are generally structured data, with the develop-
ment of Blockchain technology, the design of data clean-
ing algorithms on Blockchain networks is also particularly
important.

REFERENCES
[1] F. N. Afrati and P. G. Kolaitis, ‘‘Repair checking in inconsistent databases:

Algorithms and complexity,’’ in Proc. 12th Int. Conf. Database The-
ory (ICDT), Saint Petersburg, Russia, Mar. 2009, pp. 31–41.

[2] H. N. Akouemo and R. J. Povinelli, ‘‘Data improving in time series
using ARX and ANN models,’’ IEEE Trans. Power Syst., vol. 32, no. 5,
pp. 3352–3359, Sep. 2017.

[3] G. Alengrin and G. Favier, ‘‘New stochastic realization algorithms for
identification of ARMA models,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Tulsa, OK, USA, Apr. 1978,
pp. 208–213.

[4] A. I. Baba, M. Jaeger, H. Lu, T. B. Pedersen, W. Ku, and X. Xie,
‘‘Learning-based cleansing for indoor RFID data,’’ in Proc. Int. Conf.
Manage. Data SIGMOD Conf., San Francisco, CA, USA, Jun./Jul. 2016,
pp. 925–936.

[5] S. Basu and M. Meckesheimer, ‘‘Automatic outlier detection for time
series: An application to sensor data,’’ Knowl. Inf. Syst., vol. 11, no. 2,
pp. 137–154, Feb. 2007.

[6] C. Beeri, M. Dowd, R. Fagin, and R. Statman, ‘‘On the structure of
armstrong relations for functional dependencies,’’ J. ACM, vol. 31, no. 1,
pp. 30–46, 1984.

[7] M. Bergman, T. Milo, S. Novgorodov, and W. C. Tan, ‘‘Query-oriented
data cleaning with oracles,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, Melbourne, VIC, Australia, May/Jun. 2015, pp. 1199–1214.

[8] L. E. Bertossi, L. Bravo, E. Franconi, andA. Lopatenko, ‘‘Complexity and
approximation of fixing numerical attributes in databases under integrity
constraints,’’ in Database Programming Languages, vol. 3774. Berlin,
Germany: Springer, 2005, pp. 262–278.

[9] L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko, ‘‘The complexity
and approximation of fixing numerical attributes in databases under
integrity constraints,’’ Inf. Syst., vol. 33, nos. 4–5, pp. 407–434, 2008.

[10] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi, ‘‘A cost-based model
and effective heuristic for repairing constraints by value modification,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, Baltimore, MD, USA,
Jun. 2005, pp. 143–154.

[11] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

[12] G. E. P. Box andD.A. Pierce, ‘‘Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models,’’ J. Amer.
Statist. Assoc., vol. 65, no. 332, pp. 1509–1526, Apr. 1970.

[13] Y. Bresler and A. Macovski, ‘‘Exact maximum likelihood parame-
ter estimation of superimposed exponential signals in noise,’’ IEEE
Trans. Acoust., Speech, Signal Process., vol. 34, no. 5, pp. 1081–1089,
Oct. 1986.

[14] M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, ‘‘LOF: Identifying
density-based local outliers,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, Dallas, TX, USA, May 2000, pp. 93–104.

[15] D. R. Brillinger, Time Series: Data Analysis and Theory (Classics in
Applied Mathematics), vol. 36. Philadelphia, PA, USA: SIAM, 2001.

[16] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Fore-
casting. Basel, Switzerland: Springer, 2016.

[17] R. G. Brown, Smoothing, Forecasting and Prediction of Discrete Time
Series. North Chelmsford, MA, USA: Courier Corporation, 2004.

[18] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and
Applied Kalman Filtering, vol. 3. New York, NY, USA: Wiley, 1992.

[19] R. Casado-Vara, F. de la Prieta, J. Prieto, and J. M. Corchado,
‘‘Blockchain framework for IoT data quality via edge computing,’’ in
Proc. 1st Workshop Blockchain-Enabled Netw. Sensor Syst., Shenzhen,
China, Nov. 2018, pp. 19–24.

[20] I. Chang, G. C. Tiao, and C. Chen, ‘‘Estimation of time series parameters
in the presence of outliers,’’ Technometrics, vol. 30, no. 2, pp. 193–204,
1988.

[21] P. Chen, T. Pedersen, B. Bak-Jensen, and Z. Chen, ‘‘ARIMA-based time
series model of stochastic wind power generation,’’ IEEE Trans. Power
Syst., vol. 25, no. 2, pp. 667–676, May 2010.

[22] J. Chomicki and J. Marcinkowski, ‘‘Minimal-change integrity mainte-
nance using tuple deletions,’’ Inf. Comput., vol. 197, nos. 1–2, pp. 90–121,
2005.

[23] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, ‘‘Data cleaning: Overview
and emerging challenges,’’ in Proc. Int. Conf. Manage. Data SIGMOD
Conf., San Francisco, CA, USA, Jun./Jul. 2016, pp. 2201–2206.

[24] D. Dasgupta and N. S. Majumdar, ‘‘Anomaly detection in multidimen-
sional data using negative selection algorithm,’’ in Proc. Congr. Evol.
Comput. (CEC), vol. 2, May 2002, pp. 1039–1044.

1878 VOLUME 8, 2020



X. Wang, C. Wang: Time Series Data Cleaning: Survey

[25] T. Dasu, R. Duan, and D. Srivastava, ‘‘Data quality for temporal streams,’’
IEEE Data Eng. Bull., vol. 39, no. 2, pp. 78–92, Jun. 2016.

[26] T. Dasu and J. M. Loh, ‘‘Statistical distortion: Consequences of data
cleaning,’’ Proc. PVLDB, vol. 5, no. 11, pp. 1674–1683, 2012.

[27] A. A. Leema andM. Hemalatha, ‘‘An effective and adaptive data cleaning
technique for colossal RFID data sets in healthcare,’’ WSEAS Trans. Inf.
Sci. Appl., vol. 8, no. 6, pp. 243–252, 2011.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘‘Maximum likeli-
hood from incomplete data via the em algorithm,’’ J. Roy. Stat. Soc., B
Methodol., vol. 39, no. 1, pp. 1–22, 1977.

[29] Y. Diao, K. Liu, X. Meng, X. Ye, and K. He, ‘‘A big data online cleaning
algorithm based on dynamic outlier detection,’’ in Proc. Int. Conf. Cyber-
Enabled Distrib. Comput. Knowl. Discovery (CyberC), Xi’an, China,
Sep. 2015, pp. 230–234.

[30] S. Dilling and B. J. MacVicar, ‘‘Cleaning high-frequency velocity profile
data with autoregressive moving average (ARMA) models,’’ Flow Meas.
Instrum., vol. 54, pp. 68–81, Apr. 2017.

[31] X. Ding, H. Wang, J. Su, Z. Li, J. Li, and H. Gao, ‘‘Cleanits: A data
cleaning system for industrial time series,’’ Proc. PVLDB, vol. 12, no. 12,
pp. 1786–1789, 2019.

[32] J. Dong and R. Hull, ‘‘Applying approximate order dependency to reduce
indexing space,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Orlando, FL, USA, Jun. 1982, pp. 119–127.

[33] G. A. Einicke and L. B. White, ‘‘Robust extended Kalman filter-
ing,’’ IEEE Trans. Signal Process., vol. 47, no. 9, pp. 2596–2599,
Sep. 1999.

[34] D. Endler, ‘‘Intrusion detection applying machine learning to solaris
audit data,’’ in Proc. 14th Annu. Comput. Secur. Appl. Conf. (ACSAC),
Scottsdale, AZ, USA, Dec. 1998, pp. 268–279.

[35] R. Fagin, B. Kimelfeld, and P. G. Kolaitis, ‘‘Dichotomies in the com-
plexity of preferred repairs,’’ in Proc. 34th ACM Symp. Princ. Database
Syst. (PODS), Melbourne, VIC, Australia, May/Jun. 2015, pp. 3–15.

[36] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, ‘‘Conditional functional
dependencies for capturing data inconsistencies,’’ ACM Trans. Database
Syst., vol. 33, no. 2, p. 6, 2008.

[37] W. Fan, F. Geerts, J. Li, and M. Xiong, ‘‘Discovering conditional func-
tional dependencies,’’ IEEE Trans. Knowl. Data Eng., vol. 23, no. 5,
pp. 683–698, May 2011.

[38] E. S. Gardner, Jr., ‘‘Exponential smoothing: The state of the art—Part II,’’
Int. J. Forecasting, vol. 22, no. 4, pp. 637–666, 2006.

[39] L. Getoor, N. Friedman, D. Koller, and B. Taskar, ‘‘Learning prob-
abilistic models of relational structure,’’ in Proc. 18th Int. Conf.
Mach. Learn. (ICML). Williamstown, MA, USA: Williams College,
Jun./Jul. 2001, pp. 170–177.

[40] A. K. Ghosh, A. Schwartzbard, and M. Schatz, ‘‘Learning program
behavior profiles for intrusion detection,’’ in Proc. Workshop Intru-
sion Detection Netw. Monitor., Santa Clara, CA, USA, Apr. 1999,
pp. 51–62.

[41] S. Ginsburg and R. Hull, ‘‘Order dependency in the relational model,’’
Theor. Comput. Sci., vol. 26, nos. 1–2, pp. 149–195, May 1983.

[42] S. Ginsburg and R. Hull, ‘‘Sort sets in the relational model,’’ in Proc. 2nd
ACM SIGACT-SIGMOD Symp. Princ. Database Syst., Atlanta, GA, USA,
Mar. 1983, pp. 332–339.

[43] S. Ginsburg and R. Hull, ‘‘Sort sets in the relational model,’’ J. ACM,
vol. 33, no. 3, pp. 465–488, 1986.

[44] T. Gogacz and S. Toruńczyk, ‘‘Entropy bounds for conjunctive queries
with functional dependencies,’’ in Proc. 20th Int. Conf. Database The-
ory (ICDT), Venice, Italy, Mar. 2017, pp. 15:1–15:17.

[45] Z. Goh, K.-C. Tan, and B. T. G. Tan, ‘‘Kalman-filtering speech enhance-
ment method based on a voiced-unvoiced speech model,’’ IEEE Trans.
Speech Audio Process., vol. 7, no. 5, pp. 510–524, Sep. 1999.

[46] L. Golab, H. J. Karloff, F. Korn, A. Saha, and D. Srivastava, ‘‘Sequential
dependencies,’’ Proc. PVLDB, vol. 2, no. 1, pp. 574–585, 2009.

[47] F. A. González and D. Dasgupta, ‘‘Anomaly detection using real-valued
negative selection,’’ Genetic Program. Evolvable Mach., vol. 4, no. 4,
pp. 383–403, 2003.

[48] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, ‘‘Outlier detection for
temporal data: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 9,
pp. 2250–2267, Sep. 2014.

[49] J. D. Hamilton, Time Series Analysis, vol. 2. Princeton, NJ, USA:
Princeton Univ. Press, 1994.

[50] J. M. Hellerstein, ‘‘Quantitative data cleaning for large databases,’’
UNECE, Geneva, Switzerland, Tech. Rep. 2008-02-07-41, 2008.

[51] D. J. Hill and B. S. Minsker, ‘‘Anomaly detection in streaming environ-
mental sensor data: A data-driven modeling approach,’’ Environ. Model.
Softw., vol. 25, no. 9, pp. 1014–1022, 2010.

[52] C. C. Holt, ‘‘Forecasting seasonals and trends by exponentially weighted
moving averages,’’ Int. J. Forecasting, vol. 20, no. 1, pp. 5–10,
2004.

[53] S. R. Jeffery, G. Alonso,M. J. Franklin,W. Hong, and J.Widom, ‘‘Declar-
ative support for sensor data cleaning,’’ in Proc. 4th Int. Conf. Pervasive
Comput., Dublin, Ireland, May 2006, pp. 83–100.

[54] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin, ‘‘Adaptive cleaning
for RFID data streams,’’ in Proc. 32nd Int. Conf. Very Large Data Bases,
Seoul, South Korea, Sep. 2006, pp. 163–174.

[55] C. S. Jensen and R. T. Snodgrass, ‘‘Temporal data management,’’
IEEE Trans. Knowl. Data Eng., vol. 11, no. 1, pp. 36–44,
Jan. 1999.

[56] R. H. Jones, ‘‘Exponential smoothing for multivariate time series,’’ J. Roy.
Stat. Soc., B Methodol., vol. 28, no. 1, pp. 241–251, 1966.

[57] R. E. Kalman, ‘‘A new approach to linear filtering and prediction prob-
lems,’’ Trans. ASME, D, J. Basic Eng., vol. 82, pp. 35–45, Mar. 1960.

[58] A. Karkouch, H. Mousannif, H. A. Moatassime, and T. Noël, ‘‘Data
quality in Internet of Things: A state-of-the-art survey,’’ J. Netw. Comput.
Appl., vol. 73, pp. 57–81, Sep. 2016.

[59] E. J. Keogh, S. Chu, D. M. Hart, and M. J. Pazzani, ‘‘An online algorithm
for segmenting time series,’’ in Proc. IEEE Int. Conf. Data Mining,
San Jose, CA, USA, Nov./Dec. 2001, pp. 289–296.

[60] E. J. Keogh, J. Lin, and A. W. Fu, ‘‘HOT SAX: Efficiently finding the
most unusual time series subsequence,’’ in Proc. 5th IEEE Int. Conf. Data
Mining (ICDM), Houston, TX, USA, Nov. 2005, pp. 226–233.

[61] E. J. Keogh, J. Lin, S. Lee, and H. V. Herle, ‘‘Finding the most unusual
time series subsequence: Algorithms and applications,’’ Knowl. Inf. Syst.,
vol. 11, no. 1, pp. 1–27, 2007.

[62] E. J. Keogh, S. Lonardi, and C. A. Ratanamahatana, ‘‘Towards parameter-
free data mining,’’ in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, Seattle, WA, USA, Aug. 2004, pp. 206–215.

[63] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and
Y. Manolopoulos, ‘‘Continuous monitoring of distance-based outliers
over data streams,’’ in Proc. 27th Int. Conf. Data Eng. (ICDE), Hannover,
Germany, Apr. 2011, pp. 135–146.

[64] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg, ‘‘Active-
clean: Interactive data cleaning for statistical modeling,’’ Proc. PVLDB,
vol. 9, no. 12, pp. 948–959, 2016.

[65] A. Lopatenko and L. Bravo, ‘‘Efficient approximation algorithms
for repairing inconsistent databases,’’ in Proc. 23rd Int. Conf. Data
Eng. (ICDE), Istanbul, Turkey, Apr. 2007, pp. 216–225.

[66] W. Yin, T. Yue, H. Wang, Y. Huang, and Y. Li, ‘‘Time series cleaning
under variance constraints,’’ in Proc. Int. Workshops, Database Syst. Adv.
Appl. DASFAA, BDMS, BDQM, GDMA, and SeCoP, Gold Coast, QLD,
Australia, May 2018, pp. 108–113.

[67] J. Ma and J.-F. Teng, ‘‘Predict chaotic time-series using unscented
Kalman filter,’’ in Proc. Int. Conf. Mach. Learn., vol. 2, Aug. 2004,
pp. 687–690.

[68] M. Marczak, T. Proietti, and S. Grassi, ‘‘A data-cleaning augmented
Kalman filter for robust estimation of state space models,’’ Econometrics
Statist., vol. 5, pp. 107–123, Feb. 2018.

[69] C. Mayfield, J. Neville, and S. Prabhakar, ‘‘ERACER: A database
approach for statistical inference and data cleaning,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data (SIGMOD), Indianapolis, IN, USA,
Jun. 2010, pp. 75–86.

[70] G. W. Morrison and D. H. Pike, ‘‘Kalman filtering applied to statistical
forecasting,’’ Manage. Sci., vol. 23, no. 7, pp. 768–774, 1977.

[71] J. Neville and D. Jensen, ‘‘Relational dependency networks,’’ J. Mach.
Learn. Res., vol. 8, pp. 653–692, Mar. 2007.

[72] G. Park, A. C. Rutherford, H. Sohn, and C. R. Farrar, ‘‘An outlier analysis
framework for impedance-based structural health monitoring,’’ J. Sound
Vib., vol. 286, nos. 1–2, pp. 229–250, 2005.

[73] G. L. Plett, ‘‘Extended Kalman filtering for battery management systems
of LiPB-based HEV battery packs: Part 3. State and parameter estima-
tion,’’ J. Power Sources, vol. 134, no. 2, pp. 277–292, 2004.

[74] Z. Qu, Y. Wang, C. Wang, N. Qu, and J. Yan, ‘‘A data cleaning model
for electric power big data based on spark framework,’’ Int. J. Database
Theory Appl., vol. 9, no. 3, pp. 137–150, 2016.

[75] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré, ‘‘Holoclean: Holistic data
repairs with probabilistic inference,’’ Proc. PVLDB, vol. 10, no. 11,
pp. 1190–1201, 2017.

VOLUME 8, 2020 1879



X. Wang, C. Wang: Time Series Data Cleaning: Survey

[76] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S. Ng, ‘‘MAD-GAN: Multi-
variate anomaly detection for time series data with generative adversarial
networks,’’ in Proc. 28th Int. Conf. Artif. Neural Netw. Artif. Neural Netw.
Mach. Learn. (ICANN), Munich, Germany, Sep. 2019, pp. 703–716.

[77] K. Rong and P. Bailis, ‘‘ASAP: Prioritizing attention via time series
smoothing,’’ Proc. VLDB Endowment, vol. 10, no. 11, pp. 1358–1369,
Aug. 2017.

[78] C. Shilakes and J. Tylman, ‘‘Enterprise information portals. Enterprise
software team,’’ Enterprise Inf. Portals, pp. 354–362, Oct. 1998.

[79] R. H. Shumway and D. S. Stoffer, ‘‘An approach to time series smoothing
and forecasting using the EM algorithm,’’ J. Time Ser. Anal., vol. 3, no. 4,
pp. 253–264, Jul. 1982.

[80] S. Song, Y. Cao, and J. Wang, ‘‘Cleaning timestamps with temporal
constraints,’’ Proc. PVLDB, vol. 9, no. 10, pp. 708–719, 2016.

[81] S. Song, C. Li, and X. Zhang, ‘‘Turn waste into wealth: On simultaneous
clustering and cleaning over dirty data,’’ in Proc. 21th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Sydney, NSW, Australia,
Aug. 2015, pp. 1115–1124.

[82] S. Song, A. Zhang, J. Wang, and P. S. Yu, ‘‘SCREEN: Stream
data cleaning under speed constraints,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, Melbourne, VIC, Australia, May/Jun. 2015,
pp. 827–841.

[83] A. Swami and J. M. Mendel, ‘‘ARMA parameter estimation using only
output cumulants,’’ IEEE Trans. Acoust., Speech Signal Process., vol. 38,
no. 7, pp. 1257–1265, Jul. 1990.

[84] K. H. Tae, Y. Roh, Y. H. Oh, H. Kim, and S. E.Whang, ‘‘Data cleaning for
accurate, fair, and robust models: A big data—AI integration approach,’’
in Proc. 3rd Int. Workshop Data Manage. End-to-End Mach. Learn.,
Amsterdam, The Netherlands, Jun. 2019, pp. 5:1–5:4.

[85] D. Tian, Y. Zhu, X. Duan, J. Hu, Z. Sheng, M. Chen, J. Wang, and
Y. Wang, ‘‘An effective fuel-level data cleaning and repairing method for
vehicle monitor platform,’’ IEEE Trans. Ind. Informat., vol. 15, no. 1,
pp. 410–422, Jan. 2019.

[86] R. S. Tsay, ‘‘Outliers, level shifts, and variance changes in time series,’’
J. Forecasting, vol. 7, no. 1, pp. 1–20, 1988.

[87] J. Van Lint, S. P. Hoogendoorn, and H. J. van Zuylen, ‘‘Accurate freeway
travel time prediction with state-space neural networks under missing
data,’’ Transp. Res. C, Emerg. Technol., vol. 13, nos. 5–6, pp. 347–369,
Oct./Dec. 2005.

[88] M. Volkovs, F. Chiang, J. Szlichta, and R. J. Miller, ‘‘Continuous data
cleaning,’’ in Proc. IEEE 30th Int. Conf. Data Eng. (ICDE), Chicago, IL,
USA, Mar./Apr. 2014, pp. 244–255.

[89] D. Wang, L. M. Kaplan, and T. F. Abdelzaher, ‘‘Maximum likelihood
analysis of conflicting observations in social sensing,’’ J. ACM Trans.
Sensor Netw., vol. 10, no. 2, pp. 30:1–30:27, 2014.

[90] X. Wang, X. L. Dong, and A. Meliou, ‘‘Data X-ray: A diagnostic tool
for data errors,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Melbourne, VIC, Australia, May/Jun. 2015, pp. 1231–1245.

[91] L. Wei, E. J. Keogh, and X. Xi, ‘‘Saxually explicit images: Finding
unusual shapes,’’ in Proc. 6th IEEE Int. Conf. Data Mining (ICDM),
Hong Kong, Dec. 2006, pp. 711–720.

[92] J. Wijsen, ‘‘Reasoning about qualitative trends in databases,’’ Inf. Syst.,
vol. 23, no. 7, pp. 463–487, 1998.

[93] J. Wijsen, ‘‘Trends in databases: Reasoning and mining,’’ IEEE Trans.
Knowl. Data Eng., vol. 13, no. 3, pp. 426–438, May 2001.

[94] Z. Xing, J. Pei, and P. S. Yu, ‘‘Early classification on time series,’’ Knowl.
Inf. Syst., vol. 31, no. 1, pp. 105–127, Apr. 2011.

[95] S. Xu, B. Lu, M. Baldea, T. F. Edgar, W. Wojsznis, T. Blevins, and
M. Nixon, ‘‘Data cleaning in the process industries,’’ Rev. Chem. Eng.,
vol. 31, no. 5, pp. 453–490, 2015.

[96] M. Yakout, L. Berti-Équille, and A. K. Elmagarmid, ‘‘Don’t be scared:
Use scalable automatic repairing with maximal likelihood and bounded
changes,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD),
New York, NY, USA, Jun. 2013, pp. 553–564.

[97] K. Yamanishi and J. Takeuchi, ‘‘A unifying framework for detecting
outliers and change points from non-stationary time series data,’’ in Proc.
8th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Edmonton,
AB, Canada, Jul. 2002, pp. 676–681.

[98] Z. Yu and X. Chu, ‘‘Piclean: A probabilistic and interactive data cleaning
system,’’ in Proc. Int. Conf. Manage. Data SIGMOD Conf., Amsterdam,
The Netherlands, Jun./Jul. 2019, pp. 2021–2024.

[99] A. Zhang, S. Song, and J. Wang, ‘‘Sequential data cleaning: A sta-
tistical approach,’’ in Proc. Int. Conf. Manage. Data, SIGMOD Conf.,
San Francisco, CA, USA, Jun./Jul. 2016, pp. 909–924.

[100] A. Zhang, S. Song, J. Wang, and P. S. Yu, ‘‘Time series data cleaning:
From anomaly detection to anomaly repairing,’’ Proc. VLDB Endown-
ment, vol. 10, no. 10, pp. 1046–1057, Jun. 2017.

[101] Z. Aoqian, ‘‘Research on time series data cleaning,’’ Ph.D. dissertation,
School Softw., Tsinghua Univ., Beijing, China, 2018.

[102] G. P. Zhang, ‘‘Time series forecasting using a hybrid ARIMA and neural
network model,’’ Neurocomputing, vol. 50, pp. 159–175, Jan. 2003.

[103] Z. Zhang, D. Yang, T. Zhang, Q. He, and X. Lian, ‘‘A study on the method
for cleaning and repairing the probe vehicle data,’’ IEEE Trans. Intell.
Transp. Syst., vol. 14, no. 1, pp. 419–427, Mar. 2013.

[104] J. Zhou and A. K. H. Tung, ‘‘Smiler: A semi-lazy time series prediction
system for sensors,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Melbourne, VIC, Australia, May/Jun. 2015, pp. 1871–1886.

[105] Y. Zhuang, L. Chen, X. S. Wang, and J. Lian, ‘‘A weighted moving
average-based approach for cleaning sensor data,’’ in Proc. 27th IEEE Int.
Conf. Distrib. Comput. Syst. (ICDCS), Toronto, ON, Canada, Jun. 2007,
p. 38.

[106] F. A. Gers, J. Schmidhuber, and F. Cummins, ‘‘Learning to forget:
Continual prediction with LSTM,’’ Neural Comput., vol. 12, no. 10,
pp. 2451–2471, 2000.

[107] P. Filonov, A. Lavrentyev, andA. Vorontsov, ‘‘Multivariate industrial time
series with cyber-attack simulation: Fault detection using an LSTM-based
predictive data model,’’ 2016, arXiv:1612.06676. [Online]. Available:
https://arxiv.org/abs/1612.06676

[108] P. Malhotra, V. Tv, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, ‘‘Multi-sensor prognostics using an unsupervised health index
based on LSTM encoder-decoder,’’ 2016, arXiv:1608.06154. [Online].
Available: https://arxiv.org/abs/1608.06154

[109] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, ‘‘Long short termmemory
networks for anomaly detection in time series,’’ in Proc. 23rd Eur. Symp.
Artif. Neural Netw. (ESANN), Bruges, Belgium, Apr. 2015.

[110] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, ‘‘LSTM-based encoder-decoder for multi-sensor anomaly
detection,’’ 2016, arXiv:1607.00148. [Online]. Available: https://arxiv.
org/abs/1607.00148

[111] M. Ester, H. Kriegel, J. Sander, andX. Xu, ‘‘A density-based algorithm for
discovering clusters in large spatial databases with noise,’’ in Proc. 2nd
Int. Conf. Knowl. Discovery Data Mining (KDD), Portland, OR, USA,
1996, pp. 226–231.

[112] A. Dukhovny, ‘‘Markov chains with quasitoeplitz transition matrix:
Applications,’’ Int. J. Stochastic Anal., vol. 3, no. 2, pp. 141–152, 1900.

[113] Q. Zhang and S. A. Kassam, ‘‘Finite-state Markov model for Rayleigh
fading channels,’’ IEEE Trans. Commun., vol. 47, no. 11, pp. 1688–1692,
Nov. 1999.

[114] J. Cai, ‘‘A Markov model of switching-regime ARCH,’’ J. Bus. Econ.
Stat., vol. 12, no. 3, pp. 309–316, 1994.

[115] H. Xu, J. Ding, P. Li, D. Sgandurra, and R. Wang, ‘‘An improved SMURF
scheme for cleaning RFID data,’’ Int. J. Grid Utility Comput., vol. 9, no. 2,
pp. 170–178, 2018.

[116] M. Dong, D. Yang, Y. Kuang, D. He, S. Erdal, and D. Kenski, ‘‘Pm2.5
concentration prediction using hidden semi-Markov model-based times
series data mining,’’ Expert Syst. Appl., vol. 36, no. 5, pp. 9046–9055,
2009.

[117] M. R. Hassan, B. Nath, and M. Kirley, ‘‘A fusion model of hmm, ANN
and GA for stock market forecasting,’’ Expert Syst. Appl., vol. 33, no. 1,
pp. 171–180, 2007.

[118] A. Gupta and B. Dhingra, ‘‘Stock market prediction using hidden
Markov models,’’ in Proc. Students Conf. Eng. Syst., Mar. 2012,
pp. 1–4.

[119] S. Song, Y. Sun, A. Zhang, L. Chen, and J. Wang, ‘‘Enriching data
imputation under similarity rule constraints,’’ IEEE Trans. Knowl. Data
Eng., to be published.

[120] A. Zhang, S. Song, Y. Sun, and J. Wang, ‘‘Learning individual models for
imputation,’’ in Proc. 35th IEEE Int. Conf. Data Eng. (ICDE), Macao,
China, Apr. 2019, pp. 160–171.

[121] Y. Sun, L. Peng, H. Li, and M. Sun, ‘‘Exploration on spatiotempo-
ral data repairing of parking lots based on recurrent gans,’’ in Proc.
21st Int. Conf. Intell. Transp. Syst. (ITSC), Maui, HI, USA, Nov. 2018,
pp. 467–472.

[122] C. Fang, S. Song, Z. Chen, and A. Gui, ‘‘Fine-grained fuel consumption
prediction,’’ in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage. (CIKM),
Beijing, China, Nov. 2019, pp. 2783–2791.

1880 VOLUME 8, 2020



X. Wang, C. Wang: Time Series Data Cleaning: Survey

[123] R. Corizzo, M. Ceci, and N. Japkowicz, ‘‘Anomaly detection and repair
for accurate predictions in geo-distributed big data,’’ Big Data Res.,
vol. 16, pp. 18–35, Jul. 2019.

[124] M. Milani, Z. Zheng, and F. Chiang, ‘‘Currentclean: Spatio-temporal
cleaning of stale data,’’ in Proc. 35th IEEE Int. Conf. Data Eng. (ICDE),
Macao, China, Apr. 2019, pp. 172–183.

[125] J. Wang, H. Zhang, B. Fang, X. Wang, G. Yin, and X. Yu,
‘‘Edcleaner: Data cleaning for entity information in social network,’’
in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai, China, May 2019,
pp. 1–7.

[126] Y. Huang, M. Milani, and F. Chiang, ‘‘PACAS: Privacy-aware, data
cleaning-as-a-service,’’ in Proc. IEEE Int. Conf. Big Data, Seattle, WA,
USA, Dec. 2018, pp. 1023–1030.

[127] R. Huang, Z. Chen, Z. Liu, S. Song, and J. Wang, ‘‘Tsoutlier: Explaining
outliers with uniform profiles over iot data,’’ in Proc. Int. Conf. Big Data.
Los Angeles, CA, USA: Springer, 2019.

[128] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applica-
tions: With R Examples. Cham, Switzerland: Springer, 2017.

XI WANG is currently pursuing the M.S.E. degree
with the School of Software, Tsinghua Univer-
sity, Beijing, China. His current research interests
include time series data quality and cleaning.

CHEN WANG received the B.S. and M.S. degrees
from the Department of Computer Science, Fudan
University, in 2003 and 2006, respectively. He is
currently the Chief Scientist with the National
Engineering Laboratory for Big Data Software.
Before joining Tsinghua University, he was a
Research Manager with the Information Manage-
ment Department, IBM Research, China. He has
published more than 20 articles in refereed con-
ferences and journals. He holds 15 issued and

pending patents in the U.S. and China. His research interests include the IoT
technology, stream computing, and big data systems.

VOLUME 8, 2020 1881


	INTRODUCTION
	PROBLEM STATEMENT
	PROBLEM CHALLENGE
	ORGANIZATION

	SMOOTHING BASED CLEANING ALGORITHM
	MOVING AVERAGE
	AUTOREGRESSIVE
	KALMAN FILTER MODEL
	SUMMARY AND DISCUSSION

	CONSTRAINT BASED CLEANING ALGORITHM
	ORDER DEPENDENCIES
	SEQUENTIAL DEPENDENCIES
	SPEED CONSTRAINTS
	SUMMARY AND DISCUSSION

	STATISTICS BASED CLEANING ALGORITHM
	MAXIMUM LIKELIHOOD
	MARKOV MODEL
	BINOMIAL SAMPLING
	SPATIO-TEMPORAL PROBABILISTIC MODEL
	OTHERS

	TIME SERIES ANOMALY DETECTION
	ABNORMAL POINT DETECTION
	ABNORMAL SEQUENCE DETECTION
	DENSITY-BASED SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE
	GENERATIVE ADVERSARIAL NETWORKS
	LONG SHORT-TERM MEMORY
	SUMMARY AND DISCUSSION

	TOOLS AND EVALUATION CRITERIA
	TOOLS
	EVALUATION CRITERIA

	CONCLUSION AND FUTURE DIRECTIONS
	CONCLUSION
	FUTURE DIRECTIONS

	REFERENCES
	Biographies
	XI WANG
	CHEN WANG


