
Received November 28, 2019, accepted December 12, 2019, date of publication December 25, 2019,
date of current version February 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962230

Two-Layer Reversible Data Hiding Based on
AMBTC Image With (7, 4) Hamming Code
JUAN LIN 1,2, SHAOWEI WENG 3,4, (Member, IEEE), TIANCONG ZHANG 3,
BO OU 5, AND CHIN-CHEN CHANG 6,7, (Fellow, IEEE)
1Engineering Research Center for ICH Digitalization and Multi-Source Information Fusion, (Fuqing Branch of Fujian Normal University), Fujian Province
University, Fuzhou 350300, China
2School of Electronic and Information Engineering, Fuqing Branch of Fujian Normal University, Fuzhou 350300, China
3School of Information Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
4Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, Shenzhen 518060, China
5College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
6Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40724, Taiwan
7School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

Corresponding authors: Shaowei Weng (wswweiwei@126.com) Tiancong Zhang (kushentian@163.com)

This work was supported in part by the National NSF of China under Grant 61872095, Grant 61571139, Grant 61872128, in part
International Scientific and Technological Cooperation of Guangdong Province under Grant 2019A050513012, in part by the Open Project
Program of Shenzhen Key Laboratory of Media Security under Grant ML-2018-03, in part by the Natural Science Foundation of Fujian
Province under Grant 2018J01788, and in part by the Education and Scientific Research Foundation of Fujian Province under Grant
JA15575.

ABSTRACT In Malik et al.’s method, each pixel can be embedded with log23 bits by being modified at most
1. Thus, their method achieves significant hiding capacity while maintaining good visual quality. However,
in their method, the first lower and the first upper quantization levels must be excluded from data embedding
in order to ensure reversibility. To this end, we propose a two-layer reversible data hiding (RDH) scheme in
combinationwith (7,4) Hamming code. In the 1st-layer embedding, each block can be embeddedwith 16 bits.
In the 2nd-layer embedding, each already-modified block can carry 6 bits or 12 bits by taking advantage of
(7,4) Hamming code that hides three bits by modifying only one bit. At most 2-bit additional information is
needed to help decoders to correctly extract the original lower and upper quantization levels. By means of
two-layer embedding, our method achieves higher embedding capacity while maintaining almost the same
visual quality, compared with Malik et al.’s method. Experimental results also demonstrate our effectivity.

INDEX TERMS Reversible data hiding, AMBTC (absolute moment block truncation coding),
(7, 4) hamming code, two-layer.

I. INTRODUCTION
Data hiding is a technique capable of embedding hidden
information into a cover media imperceptibly for secret com-
munication [1]. The digital images are frequently utilized
for the cover objects because they are easily processed and
provide rich redundancies for data embedding. The images
used for data embedding are named as cover images. In con-
trast, the embedded images are named as stego images. Data
hiding can be divided into reversible data hiding (RDH)
and irreversible data hiding, depending on whether the cover
image can be fully recovered or not after the hidden data
is extracted [2]. In addition to reversibility, the other two

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

important performance measures are stego image quality and
hiding capacity for an RDH method.

Data hiding methods can be applied to images in various
domains, like spatial domain, frequency domain, or com-
pression domain. The spatial domain data hiding schemes
can hide data into images by simply modifying the pixel
values. The well-known least-significant-bit (LSB) substitu-
tion method is one of the most representative spatial domain
methods [3]. The frequency domain data hiding schemes
embed data into frequency coefficients obtained by perform-
ing discrete wavelet transform (DWT) [4], or discrete cosine
transform (DCT) [5] on images. In the compression domain
data hiding schemes, secret data are usually embedded into
the compressed code of a cover image, which is created by
a lossy compression technique such as vector quantization

21534 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1121-6697
https://orcid.org/0000-0003-1037-7699
https://orcid.org/0000-0001-9151-3175
https://orcid.org/0000-0001-6936-9955
https://orcid.org/0000-0002-7319-5780

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

(VQ) [6], side match vector quantization (SMVQ) [7], joint
photographic experts group (JPEG) [8] and block truncation
coding (BTC) [9]. Compared with VQ, SMVQ and JPEG,
BTC is an effective and simple compression technique. Abso-
lute moment block truncation coding (AMBTC) [10] is an
extension of BTC, in which, an image block is compressed
into its compressed code, i.e., a trio consisting two quantiza-
tion levels and a bitmap.

Considering that AMBTC is a lossy compression tech-
nique, reversibility of the AMBTC-based methods means
that a stego image/code is restored to its AMBTC-
compressed state rather than its original state after the hidden
data are extracted. Generally speaking, the AMBTC-based
RDH methods are classified into the following four cate-
gories [11], [12]: namely 1) bitmap replacement [13]–[17],
2) histogram shifting (HS) [18]–[22], 3) prediction error
expansion (PEE) [23]–[29] and 4) compressed image based
data hiding [30]–[32]. The bitmap replacement was pro-
posed firstly by Huang et al. [15], in which each block
is classified into two classes according to the difference
between two quantization levels: smooth and complex, and
then, the bitmap of one smooth block is replaced by secret
data. Afterwards, many researchers extend bitmap replace-
ment to design various RDH algorithms so that the hid-
ing capacity is increased as much as possible on the basis
of maintaining the image quality. HS was introduced by
Lo et al. into an AMBTC-compressed image [33]. Usually,
their method can maintain good image quality but achieve
limited hiding capacity. To further improve hiding capacity,
the prediction is applied to two quantization levels, and thus,
the prediction-errors are expanded to embed data. These
three kinds of methods are carried out on the compressed
code of an AMBTC image, and therefore, they can main-
tain good image quality but cannot provide high hiding
capacity.

In 2015, Lin et al. proposed an RDH scheme based on
AMBTC-compressed images. For one embeddable block
of an AMBTC-compressed image, each pixel valued the
upper quantization level is increased by 1 or kept unaltered
to embed 1-bit data. In contrast, each pixel equal to the
lower quantization level is decreased by 1 or kept unchanged
to embed 1-bit data [30]. Thus, their method can achieve
the hiding capacity of almost 1 bit per pixel (bpp). After-
wards, Pan et al. proposed an RDH method that embeds data
into two quantization levels of each AMBTC compressed
image based on a reference matrix [31]. Compared with
Lin et al.’s method, it does not increase the hiding capacity
but improves the image quality. In 2018,Malik et al. proposed
an AMBTC-based RDH scheme using pixel value adjusting
strategy [32]. In their scheme, for a block, when the dif-
ference between two quantization levels is large, except the
first pixel valued the upper quantization and the first pixel
valued the lower quantization, each of the remaining pixels
is defined as an embeddable pixel. During data embedding,
each embeddable pixel can be changed into three different

values: plus or minus 1, or remaining unaltered, and thus it
can be embedded with log23 bits. Their scheme can achieve
significant visual quality by modifying pixels at most by 1.
Additionally, their method is also able to obtain high hiding
capacity of approximately 1.5 bpp by hiding log23-bit secret
data into every embeddable pixel.

However, for ensuring reversibility, Malik et al.’s method
needs to treat the first lower and upper quantization levels in
each block as reference pixels. These reference pixels cannot
be modified during data embedding. In this paper, in order
to overcome this drawback and further increase the embed-
ding performance, a two-layer RDH scheme in combination
with (7,4) Hamming code [34] is proposed. In the first-layer
embedding, since all the 16 pixels of a 4× 4-sized block are
involved in data embedding, this block can carry 16 bits. It is
well known that the (7,4) Hamming code has the advantage
that hides 3 bits by modifying only one bit. We make full use
of this advantage in the 2nd-layer data embedding, so that one
already-modified block in the 1st-layer data embedding still
can embed 6 bits or 12 bits. After data embedding, we need
to extract two quantization levels by the way of at most
2-bit additional information (LM). In a word, by means of
two-layer embedding, our method increases largely the hid-
ing capacity while maintaining comparable visual quality
when compared with Malik et al.’s method.
The rest of this paper is organized as follows. We will

give a brief introduction to the related works in Section II.
Section III presents the proposed scheme, followed by the
experimental results in Section IV. Finally, we give conclu-
sions in Section V.

II. RELATED WORKS
A. THE AMBTC COMPRESSION TECHNIQUE
In 1984, the AMBTC compression technique was proposed
by Lema and Mitchell, which focuses on preserving the
local characteristics of spatial image blocks [10]. Specifically,
an original image I is split into non-overlapping n× n-sized
blocks {Ii}Ni=1, whereN is the total number of blocks. For each

block Ii, the mean value µi = 1
n×n

n×n∑
j=1

Ii,j and the standard

deviation σi = 1
n×n

n×n∑
j=1
|Ii,j − µi| are calculated, where

Ii,j indicates the j-th pixel of Ii, the notation | · | represents
the absolute operation. The lower mean value Li is calcu-
lated by averaging the pixels of Ii smaller than µi, while
the higher mean value Hi is computed by averaging the
pixels of Ii larger than or equal to µi. Subsequently, Bi,j is
marked by 1 if Ii,j < µi; otherwise, Bi,j is marked by 0,
where Bi,j denotes the j-th bit of the bitmap Bi. Therefore,
a trio (Hi,Li,Bi) is used to represent the AMBTC compressed
code of block Ii,j. The reconstruction of AMBTC codes is
simple. We use the notation Ri to denote the reconstructed
block from the trio (Hi,Li,Bi). If Bi,j = 1, then Ri,j = Hi;
otherwise, Ri,j = Li, where Ri,j is the j-th pixel of Ri.

VOLUME 8, 2020 21535

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

FIGURE 1. A simple example of the data embedding phase.

An example is given to illustrate the compression and
reconstruction processes of the AMBTC compression tech-
nique. Since n × n is set 4 × 4 in our proposed RDH
scheme, the size of block Ii used in Fig. 1 is also 4 × 4.
Suppose that Ii,j =[162, 157, 163, 161;162, 157, 163, 161;
162, 157, 163, 161; 162, 157, 163, 161]. The mean value µi
is calculated as 160.75, and therefore, Li = 157, Hi = 162,
Bi = [1011;1011;1011;1011]. The reconstructed image
block Ri =[162, 157, 162, 162; 162, 157, 162, 162; 162,
157, 162, 162; 162, 157, 162, 162] is generated by replac-
ing the ‘0’ and ‘1’ in Bi with Li = 157 and Hi = 162,
respectively.

B. (7, 4) HAMMING CODE
Since the (7, 4) Hamming code [34] was first proposed by
Richard Hamming in 1950 as a linear error correction code,
it has beenwidely used in data hiding as an efficient steganog-
raphy method to achieve satisfactory image visual quality.
The advantage of the (7, 4) Hamming code is that it can detect
and correct 1 error bit for one code composed of 4 original
bits and 3 parity check bits with the help of the parity check
matrix.

Specifically, the four original bits d1, d2, d3, d4 are used to
yield three parity check bits p1, p2, p3, by multiplying with
the code generator matrix G of the (7, 4) Hamming code.
Therefore, one code C with size of 7 is formed by combining
4 original bits with 3 parity bits. The detailed procedure can
be represented by

C = d × G

= (d1, d2, d3, d4)×


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1


= (p1, p2, d1, p3, d2, d3, d4) . (1)

And, three parity check bits p1, p2, p3 can be obtained by
the following Eq. (2).

p1 = d1 ⊕ d2 ⊕ d4,

p2 = d1 ⊕ d3 ⊕ d4,

p3 = d2 ⊕ d3 ⊕ d4, (2)

where ⊕ is the exclusive-or operation.
If the original four bits (d1, d2, d3, d4) = (0101)2, then

three parity check bits are (p1, p2, p3) = (010)2. Therefore,
C = (0100101)2.
On the decoding side, the receiver can use the same parity

check matrix H as in data embedding to detect and correct
whether the message C has been tampered or not. Assuming
the received message is R, Eq. (3) is utilized to judge whether
the R is tampered or not by the value of z.

z = H × RT , (3)

where z is called the syndrome vector. Specifically, z = 0
indicates the R is not tampered, i.e., R = C . Otherwise, R is
tampered. Taking C = (0100101)2 for example, if the fifth
bit of C is flipped, then R=(0100001)2. We can calculate
z = (101)2 = 5 using Eq. (3). z 6= 0 implies that one
error bit occurs in the fifth bit of R, and therefore, the original
data can be recovered by flipping the fifth bit of R. Finally,
C = (0100001)2.

C. MATRIX CODING [35]
The main idea of matrix coding is described as follows.
To begin with, we use a pseudo-random number generator
to generate a decimal array S which is used to represent
the secret data, i.e., S =

{
sj|j = 1, 2, · · · , n

}
, where sj is

used to denote the j-th element of the secret data S, and
sj ∈ {0, 1, · · · , 7}. For the simplicity of description, we use s
to replace sj by ignoring the subscript j of sj in the rest of
this paper. According to the criterion of (7, 4) Hamming
code mentioned in the Section II-B, we collect seven LSBs
of n original pixels to form a 7-bit binary number x and
embed s into x to generate y by keeping x unaltered or only
flipping one bit of x, where x and y are used to denote
the original and marked 7-bit binary numbers, respectively,
and s ∈ {0, 1, · · · , 7}. According to the description above,
the advantage of the matrix coding lies in the fact that it can
embed 3 bits in x by at most changing one bit of x. After
embedding, all the bits of y are appended to the LSBs of n
original pixels to form the corresponding stego pixels. On the
decoding side, seven LSBs of n stego pixels are extracted to
construct y, and then s is extracted via the following equation:

s = conv
(
mod

(
H × yT , 2

))
10
, (4)

where the superscript T represents the transpose opera-
tion, mod (·, 2) is the modulo 2 operation which is used to
obtain 3-bit binary secret data, the notation conv (·) is a
function used to convert numbers from binary representation
to decimal representation.

21536 VOLUME 8, 2020

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

If n = 7, then the matrix coding can achieve satisfactory
embedding performance because only one LSB of seven
pixels are modified to embed 3 bits. However, n 6= 7 may
lead to large modifications for some original pixel. Taking
n = 3 for example, suppose that x is generated by extracting
the 2 LSBs (i.e., the 2nd and 1st bits) of the first pixel, two
LSBs (i.e., the 2nd and 1st bits) of the second pixel and three
bits (i.e., the 3rd, 2nd and 1st bits) of the third pixel. If the
3rd bit of the third pixel is flipped during data embedding,
the embedding distortion for the third pixel is unacceptable.

III. THE PROPOSED SCHEME
In this paper, we propose a two-layer RDH method based
on (7,4) Hamming code for AMBTC compressed images.

It is mainly composed of two parts: data embedding phase,
data extraction and image recovery phase. In the data embed-
ding phase, the embedding method has two layers. The first
layer is based on Lin et al.’s method. The second layer
is based on matrix embedding with (7,4) Hamming code.
In order to restore the original Hi and Li, we need a location
map to record some multi-solution cases. During the extract
phase, we use exclusionmethods to restore the originalHi and
Li and extract confidential messages. The embeddingmethod,
6 types of embedded block and an example of embedding
phase are described in Section III-A, the extract method and
its example are described in Section III-B.

A. DATA EMBEDDING PHASE
The data embedding phase is composed of two-layer data
embedding. An original grayscale image I of sizeWI ×HI is
separated into non-overlapping blocks {I }Ni=1 of size 4×4, and
the AMBTC code of block Ii is denoted as a trio (Li,Hi,Bi),
where WI and HI are used to indicate the width and height
of I , respectively, and N is the total number of blocks.
Let Ri be the AMBTC-compressed block reconstructed by
(Li,Hi,Bi). Here, the 1st-layer and 2nd-layer embedding will
be separately introduced in the following two subsections.

1) THE 1ST-LAYER DATA EMBEDDING

Input: AMBTC-compressed image block Ri, secret data S+
used in the 1st-layer embedding.
Output: Stego image R′i.

If s ∈ S+ and s == 0
R′i,j = Ri,j;

elseif s ∈ S+ and s == 1
if Ri,j == Hi

R′i,j = Hi + 1;
elseif Ri,j == Li

R′i,j = Li − 1;
end

end
where Ri,j and R′i,j denote the j-th original and stego pixels of
block Ri after the 1st-layer embedding, respectively.

2) THE 2ND-LAYER DATA EMBEDDING
The 2nd-layer data embedding based on matrix embed-
ding (7, 4) Hamming code is performed after the 1st-layer
data embedding. The matrix embedding (7, 4) makes an
AMBTC-compressed block capable of carrying 12 bits
or 6 bits according to the local complexity. The key idea of
the matrix embedding (7,4) is described below: 3-bit secret
data s to be embedded from S− is embedded into carrier x by
using Eq. (5), where s ∈ {0, 1} and x is a 7-bit binary number,
while are obtained from the bitmap Bi.

z = s⊕ H × x,

y = Emd(x, s) = x ⊕ F(z), (5)

where F(z) is the coset leader of which syndrome is z,
Emd(·) represents the embedding process. F(z) = ek , where
ek indicates the k th unit vector of size 7 with the k th position
being 1 and k ∈ {0, 1, · · · , 7}. For example, e3 is the third
unit vector whose third position is 1, i.e., e3 = [0 0 1 0 0 0 0].
In contrast, e0 = [0 0 0 0 0 0 0] is a supplementary definition.
After a preliminary understanding of the matrix embed-

ding (7, 4), the 2nd-layer embedding is classified into three
cases according to Hi − Li: Hi − Li > 2 and Hi − Li ≤ Th,
Hi − Li > Th, Hi − Li ≤ 2.
Case 1: If Hi − Li > 2 and Hi − Li ≤ Th, the total six bits

can be hidden into Bi, where Th is a predefined threshold,
and usually, Th ≥ 4 is set. Specifically, the first three bits
can be hidden in the first eight pixels of Bi. The last three
secret bits can be hidden in the last eight pixels of Bi. To begin
with, we select the first seven bits of Bi to form x. Afterwards,
z is computed by Eq. (5). Since F(z) has 8 cases, each case
corresponds to sequentially one pixel located in one of eight
positions: (i, 1), · · · , (i, 4), (i, 5), · · · , (i, 8). When F(z) = ek ,
then the corresponding pixel Ri,k+1 is modified as below:

R′′i,k+1 =


R′i,k+1 + 1 if R′i,k+1 = Hi + 1,
R′i,k+1 − 1 if R′i,k+1 = Hi,

R′i,k+1 + 1 if R′i,k+1 = Li,

R′i,k+1 − 1 if R′i,k+1 = Li − 1,

(6)

where k = 0, 1, · · · , 7 and R′′i,j denote the j-th pixel of
block Ri after the 2nd-layer embedding.
The last eight pixels of Ri can be encoded using the similar

manner, but the detailed steps for this are ignored.
Case 2: If Hi − Li > Th, three bits are embedded into

four pixels in each row, and therefore, the total 12 bits can
be hidden into a block. Eight bits are obtained by extracting
four bits of each row of Bi twice, and then, the first seven bits
are used to construct x. By means of x and s, z is calculated
via Eq. (5), and further, F(z) is generated. If F(z) = ek and k
is set one of 0, 1, 2, 3, the corresponding pixel Ri,k+1 must be
increased or decreased by 1 according to Eq. (6). If F(z) = ek
and k is set one of 4, 5, 6, 7, the corresponding pixel Ri,k−3

VOLUME 8, 2020 21537

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

TABLE 1. Six classes of blocks.

must be increased or decreased by 2 as follows:

R′′i,k−3 =


R′i,k−3 + 2 if R′i,k−3 = Hi + 1,
R′i,k−3 − 2 if R′i,k−3 = Hi,

R′i,k−3 + 2 if R′i,k−3 = Li,

R′i,k−3 − 2 if R′i,k−3 = Li − 1,

(7)

where k = 4, 5, · · · , 7.
Case 3: For a block satisfyingHi−Li ≤ 2, for reversibility,

it must be excluded from the 2nd-layer data embedding.

3) THE EMBEDDING PROCESS OF TWO-LAYER DATA
EMBEDDING
For recovering the AMBTC compressed image correctly,
we need to determine Hi and Li before data extraction and
image recovery by judging whether Hi and Li satisfy one of
the following conditions or not: Hi − Li > Th or Hi − Li ≥ 2
and Hi − Li ≤ Th. However, for some blocks, there is more

than one solution satisfying the above conditions. Before
considering the number of solutions, all blocks are classified
into three classes according to whether they are used for data
embedding or not: unused blocks due toHi = Li, blocks only
used for single layer embedding, and blocks available for two-
layer embedding. After considering the number of solutions,
all the blocks must be classified into six classes, as shown
in Table 1, where Nv,i is used to denote the number of pixel
values with different values in Ri. The detailed embedding
process for each class is described as follows:

Input: Original gray-scale image I , secret data S+ and S−,
predefined threshold Th.
Output: AMBTC-compressed stego image R′′.

Step 1: The original image I is partitioned into
4× 4-sized non-overlapped blocks {Ii}Ni=1, and then,
each block Ii is compressed using AMBTC to form

21538 VOLUME 8, 2020

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

its compressed trio, i.e., (Hi,Li,Bi), where i =
{1, 2, · · · ,N }, and N is the total number of blocks.
Ri is used for representing the reconstructed block
from the trio (Hi,Li,Bi).

Step 2: Scan {Ri}Ni=1 according to the raster scanning order.
The following three steps are performed to classify
the scanned block into three classes:
(2.a) Referring to Table 1, if Ri satisfies one the

following three conditions: Hi = Li, Hi = 255, and
Li = 0, it is deemed as an unused block, that is,
it is not used for data embedding. Note that Hi = Li
implies Nv,i = 0. Since an unused block can be
easily identified by judging whether it satisfies the
condition Hi = Li or not, LM ,i is not required to
record this block.
(2.b) If 0 < Hi − Li ≤ 2, and Hi ≤ 254, Li ≥ 1,

the LMi−1 of the previously-processed block Ri−1 is
checked. If LMi−1 = ∅, then 16 bits are all extracted
from S+. Otherwise, suppose the length of LMi−1
is ln, and then, 16 bits are formed by concatenating
LMi−1 and 16 − ln bits from secret data S+. Finally
16 bits are embedded into Ri following the Eq.(8):

R′i,j =


Ri,j + 1, if s = 1, Ri,j = Hi,
Ri,j − 1, if s = 1, Ri,j = Li,
Ri,j, if s = 0, Ri,j = Hi,
Ri,j, if s = 0, Ri,j = Li,

(8)

where s ∈ {0, 1}.
(2.b.1) After the 1st-layer embedding, if Nv,i is

3 corresponding to the fourth line of Table 1, there
exists two combinations of (Hi, Li) satisfying 0 <
Hi − Li ≤ 2, and Hi ≤ 254, Li ≥ 1. To this end, we
need 1 bit LM ,i to record these two solutions. Note
that LM ,i must be embedded into the next block Ri+1.

(2.b.2) After the 1st-layer embedding, if Nv,i is
4 corresponding to the third line of Table 1, we can
obtain the original Hi and Li during data extraction
without need of any additional information.

Step 3: If Hi − Li > 2, Hi ≤ 253 and Li ≥ 2, the 1st-layer
embedding is performed according to the same way
as Step (2.b). The 2nd-layer embedding is described
in detail below:
(3.a) If Hi − Li ≤ Th, the total six bits can be

hidden into Ri, and usually, Th ≥ 4 is set.
Referring to Section III-A.2, x is formed by

extracting the first seven bits of Bi according to the
raster scan order. After obtaining x, F(z) = ek is
generated via Eq. (5), where k ∈ {0, 1, 2, · · · , 7}.
Correspondingly, Ri,k is modified to embed 3-bit
data from S− according to Eq. (6). Similarly, the last
eight pixels of Ri can also be embedded with 3-bit
data, but the detailed embedding process for this is
omitted.

After data embedding, if the number of pixels
unequal to Hi, Li, Hi + 1, Li − 1 is 2 (referring to
the sixth line of Table (1), then go to Step (3.c).

(3.b) IfHi−Li > Th, the total 12 bits can be hidden
into Ri. Specifically, x is obtained by extracting each
row of Bi twice. Since F(z) has 8 cases while each
row only contains four pixels, each pixel corresponds
to two cases. That is to say, Ri,k+1 corresponds to ek
and ek+4, where k belongs to {0, 1, 2, 3}. If Ri,k+1
corresponds to ek , then the detailed modification to
Ri,k+1 refers to Eq. (6). Otherwise, Ri,k+1 is modi-
fied via Eq. (7). The similar manner is also applied
to process the remaining three rows.
After the 2nd-layer data embedding, if the number of
pixels unequal to Hi, Li, Hi+1, Li−1 is 4 (referring
to the seventh line of Table (1), then go to Step (3.c).

(3.c) After the 2nd-layer data embedding,
we know that min{R′′i,j}

16
j=1 ∈ {Li − 3,Li − 2,Li −

1,Li,Li+1,Li+2} andmax{R′′i,j}
16
j=1 ∈ {Hi−2,Hi−

1,Hi,Hi+1,Hi+2,Hi+3}. Therefore, all the com-
binations of (Hi,Li) are generated depending on Li ∈
SL = {min{R′i,j}

16
j=1 + m1} (m1 ∈ {−2,−1, · · · , 3})

and Hi ∈ SH = {max{R′i,j}
16
j=1 + m2} (m2 ∈

{−3,−2, · · · , 2}).
All candidate quantization pairs (Hi, Li) satisfying
Hi − Li > 2, Hi − Li ≤ Th, and Hi ≤ 253, Li ≥ 2,
are selected from SL and SH . For a candidate pair
(Hi, Li), when the number of pixels unequal to Hi,
Li, Hi + 1, Li − 1 is 2 and these two pixels are not
located in the same row, this pair (Hi, Li) is defined
as one solution satisfyingHi−Li > 2,Hi−Li ≤ Th,
and Hi ≤ 253, Li ≥ 2.
All candidate quantization pairs (Hi, Li) satisfying
Hi−Li > Th,Hi ≤ 252 and Li ≥ 3, are selected from
SL and SH . For a candidate pair (Hi, Li), when the
number of pixels unequal toHi, Li,Hi+1, Li−1 is 4
and these four pixels are not located in the same row,
this pair (Hi, Li) is treated as one solution satisfying
Hi − Li > Th, Hi ≤ 252 and Li ≥ 3.
If there is only a solution, LM ,i is not required, and
thus it is an empty set. If the number of solutions
is 2, LM ,i ∈ {0, 1} is used to identify these two
solutions. If the number of solutions is larger than 2,
two bits LM ,i ∈ {00, 01, 10, 11} is used to determine
these solutions. And LM ,i that points out the correct
solution is hidden into the next block.

Step 4: For one block, if its pixels are all not the same and
Hi − Li > 1, then it is termed ‘‘embaddable block’’.
For the last embeddable block, it can only be used
for the 1st-layer embedding and the first Hi, Li can
be used for data embedding, while the each of the
remaining 14 pixels can embed 1-bit data according
to Eq. (8). The purpose of doing so is to ensure that
this block does not generate LM ,i. Repeat the above
steps, until all the embeddable block are processed.

VOLUME 8, 2020 21539

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

4) A SIMPLE EXAMPLE
The following is a simple example given in Fig. 1 to show
the embedding process of a block Ri with Hi − Li > Th.
Taking the block Ri with Hi = 114, Li = 55, Bi =
[1 0 0 1; 1 1 0 0; 0 1 0 0; 0 1 1 0] for example, suppose
that the to-be-embedded bitstream used for the 1st-layer
embedding is S+ = 11100010101010102 and let the to-be-
embedded secret data used for the 2nd-layer embedding be
S− = 0010110000012, where the subscript 2 represents the
binary bitstream. By means of Hi, Li and Bi, we know Ri =
[114 55 55 114; 114 114 55 55; 55 114 55 55; 55 114 114 55].
After S+ is embedded intoR′ in the 1st-layer embedding,R′i=
[115 55 55 114; 114 114 54 55; 54 114 54 55; 54 114 115 55].
Before carrying out the 2nd-layer data embedding, each

row of Bi is repeated twice to form a new matrix of size
4 × 8. The first seven bits of each row is taken as x. For
example, for the first row of Bi, it is obviously observed that
x = (1001100)2. s is used to indicate the first 3 bits (001)2 of
S−. z is computed below:

z = s⊕ Hx

=

 0
0
1

⊕
 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




1
0
0
1
1
0
0


=

 0
0
1

⊕
 0
0
0

 =
 0
0
1

 . (9)

Once z is known, F(z) = e1 can be gained. SinceHi−Li > Th
holds and F(z) = e1, the second pixel R′(i, 2) valued 54 is
modified so as to embed 3-bit data s according to Eq. (6).
That is, R′′(i, 2) = 53. The similar manner is used for the
remaining three rows of B. After each row of Bi is processed,
the final stego block R′′ is generated.

B. DATA EXTRACTION AND IMAGE RECOVERY PHASE
The stego image R′′i is split into 4 × 4-sized non-overlapped
image blocks according to the same order as data embed-
ding. The extraction procedure is performed according to the
reverse order as data embedding (i.e., the order from the last
block to the first block).

Input: Stego image R′′.
Output: AMBTC-compressed image R, secret data S+
and S−.

Step 1: Check whether each block is an unused block or not
according to the reverse order as in the embedding
process. One unused block has one of the following
three characteristics: Hc = Lc or Hc = 255 or
Hc = 0, where c ∈ N ,N − 1, · · · , 2, 1. That is,

it can be easily identified depending on the above
three characteristics. Since it is kept unaltered during
data embedding, Rc = R′′c .

Step 2: Find the firstly-used block, and determine the first
Hc and the first Lc of this block. Since the first Hc
and the first Lc are not changed during data embed-
ding, one embedded bit is extracted from each of the
remaining 14 pixels in Rc as follows:

s =

{
R′′c,j − Hc, if R′c,j ≥ Hc,

Lc − R′′c,j, if R′c,j ≤ Lc.
(10)

After 14 bits are extracted, the original pixels are
retrieved as below:

R′c,j =


R′c,j − 1, if s = 1,R′c,j = Hc + 1,

R′c,j + 1, if s = 1,R′c,j = Lc − 1,

R′c,j, if s = 0,R′c,j = Hc,

R′c,j, if s = 0,R′c,j = Lc.

(11)

The extracted 14 bits are composed of Th (8 bits),
Lm,c−1 and secret bits. If ns,c−1 in the next block
is 1, the size of Lm,c−1 is zero, where ns,c−1 denotes
the number of solutions in Rc−1. Otherwise, we can
calculate the length of Lm,c−1 = dlog2ns,c−1e.

Step 3: Calculate Nv,i of R′′c , and the detailed block restora-
tion is divided into two cases according to Nv,i:
Case 1: When Nv,c is 2, there are four possible
pairs, i.e., (Hc,Lc), (Hc + 1,Lc), (Hc,Lc − 1) and
(Hc+1,Lc−1). Therefore, 2 bits LM ,c extracted from
the secret data of the previously-retrieved block are
used to identify the correct solution, i.e., (Hc, Lc).
Since this block is embedded only once, we can
easily extract the embedded secret data from R′′c
according to Eq.(10). After 16 bits are extracted,
the original pixels are retrieved according to Eq.(11).
It is worthy mentioning that besides the firstly-used
block, for each remaining block, the extracted 16 bits
are composed of Lm,c−1 and secret bits.
Case 2: When Nv,c is greater than 2, Lc ∈

{min{R′c,j}
16
j=1 + m1} (m1{−2,−1, · · · , 3} and Hc ∈

{max{R′c,j}
16
j=1 +m2} (m2{−3,−2, · · · , 2}). All can-

didate pairs (Hc,Lc) satisfying the conditions of
Hc > Lc are selected. it is divided into three sub-
cases according toNu,c, whereNu,c denotes the num-
ber of pixels unequal to Hc, Lc, Hc + 1, and Lc − 1:
Case 2.1: If Nu,c = 0 and Nv,c = 4, the solution is
unique, and we can directly determine this solution
(Hc,Lc). Since the solution is unique, Lm,c is not
required; if Nu,c = 0 and Nv,c = 3, the num-
ber of solutions is 2, and thus 1 bit LM ,c extracted
from the secret data of the previously-retrieved block
is required to identify the correct solution. After
(Hc,Lc) is known, the detailed data extraction and
image restoration is the same as that in Case 1 due to
that this block is embedded only once.

21540 VOLUME 8, 2020

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

Case 2.2: If Nu,c = 2 and these two pixels are not
located in the same row. Then, 2-bit Lm,c extracted
from the previously-retrieved block is used to iden-
tify the correct solution. Since this block is embed-
ded twice, we need to firstly extract the embedded
16 bits during the 1st-layer data embedding bymeans
of (Hc,Lc).

s =


1, if R′′c,j = Hc + 1 or R′′c,j = Hc + 2,

1, if R′′c,j = Lc − 2 or R′′c,j = Lc − 1,

0, if R′′c,j = Hc or R′′c,j = Hc − 1,

0, if R′′c,j = Lc or R′′c,j = Lc + 1,

(12)

where j = {1, 2, . . . , 16}. The extracted 16 bits from
the 1st-layer embedding are composed of Lm,c−1 and
secret bits.
During the 2nd-layer embedding, Bc is firstly com-
puted as follows:

Bc =

{
1, if R′′c,j ≥ Hc − 1,

0, if R′′c,j ≤ Lc + 1.
(13)

Then, the first 7 bit of Bi are used to form x =
(Bc,1,Bc,2, . . . ,Bc,7). For the first eight pixels of
R′′c,j, assume k is the position of the changed pixels
and k ∈ {1, 2, · · · , 8}. We scan each of the first eight
pixels and find the pixel whose value is equal to one
of four values {Hc+2,Hc−1, Lc+1, Lc−2}. Thus,
the location of this pixel is k .
Next, the 7-bit number y obtained by modifying x
during data embedding (see Eq. (5) for details) is
calculated as follow:

y=

{
x, if k = 1,
(x1, · · · , 1−xk−1, · · · , x7), if k > 1.

(14)

The first 3 bits s are obtained by the formula s =
H × yT , where T denotes the transpose operation.
The last 3 bits can be extracted from the last 8 bits of
Bc with the same manner as that of the first 3 bits.
After all embedded data are extracted, the original
pixels are retrieved as below:

Rc,j =

{
Hc, if R′′c,j ≥ Hc − 1,

Lc, if R′′c,j ≤ Lc + 1.
(15)

Case 2.3: If Nu,c = 4 and these four pixels are not
in the same row. Then, 2-bit Lm,c extracted from
the previous block are used to identify the correct
solution. Since this block is performed twice, we can
extract the secret data applied in the 1st-layer embed-
ding according to the following equation:

s =


1, if R′′c,j ≥ Hc + 1,

1, if R′′c,j ≤ Lc − 1,

0, if R′′c,j ≥ Hc − 2,R′′c,j ≤ Hc,

0, if R′′c,j ≥ Lc,R
′′
c,j ≤ Lc + 2.

(16)

Afterwards, during the 2nd-layer extraction, Bc,j is
computed as follows:

Bc,j =

{
1, if R′′c,j ≥ Hc − 2,

0, if R′′c,j ≤ Lc + 2.
(17)

Then, x is formed by extracting the first row of Bc
twice, i.e., x = (Bc,1, . . . ,Bc,4,Bc,1, . . . ,Bc,4).
Assume k is the position of one changed pixel after
the 2nd-layer embedding, and then k is

k=

{
j1, if R′′c,j1 ∈ {Hc + 2,Hc − 1,Lc + 1,Lc − 2},

j1+4, if R′′c,j1 ∈{Hc+3,Hc−2,Lc+2,Lc−3},

(18)

where j1 = {1, 2, 3, 4}.
The y is computed as follow:

y =

{
x, if k = 1,
(x1, . . . , 1− xk−1, . . . , x7), if k > 1.

(19)

The first 3 bits is obtained by the formula s = HyT .
The remaining 9 bits can be obtained by the remain-
ing three rows of Bi with the same manner. After all
the data are extracted, the original pixels are retrieved
as below:

Rc,j =

{
Hc, if R′′c,j ≥ Hc − 2,

Lc, if R′′c,j ≤ Lc + 2.
(20)

Step 4: Repeat Steps 2 to 3, until all blocks are processed.
The secret bits extracted from each block used
for data embedding during the 1st-layer embedding
are concentrated to form S+, while all secret bits
are extracted during the 2nd-layer embedding to
form S−.

We continue the example shown in Fig.2 to illustrate
the process of data extraction and image recovery. Assume
one stego block R′′c = [115 53 54 114; 114 114 54 56;
52 114 54 55; 52 114 54 55; 54 113 115 55]. The maximum
and the minimum of this stego block are 115 and 52, respec-
tively. Due to Lc ∈ {min{R′′ij} + m1} and Hc ∈ {max{R′′ij} +
m2}, in this example, Lc ∈ {50, 51, · · · , 55} and Hc ∈
{112, 113, · · · , 117}, where m1 ∈ {−2,−1, · · · , 3} and
m2 ∈ {−3,−2, · · · , 2}. All the combinations of (Hc,Lc) con-
struct the solution space of (Hc,Lc) which satisfies the con-
ditions that Nu,c = 4 and the pixels unequal to Hc,Lc,Hc +
1,Lc−1 are not in the same row. For simplicity, we take Lc =
55 and Hc = 114 as an example to explain the extraction
process. Since Lc= 55, Lc−1 = 54. In contrast,Hc+1 = 115
when Hc = 114. For the first row of R′′c , except 54, 114
and 115, only 53 equal to Lc − 2 satisfies the requirement.
Similarly, 56 equal to Lc + 1 in the second row, 52 equal
to Lc − 3 in the third row, and 113 equal to Hc − 1 in the
fourth row are selected. Therefore, the total number of pixels
unequal toHc,Hc+1, Lc, Lc−1 is 4, i.e., Nu,c = 4, implying
that the combination of (Lc = 55, Hc = 114) is only one
solution satisfying the condition of Hc − Lc > Th. Finally,

VOLUME 8, 2020 21541

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

FIGURE 2. An example of data extraction and AMBTC image recovery
phase.

after each possible combination of (Lc,Hc) is traversed,
Hc and Lc can be determined if the number of solutions is
one.

By Eq. (20), we know that the changed pixel of the first
row is 53. According to the same manner, the changed pixels
of the 2nd, 3th and 4th rows are 56, 52 and 113, respec-
tively. Therefore, four changed positions 1, 3, 4 and 1 can be
obtained. Then, the corresponding bits of the double bitmaps
is changed based on Eq. (17). Next, S− are extracted by the
formula s = H × yT , and S+ = (110001010101010)2 can
be easily obtained via Eq. (20). Assume Lm,c−1 = 1, and
thus, the number of hidden bits in S+ is 16 − 1 = 15.
Finally, according to Eq. (20), the reconstructed block
Rc,j = [114, 55, 55, 114; 114, 114, 55, 55; 55, 114, 55, 55;
55, 114, 114, 55] is obtained.

IV. EXPERIMENTAL RESULTS
In this section, we performed a series of experiments
and analysed to demonstrate the performance of our pro-
posed method in embedding capacity and visual quality of
stego images. All of the experiments were implemented
in MATLAB R2014b on a PC with Intelr Core (TM)
i7-8750H CPU @2.20 GHz, 16 GB RAM. The 15 clas-
sic grayscale images with sizes of 512 × 512 shown
in Fig. 3, i.e., ‘‘Lena’’, ‘‘F16’’, ‘‘Barbara’’, ‘‘Goldhill’’,
‘‘Wine’’, ‘‘Bird’’, ‘‘Zelda’’,‘‘Boat’’, ‘‘Baboon’’,‘‘Peppers’’,
‘‘Man’’, ‘‘House’’, ‘‘Couple’’, ‘‘Lake’’ and ‘‘Elaine’’, are
selected from the USC-SIPI data [36] and served as the test
images. The secret data S+ and S− are randomly generated
by a pseudo random number. The two factors including peak
signal to noise radio (PSNR) and pure hiding capacity (HP)
are used to evaluate the performance between our scheme and
compared methods. PSNR is defined as follows:

PSNR = 10log10(
2552

MSE
), (21)

TABLE 2. Performance of our proposed scheme.

where

MSE =
1

HI ×WI

HI∑
i=1

WI∑
j=1

(Ii,j − R′′i,j)
2, (22)

Ii,j and R′′i,j are the pixels located at the (i, j) of the original
image I andAMBTC compressed image/stego imageR′′ after
two-layer embedding, respectively.

Besides HP, the bit per bit (bpp) (i.e., the ratio of HP to the
size of a cover image in Eq. (23) is also used to measure the
amount of the hidden bits in a cover image.

bpp =
HP

WI × HI
. (23)

A. THE PERFORMANCE OF OUR PROPOSED SCHEME
The performances of our proposed scheme for 15 test
images are shown in Table 2 when Th = 4 is set,
which includes PSNRA (i.e., the PSNR between the original
image I and the AMBTC-compressed image R), PSNRO
(i.e., the PSNR between the original image I and the stego
AMBTC-compressed image R′′), the total hiding capacity
(i.e., HP plus Lm) provided by an AMBTC-compressed
image, Lm and HP, where Lm = |

∑N
i=1 Lm,i| represents the

sum of all location bits.
From Table 2, we know that PSNRO is very close to

PSNRA. The average difference between PSNRA and PSNRO
is 31.63 − 31.49 = 0.14 dB, implying that our data
embedding operation maintains satisfactory image quality.
With respect to the hiding capacity, since Lm must be
required in our scheme, larger Lm means smaller HP since
the total hiding capacity for an AMBTC-compressed image
is fixed. Lm ranges from 1126 to 1742, with the average
of 1332, that is to say, only eight percent of N blocks are
required to be marked while more than ninety-two percent of
N blocks can be restored without the need of Lm, where

21542 VOLUME 8, 2020

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

FIGURE 3. 15 test images.

N = 512 × 512/(4 × 4) = 16384. For individual images
like F16, House and Wine, they have relatively low HP due
to their local complexity. While all other images have the HP
of over 420,000 bits. One of the most representative image
is ‘‘Baboon’’, because it has the richest textures. it has the
highest HP of 456,950 bits.

B. PERFORMANCE COMPARISON
To further illustrate the performance of the proposed
scheme, five AMBTC-based hiding schemes are used
to compare with the proposed scheme, which includes

Malik et al.’s method [32], Chen et al.’s method [37],
Lin et al.’s method [19], Ou and Sun’s method [14] and
Kim et al.’s method [38]. Fig. 4 shows performance compari-
son under different Th between our scheme and five compared
schemes for six test images including Lena, House, Boat,
Baboon, Peppers and Elaine, where Th ∈ {4, 5, . . . , 30}.
Table 3 gives the capacity comparison of six compared meth-
ods under approximately the same PSNR. Fig. 5 shows the
performance comparison between our method and four com-
pared methods for the BOSS data set, which contains 10,000
images [39].

VOLUME 8, 2020 21543

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

FIGURE 4. Performance comparisons between our scheme and five compared schemes for six test images.

Similar to our 1st-layer embedding, both Chen et al.’s
and Lin et al.’s methods can embed 1 bit into each
pixel. Specifically, one pixel valued Hi is embedded with

1-bit by remaining changed or being increased by 1,
while one pixel valued Li is embedded with 1-bit by
remaining changed or being decreased by 1. Different from

21544 VOLUME 8, 2020

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

FIGURE 5. Performance comparisons between our method and four compared methods for the BOSS data set.

Lin et al.’s method, Chen et al.’s method replaces Hi with
AVG + VAR and Li with AVG − VAR, where AVG and
VAR represent the mean value and standard deviation of an

AMBTC-compressed block, respectively. Due to the replace-
ment of Hi with AVG + VAR (and Li with AVG − VAR),
the PSNR induced by Chen et al.’s method is lower than

VOLUME 8, 2020 21545

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

TABLE 3. Performance of the proposed scheme with the PSNR and the HP by comparing with other four schemes for 6 test images.

that of Lin et al.’s method. Table 3 indicates that under
the same HP, the PSNR values of Chen et al.’s method are
better than that of Lin et al.’s method for all test images.
Since the single layer embedding is adopted in Chen et al.’s
and Lin et al.’s methods, the HP approaches to 1 bpp.
Kim et al.’s method achieves data embedment by HS for
AMBTC-compressed images. In Kim et al.’s method, for a
block, all the pixels are classified into two classes, where
one class corresponds to the ‘0’ of Bi while the other class
corresponds to the ‘1’. The number of pixels in each class
is calculated, and then the class having a larger number of
pixels is used for data embedding. Since only a part of all the
pixels in a block are used for data embedding, their method
can only obtain the HP of greater than 0.5 bpp and less than
1 bpp. Considering that pixels are modified at most by 1,
Kim et al.’s method can achieve the highest PSNR among all
six compared methods. It can be clearly seen from Table 3,
for Ou and Sun’s method, the HP of approximately 1 bpp can
be achieved but the lowest PSNRs are obtained for all test
images. Compared with the other five compared methods,
Malik et al.’s method achieved the highest PSNR under the
same HP. This is because each embeddable pixel is modified
at most by 1 (i.e., ±1) when carrying log23 bits.
From Fig. 4, it can be seen that the red ‘*’ represents

27 results of the proposed scheme under different Th rang-
ing from 4 to 30. Th = 4 is the right-most red ‘*’ and
Th = 30 is the left-most red ‘*’. As Th increases, the PSNR
gets larger but the HP becomes smaller. Fig. 5 is used to
show performance comparisons among five compared meth-
ods in the BOSS date set, where the X-axis represents the
embedding capacity, and theY-axis indicates the PSNRvalue.
Due to that the BOSS date set contains 10,000 test images,
the maximum, mean and minimum values of all PSNR values
for a given payload are illustrated in Fig. 5. The average
HP and PSNR of 10,000 images are calculated for each of
five compared methods. Fig. 5 shows that HP = 1.44(bpp),
PSNR = 34.23(dB) for our proposed scheme, while HP =
1.04(bpp), PSNR = 34.32(dB) for Malik et al.’s method.
By the way of Fig. 5, it is concluded that our method can

achieve higher payload under almost the same PSNR as
Malik et al.’s method. This is because we adopt the
two-layer data hiding strategy combining (7,4) Hamming
code. Depending on two-layer embedding, each embeddable
block can be embedded with 22 or 28 bits. In contrast,
in Malik et al.’s method, each embeddable block can carry
about 22 bits. By making full use of the advantage of (7,4)
Hamming code, i.e., modifying one bit of one pixel to
carry 3 secret message at most, our method can maintain
satisfactory image quality.

V. CONCLUSION
In this paper, we present a two-layer RDH scheme in combi-
nation with (7, 4) Hamming code. In the 1st-layer embedding,
each pixel of one AMBTC-compressed image block can be
embedded with 1 bit. That is to say, each block can embed
16 bits. The 2nd-layer embedding is applied with the aim
of further increasing embedding capacity as much as pos-
sible on the basis of maintaining the visual quality. In the
2nd-layer embedding, by making full use of the advantage
of (7,4) Hamming code, each block can further be embedded
with 6 bits or 12 bits. Experimental results also demonstrate
our method can achieve higher payloads under almost the
same PSNR, compared with five compared methods.

REFERENCES
[1] S.-L. Li, K.-C. Leung, L. Cheng, and C.-K. Chan, ‘‘A novel image-hiding

scheme based on block difference,’’ Pattern Recognit., vol. 39, no. 6,
pp. 1168–1176, Jun. 2006.

[2] W. Hong, T.-S. Chen, and J. Chen, ‘‘Reversible data hiding using Delaunay
triangulation and selective embedment,’’ Inf. Sci., vol. 308, pp. 140–154,
Jul. 2015.

[3] C.-K. Chan and L. Cheng, ‘‘Hiding data in images by simple LSB substi-
tution,’’ Pattern Recognit., vol. 37, no. 3, pp. 469–474, Mar. 2004.

[4] D. Zhang, Z. Pan, and H. Li, ‘‘A contour-based semi-fragile image water-
marking algorithm in DWT domain,’’ in Proc. 2nd Int. Workshop Educ.
Technol. Comput. Sci., vol. 3, 2010, pp. 228–231.

[5] X.Wu andW. Sun, ‘‘Robust copyright protection scheme for digital images
using overlapping DCT and SVD,’’ Appl. Soft Comput., vol. 13, no. 2,
pp. 1170–1182, Feb. 2013.

[6] R. M. Gray, ‘‘Vector quantization,’’ IEEE ASSP Mag., vol. 1, no. 2,
pp. 4–29, Apr. 1984.

21546 VOLUME 8, 2020

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

[7] T. Kim, ‘‘Side match and overlap match vector quantizers for images,’’
IEEE Trans. Image Process., vol. 1, no. 2, pp. 170–185, Apr. 1992.

[8] K. Wang, Z.-M. Lu, and Y.-J. Hu, ‘‘A high capacity lossless data hiding
scheme for JPEG images,’’ J. Syst. Softw., vol. 86, no. 7, pp. 1965–1975,
Jul. 2013.

[9] E. Delp and O. Mitchell, ‘‘Image compression using block truncation
coding,’’ IEEE Trans. Commun., vol. COMM-27, no. 9, pp. 1335–1342,
Sep. 1979.

[10] M. Lema and O. Mitchell, ‘‘Absolute moment block truncation coding and
its application to color images,’’ IEEE Trans. Commun., vol. COMM-32,
no. 10, pp. 1148–1157, Oct. 1984.

[11] R. Kumar, D.-S. Kim, and K.-H. Jung, ‘‘Enhanced AMBTC based data
hiding method using hamming distance and pixel value differencing,’’
J. Inf. Secur. Appl., vol. 47, pp. 94–103, Aug. 2019.

[12] R. Kumar andK.-H. Jung, ‘‘A systematic survey on block truncation coding
based data hiding techniques,’’ Multimedia Tools Appl., vol. 78, no. 22,
pp. 32239–32259, Nov. 2019.

[13] J.-C. Chuang and C.-C. Chang, ‘‘Using a simple and fast image compres-
sion algorithm to hide secret information,’’ Int. J. Comput. Appl., vol. 28,
no. 4, pp. 329–333, Jan. 2006.

[14] D. Ou and W. Sun, ‘‘High payload image steganography with minimum
distortion based on absolutemoment block truncation coding,’’Multimedia
Tools Appl., vol. 74, no. 21, pp. 9117–9139, Nov. 2015.

[15] Y.-H. Huang, C.-C. Chang, andY.-H. Chen, ‘‘Hybrid secret hiding schemes
based on absolute moment block truncation coding,’’ Multimedia Tools
Appl., vol. 76, no. 5, pp. 6159–6174, Mar. 2017.

[16] Y.-Y. Chen and K.-Y. Chi, ‘‘Cloud image watermarking: High quality data
hiding and blind decoding scheme based on block truncation coding,’’
Multimedia Syst., vol. 25, no. 5, pp. 551–563, Oct. 2019.

[17] R. Kumar, N. Kumar, and K.-H. Jung, ‘‘A new data hiding method using
adaptive quantization & dynamic bit plane based AMBTC,’’ in Proc. 6th
Int. Conf. Signal Process. Integr. Netw. (SPIN), Mar. 2019, pp. 854–858.

[18] C.-H. Li, Z.-M. Lu, and Y.-X. Su, ‘‘Reversible data hiding for Btc-
compressed images based on bitplane flipping and histogram shifting of
mean tables,’’ Inf. Technol. J., vol. 10, no. 7, pp. 1421–1426, Jul. 2011.

[19] C.-C. Lin and X.-L. Liu, ‘‘A Reversible data hiding scheme for block
truncation compressions based on histogram modification,’’ in Proc. 6th
Int. Conf. Genet. Evol. Comput., Aug. 2012, pp. 157–160.

[20] I.-C. Chang, Y.-C. Hu, W.-L. Chen, and C.-C. Lo, ‘‘High capacity
reversible data hiding scheme based on residual histogram shifting
for block truncation coding,’’ Signal Process., vol. 108, pp. 376–388,
Mar. 2015.

[21] F. Li, K. Bharanitharan, C.-C. Chang, and Q. Mao, ‘‘Bi-stretch reversible
data hiding algorithm for absolute moment block truncation cod-
ing compressed images,’’ Multimedia Tools Appl., vol. 75, no. 23,
pp. 16153–16171, Dec. 2016.

[22] C.-C. Lin, C.-C. Chang, and Z.-M. Wang, ‘‘Reversible data hiding scheme
using adaptive block truncation coding based on an edge-based quantiza-
tion approach,’’ Symmetry, vol. 11, no. 6, p. 765, Jun. 2019.

[23] K.Wang, Y.Hu, and Z.-M. Lu, ‘‘Reversible data hiding for block truncation
coding compressed images based on prediction-error expansion,’’ in Proc.
8th Int. Conf. Intell. Inf. Hiding Multimedia Signal Process., Jul. 2012,
pp. 317–320.

[24] W. Sun, Z.-M. Lu, Y.-C.Wen, F.-X. Yu, and R.-J. Shen, ‘‘High performance
reversible data hiding for block truncation coding compressed images,’’
Signal Image Video Process., vol. 7, no. 2, pp. 297–306, Mar. 2013.

[25] W. Hong, Y.-B. Ma, H.-C. Wu, and T.-S. Chen, ‘‘An efficient reversible
data hiding method for AMBTC compressed images,’’ Multimedia Tools
Appl., vol. 76, no. 4, pp. 5441–5460, Feb. 2017.

[26] Y.-Y. Tsai, C.-S. Chan, C.-L. Liu, and B.-R. Su, ‘‘A reversible stegano-
graphic algorithm for BTC-compressed images based on difference expan-
sion and median edge detector,’’ Imag. Sci. J., vol. 62, no. 1, pp. 48–55,
Jan. 2014.

[27] C.-C. Chang, T.-S. Chen, Y.-K.Wang, and Y. Liu, ‘‘A reversible data hiding
scheme based on absolute moment block truncation coding compression
using exclusive OR operator,’’ Multimedia Tools Appl., vol. 77, no. 7,
pp. 9039–9053, Apr. 2018.

[28] W. Hong, ‘‘Efficient data hiding based on block truncation coding using
pixel pair matching technique,’’ Symmetry, vol. 10, no. 2, p. 36, Jan. 2018.

[29] W. Hong, X. Zhou, and S. Weng, ‘‘Joint adaptive coding and reversible
data hiding for AMBTC compressed images,’’ Symmetry, vol. 10, no. 7,
p. 254, Jul. 2018.

[30] C.-C. Lin, X.-L. Liu, W.-L. Tai, and S.-M. Yuan, ‘‘A novel reversible data
hiding scheme based on AMBTC compression technique,’’ Multimedia
Tools Appl., vol. 74, no. 11, pp. 3823–3842, Jun. 2015.

[31] J. Pan, W. Li, and C. C. Lin, ‘‘Novel reversible data hiding scheme for
ambtc-compressed images by reference matrix,’’ in Proc. MISNC, 2014,
pp. 427–436.

[32] A. Malik, G. Sikka, and H. K. Verma, ‘‘An AMBTC compression based
data hiding scheme using pixel value adjusting strategy,’’Multimedia Syst.
Signal Process., vol. 29, no. 4, pp. 1801–1818, Oct. 2018.

[33] C.-C. Chang, T. D. Kieu, and Y.-C. Chou, ‘‘A high payload steganographic
scheme based on (7,4) Hamming code for digital images,’’ in Proc. Int.
Symp. Electron. Commerce Secur., Aug. 2008, pp. 16–21.

[34] R. W. Hamming, ‘‘Error detecting and error correcting codes,’’ Bell Syst.
Tech. J., vol. 29, no. 2, pp. 147–160, Apr. 1950.

[35] J. Fridrich and D. Soukal, ‘‘Matrix embedding for large payloads,’’ IEEE
Trans. Inf. Forensics Security, vol. 1, no. 3, pp. 390–395, Sep. 2006.

[36] The USC-SIPI Image Database. Accessed: Nov. 9, 1977. [Online]. Avail-
able: http//sipi.usc.edu/database

[37] Y.-Y. Chen, C.-H. Hsia, S. Y. Jhong, andH.-J. Lin, ‘‘Data hidingmethod for
AMBTC compressed images,’’ J. Ambient Intell. Hum. Comput., pp. 1–9,
2018.

[38] C. Kim, D. Shin, L. Leng, and C.-N. Yang, ‘‘Lossless data hiding for
absolute moment block truncation coding using histogram modification,’’
J. Real-Time Image Process., vol. 14, no. 1, pp. 101–114, Jan. 2018.

[39] P. Bas, T. Filler, and T. Pevný, ‘‘‘Break our steganographic system’: The ins
and outs of organizing BOSS,’’ in Information Hiding, T. Filler, T. Pevný,
S. Craver, and A. Ker, Eds. Berlin, Germany: Springer, 2011, pp. 59–70.

JUAN LIN received the B.S. degree from Jimei
University, in 2004, and the M.S. and Ph.D.
degrees fromOsaka University, Japan, in 2008 and
2011, respectively. He is currently an Associate
Professor with the Fuqing Branch of Fujian Nor-
mal University, China. His interesting researches
are reversible data hiding and signal processing.

SHAOWEI WENG (Member, IEEE) received the
Ph.D. degree from the Institute of Information Sci-
ence, Beijing Jiaotong University, in July 2009.
She is currently a Professor with the School of
Information Science and Engineering, Fujian Uni-
versity of Technology. She publishes more than
30 articles and applies five national patents. Her
research interests include image processing, data
hiding and digital watermarking, pattern recogni-
tions, and computer vision. She is also in charge of

two Natural Science Foundation of China (NSFC) Project.

TIANCONG ZHANG received the B.S. degree
from North China Electric Power University, in
2002. Until 2020, he has been with Guangdong
Guohua Yuedian Taishan Power Generation Com-
pany Ltd., Jiangmen, China. He is currently an
Engineer with the School of Information Science
and Engineering, Fujian University of Technology.
His research interests include electrical engineer-
ing, image processing, and data hiding.

BO OU received the B.S. and Ph.D. degrees
from Beijing Jiaotong University, Beijing, China,
in 2008 and 2014, respectively. Since 2014, he
has been with the Faculty of College of Computer
Science and Electronic Engineering, Hunan Uni-
versity, China, where he is currently an Associate
Professor. His research interests include image
processing and data hiding.

VOLUME 8, 2020 21547

J. Lin et al.: Two-Layer RDH Based on AMBTC Image With (7, 4) Hamming Code

CHIN-CHEN CHANG (Fellow, IEEE) received
the B.Sc. degree in applied mathematics and the
M.Sc. degree in computer and decision sciences
fromNational Tsing Hua University, and the Ph.D.
degree in computer engineering from National
Chiao Tung University. He was with National
Chung Cheng University, from 1989 to 2005. He
has been a Chair Professor with the Department of
Information Engineering and Computer Science,
Feng Chia University, since February 2005. He

is currently a Guest Professor with Hangzhou Danzi University. Prior to
joining FengChiaUniversity, hewas anAssociate Professor with Chiao Tung
University, a Professor in National Chung Hsing University, and the Chair
Professor with National ChungChengUniversity. He had also been aVisiting
Researcher and a Visiting Scientist with Tokyo University and Kyoto Univer-
sity, Japan. During his service in Chung Cheng, he served as the Chairman
of the Institute of Computer Science and Information Engineering, Dean of
College of Engineering, Provost and then Acting President of Chung Cheng

University, and the Director of Advisory Office in Ministry of Education,
Taiwan. His current research interests include database design, computer
cryptography, image compression, and data structures. He is currently a
Fellow of IEE, U.K. He has received many research awards and honorary
positions by and in prestigious organizations both nationally and interna-
tionally. Since his early years of career development, he consecutively won
Outstanding Talent in Information Sciences of the R. O. C., the AceRDragon
Award of the Ten Most Outstanding Talents, Outstanding Scholar Award
of the R. O. C., the Outstanding Engineering Professor Award of the R.
O. C., the Distinguished Research Awards of National Science Council of
the R. O.C., the Top Fifteen Scholars in Systems and Software Engineering
of the Journal of Systems and Software. On numerous occasions, he was
invited to serve as a Visiting Professor, the Chair Professor, the Honorary
Professor, the Honorary Director, the Honorary Chairman, a Distinguished
Alumnus, a Distinguished Researcher, and a Research Fellow by universities
and research institutes.

21548 VOLUME 8, 2020

