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ABSTRACT Radial artery pulse waveforms (RAPWs) have been actively studied for decades because they
provide critical health information, particularly related to risk factors of cardiovascular disease. The primary
goal of this study is to develop a novel mathematical model that can regenerate age-dependent RAPWs by
decomposing a single pulse pressure waveform (PPW). This study proposes to decompose a PPW into three
waveform components with one forward wave component and two reflected wave components based on the
physiology of pulse waveforms. Treated as basis functions, the three components with associated control
parameters are incorporated in the proposed mathematical model. The underlying idea of the model is to
generate desired pulse waveforms by combining basis functions whose characteristics depend on selection
of control parameter values. For the current study, after determining the nine control parameters of the
basis functions by post-processing algorithms, the proposed model for the PPW is derived from a linear
combination of the basis functions. Using the model along with in vivo RAPW data, this study evaluates the
performance of the model in regenerating PPWs for a wide range of ages from 85 years old to 15 years old.
The results show an error of less than 6% between the PPWs numerically derived from the model and the in
vivo data for the two key matrixes used in this study (the least-square error norm and the radial augmentation
index), validating the effectiveness of the model. The model is applicable for RAPW simulator analysis and
development.

INDEX TERMS Age-dependent, hemodynamic, radial artery pulse waveform, wave decomposition, wave
reflection model.

I. INTRODUCTION
Radial artery-pulse waveforms (RAPWs) have been investi-
gated as a useful indicator for predicting the risk of cardio-
vascular diseases. This is mainly attributed to the benefits
of RAPW measurements, which provide hemodynamic fea-
tures (such as arterial stiffness, blood pressure, and cardiac
output), the ease of access to the arteries, and comfortable
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measurement conditions [1]–[3]. Consisting of forward and
backward waves, RAPWs can reveal valuable cardiovascular
conditions. In particular, the wave reflection (the backward
propagation of pulse pressure (PP) from the periphery to the
heart) plays an important role in understanding aortic patho-
physiology. Several studies report the importance of RAPWs
and how they are affected by the conditions and properties
of circulatory systems. Research work by Sugawara et al. [4]
showed that the major reflection site of pressure waves
shifts distally with aging, partly due to the closer matching
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of impedance provided by central and peripheral arterial
stiffness. In their study on circadian variation of wave reflec-
tions, Papaioannou et al. [5] reported that the morning-
related amplification of wave reflections may have potential
implications for the increased risk for cardiovascular events
during the early morning. Meanwhile, Qasem and Avolio [6]
evaluated a noninvasive method for estimating an aortic pulse
wave velocity, one of the critical biomarkers of cardiovascular
diseases, from a transformed RAPW and a waveform decom-
position technique.

Recognizing the significance of the reflected waves in car-
diovascular physiology, extensive studies focused on extract-
ing the reflected waves from RAPWs. The wave intensity
analysis is one of the most popular methods for decomposing
pulse pressure and velocity waveforms [7]–[10]. However,
to apply this decomposition method, one has to measure the
velocity of the blood at the aortic vessel, which is a non-
trivial procedure. Alternative to the wave intensity analysis
methods, black box signal processing techniques are used to
decomposewaveforms, such as independent component anal-
ysis (ICA) [11], [12], and decomposition of photoplethys-
mographic arterial pulses via ICA, which is demonstrated
in some studies [13], [14]. However, the signal processing
algorithms are sensitive to the selection of parameters, and
identifying optimal values is challenging. Other approaches
include the use of several Gaussian functions to decompose
aortic pulse pressure waveforms (PPWs) [15]–[17], and the
wave reflection model analyses [18]–[20]. One of the old-
est established theories, the wave reflection model analyses
utilize the relationships between aortic PP and flow rate via
the characteristic impedance and they are still used effec-
tively. Central aortic PPW and flow rate waveform (FRW) are
effectively decomposed by using the wave reflection model
analyses in some references [6], [21], [22]. The strength of
these wave reflection models is their ability to regenerate
FRWs using derived control parameters as well as verify the
accuracy of the reconstructed forward and reflected waves
by matching hemodynamic characteristics. Aging is highly
related to physiological changes in the cardiovascular system,
affecting arterial pulse waveforms. Kelly et al studied age-
related human arterial pulse waves with human subjects aged
2 to 91 [23]. In the case of radial pulses, they analyzed radial
pulse waveforms of 420 subjects and showed that changes
of the radial pulse characteristics were evident with aging.
With increasing age, the fluctuations of the RAPWs were less
distinct. Moreover, the peaks progressively come together,
and their amplitudes were increased with advancing age. As
aging occurs, distinct changes in arterial pulse waveforms
take places. However, analyses of age-dependent RAPWs
have been neglected. In spite of the effectiveness of wave
reflection models, there have been little efforts to evaluate
the performance of those models for analyzing RAPWs over
a wide range of ages. This study proposes a new mathe-
matical model for reconstructing age-related RAPWs based
on the decomposition of a single PPW. It will use a mean

TABLE 1. Demograhpics of the individuals included for the waveform
analysis. The data are presented in mean ± standard deviation. BP: blood
pressure in mmHg.

pulse pressure waveform of 85-year-old people to regenerate
RAPWs of various age groups.

The primary goals of this paper are (1) to establish a new
method to decompose a single PPW into one forward wave
and two reflected waves, (2) to reconstruct RAPWs of a
wide range of ages, (3) and to reconstruct the FRW, which
can be used to effectively evaluate the reproduced pressure
waveform in terms of hemodynamic characteristics.

The paper is organized as follows: the next section (section
II) describes the mean RAWPs for various age groups. It will
then present the process of the proposed mathematical model
development. Details of the decomposition algorithms and
the verification of the model are also provided in Section II.
Next, the results and analysis of age-related RAWPs and
FRWs are provided in Section III. Finally, the conclusion is
presented in Section IV.

II. DATA PROCESSING AND WAVE
DECOMPOSITION-BASED APPROXIMATION MODELING
RAPWs provide hemodynamically important information
that can help predict the risk of cardiovascular disease, such
as atherosclerosis, hypertension, and more. This study uses
age-related RAPWs to investigate a new wave decomposi-
tion model. This section first describes how in vivo RAPWs
are collected for a wide range of ages, from teenagers to
the elderly. It then explains an overall modeling process to
regenerate age-related RAPWs using a single PPW. Details
of the modeling algorithms and rationales are also provided
in this section.

A. DETERMINATION OF THE MEAN PULSE PRESSURE
WAVEFORM BY AGE
The pulse data are collected from general individuals of
Korean populations through health examinations and clinical
study. The detailed demographics are as shown in Table 1.
Physical information such as height, weight and heart beat
was collected from tens to hundreds of subjects recruited
for each age group. In particular, informative systolic and
diastolic blood pressure for each age was recorded in the
brachial artery of the upper arm.

This study uses age-dependent radial artery-pulse wave-
form data measured by a robotic tonometry system (RTS)
device at the Korea Institute of Oriental Medicine [24]–[27]
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FIGURE 1. Measurements of in vivo radial pulse pressure waveforms by
the robotic tonometry system (RTS): (a) the operator first takes the
pulsation position with his/her fingers, identifies the radial artery in the
wrist, and marks the pulsatile position using the laser pointer, (b) the RTS
contacts the wrist and applies a proper hold-down pressure. The
embedded pulse sensors at the tip of the RTS collect the RAWP data.

FIGURE 2. Mean radial pulse pressure waveforms for 15, 35, 65, and
85 year old age group.

(see Fig. 1). Based on the PPWdatameasured in the left radial
artery from 1018 subjects aged 14 to 89 years, the average
waveforms for 15, 35, 65, and 85 age groups were calculated
by averaging the data centered-around with the age group
with an interval of ± 5 years. The number of PPWs used for
averaging were 68, 356, 584 and 10 for each of the age group,
respectively. As depicted in Fig. 2, the average waveforms
calculated show distinct waveform variations in terms of
pulse pressure and augmentation index (AI), reflecting the
effect of aging on pulse waveforms [23].

B. OVERALL MODELLING PROCESS
Fig. 3 describes the overall modeling process. As shown
in Fig. 3 (a), the RAPW of the 85-year-old group is selected
to decompose into forward and reflected waveforms. The
selection of the 85-year-old’s RAPW is based on the con-
cept that the flow rate wave decreases as the pressure of
the reflected wave increases along with an assumption that
the flow rate waveform can be characterized as a triangular
function. Next, by modifying the shape of FRW, the reflected
waveform is decomposed into two reflected waveforms

(see Fig. 3 (b)). By treating each of the waveform components
as basis functions, P1, P2, and P3, a function with control
parameters for the basis functions (P1, P2, and P3) can be
given by

P̃(t) =
∑

i=1,2,3

wiLki{Pi(t − ti)}. (1)

where, wi’s are weighting parameters, ki’s are pulse broaden-
ing parameters, ti’s are phase delaying parameters, and Lk ’s
are pulse broadening operators (see Fig. 3 (c)). This function,
P̃(t), in (1) can be used to regenerate radial pulse pressure
waveforms for each of the age groups by adjusting the control
parameters.

For a target waveform P, representing one of the in vivo
RAPWs, it is necessary to identify control parameters for
the mathematical model’s waveform P̃ to reconstruct the
target age group’s RAPW. Identifying the control parame-
ters includes solving a minimization problem, which mini-
mizes the difference between the target waveform (P) and
the approximate waveform (̃P) in terms of the of the least
square norm and the radial AI, as in Fig. 3 (d). By an iterative
process based on a line search method, the parameters are
updated in each iteration to minimize the objective functions
(see Fig. 3 (e)).
By piecewise-linearly interpolating the parameters wi, ki,

and ti from age = 15 to age = 85, the reconstructions of
PPW for all age groups are obtained (see Fig. 3 (f)). Finally,
validation of the PPW approximation modeling is conducted
(see Fig. 3 (g)), through relative error analyses of least square,
AI, and max value error. In addition, the reconstruction of
FRWwhich can be easily obtained from the proposed approx-
imation modeling are presented.

C. DECOMPOSITION OF THE PULSE PRESSURE’S
FORWARD AND REFLECTED WAVES
Based on the physiological characteristics, it is well known
that arterial pulse waveforms are comprised of forward and
reflected waves. In order to decompose a central aortic pres-
sure waveform, Qasem and Avolio [6] separated it into for-
ward and reflected waves using an uncalibrated triangular
aortic flow waveform. In their analytic study, the measured
time-varying pulse pressure wave, P, was expressed as a sum
of forward (Pf ) and reflected (Pb) waves as described in
(2a). Since the flow rate, Q, decreases as the pressure of the
reflected wave increases, the flow rate is expressed as the
difference between the forward flow rate (Qf ) and the reflec-
tion flow rate (Qb) as shown in (2b). From the transmission
line analysis, Pf and Pb were obtained from P, Q, and the
characteristic impedance, Zc, as shown in (2c) and (2d).

P = Pf + Pb (2a)

Q = Qf − Qb (2b)

Pf =
P+ ZCQ

2
(2c)

Pb =
P− ZCQ

2
. (2d)
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FIGURE 3. Illustration of the overall process.

In a physical sense, the flow rate is a fluctuating wave,
consisting of AC and DC components. Hence, the flow rate
can be expressed as Q = QAC + QDC , where QDC is the
minimum DC-offset values of Q. The AC component for the
flow rate contains more significant information of the FRW
than the DC offset of the flow rate. Under this assumption,
(2b)-(2d) are changed to (3a)-(3c).

QAC = QAC,f − QAC,b (3a)

Pf =
P+ ZCQAC

2
(3b)

Pb =
P− ZCQAC

2
. (3c)

FRWs are often assumed to be triangular functions in
previous studies [6], [21], [22]. This study also definesQAC as
a triangular model. As shown in Fig. 4, the triangular model
for the FRW linearly increases from time T = 0 to its peak
value at T = T1, and linearly decreases to zero at T = T2.
In the model, the time T1 is chosen based on the global
maximum of P85 (the RAPW of 85-year-old), and the time T2
is determined based on the point where the second derivative
ofP85 starts to decrease rapidly. Let us explainmore about the
relationships betweenQAC and ZC . Noting that the maximum
value of QAC and ZC are multiplied in (3b) and (3c), one

2966 VOLUME 8, 2020



G. Jo et al.: Development of a Mathematical Model for Age-Dependent Radial Artery Pulse Wave Analysis

FIGURE 4. Initial estimation of the flow rate.

may treat max{QAC } × ZC as one variable Z ′C by assuming
that max{QAC } = 1m`/ms. In the decomposition procedure,
the real value of max{QAC } does not affect the algorithms
as long as the new variable Z ′C is reasonable. For the flow
rate recovery procedure, which is discussed in the following
section, we will find real values for ZC such that the average
of the resulting Q fits the average of the measured FRW. Let
us explain the choice of Z ′C . Clearly, the parameter Z ′C should
not be larger than the maximum value of P85; otherwise, (3c)
will produce Pb with negative values in some regions. On the
other hand, if the value of Z ′C is too small, there will be only
a small difference between Pf and Pb, which would make the
decomposition algorithm meaningless. Noting that both P85
and QAC reach the maximum values at T2, the assumption
max{QAC } = 1, and (3b), we can show that

max{Pf } = max{P85 + Z ′CQAC }/2

= P85(T2)/2+ Z ′CQAC (T2)/2

= (max{P85} + Z ′C )/2,

implying that the choice of Z ′C determines the maximum
value of Pf . For example, if we choose

Z ′C = γmax{P85}, (4)

for some 0 < γ < 1, then,

max{Pf } =
1+ γ
2
× max{P85}.

In this work, Z ′C is chosen as approximately 40% of the
maximum value of P85. If Z ′C is changed with 0.3 < γ < 0.5
in (4), magnitudes of the waveform Pf and Pb change, but
the shapes of the waveforms are similar. Because we will
normalize Pf and Pb in the proposed mathematical model in
(1), the choices of γ between the range (0.3, 0.5) have small
effects on the performance of the proposed model.

Fig. 5 shows Pf and Pb waveforms before applying the
post processing procedure along with P85. The waveform
Pf and Pb are obtained by substituting the value of P85 and
QAC (assumed to be triangular) in (3b) and (3c). As shown
in the figure, the waveforms Pf and Pb show nonsmooth
shapes because QAC , whose gradient changes abruptly, was

FIGURE 5. Wave decomposition by two parts (before applying PPP).

subtracted from P85. Thus, we apply the following post-
processing procedure to make the waveform of Pf and Pb
smooth.
Post Processing Procedure (PPP): The post pro-

cessing procedure can be summarized as: (P′1,P
′

2) =
PPP(P1,P2, a, b)Given the waveforms P1 and P2 and scalar
values 0 < a < b, we find the smooth waveforms P′1 and P

′

2
such that the following are satisfied:

∂P′2
∂t
= 0, 0 ≤ t ≤ a (5)

∂P′1
∂t

< 0, a ≤ t ≤ b (6)

P′1 + P
′

2 = P1 + P2. (7)

Let us explain each step of the PPP. Firstly, (5) ensures
that there is no (or meaningless) reflection between the start
of systolic ejection and the peak of P85. The condition in (6)
is imposed to reflect that the forward pressure wave decreases
at the arrival of the reflected pressure wave. Finally, (7)
guarantees that the sum of reflected waveform and forward
waveform is equal to P85. After applying this PPP to Pf and
Pb, i.e., (Pf ,Pb) = PPP(Pf ,Pb,T1,T2), the final waveforms
Pf and Pb have smooth shapes with only one local peak,
as shown in Fig. 6.

D. DECOMPOSITION OF PPW INTO THREE WAVEFORMS:
ONE FORWARD AND TWO REFLECTED WAVES
In this study, a new algorithm is proposed to decompose
PPWs using three waveforms (one forward and two reflected
waves). In the proposed algorithm,Pb is decomposed into two
reflected waves (Pb1 and Pb2 ). This subsequently introduces
QAC,b1 and QAC,b2 , satisfying the decomposition QAC,b =
QAC,b1 + QAC,b2 . Substituting Pb = Pb1 + Pb2 and QAC,b =
QAC,b1 + QAC,b2 in (2a) and (3a), one obtains the following
equations:

P = Pf + Pb1 + Pb2
QAC = QAC,f − QAC,b1 − QAC,b2 . (8)

To develop a new algorithm, the previously used triangular
model for the FRW must be modified. To this end, a new
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FIGURE 6. Wave decomposition by two parts (after applying PPP).

FIGURE 7. Illustration of the modified initial estimation for QAC , which is
the sum of the positive region (QAC,f −QAC,b1

) and the negative region
(QAC,b2

).

triangular function with a negative magnitude is added to the
previous triangle model (see Fig. 7). The ‘‘negative’’ triangle
model is needed to account for the new reflection wave
QAC,b2 and the negative region corresponds toQAC,b2 . Owing
to (8) and the fact that the negative triangle corresponds to
QAC,b2 , the positive triangle corresponds to the difference
between QAC and QAC,b2 .

Let us describe the newly added triangle (QAC,b2 ) in more
details. The triangle starts at time T = T1 and reaches to its
peak value at T = T2. It then ends at T = T3. The height of
the new triangle is set to 10% of the positive region to reflect
that the second reflection of P only has a small influence on
flow rate. The time T3 is the location on the horizontal axis
where the absolute value of the second derivative of P85 starts
to decrease.

Following the illustration of QAC , mathematical expres-
sions of the proposed decomposition for Pb are explained.
The notation Pb1 is used for the first reflected waveform and
Pb2 is used for the second reflectedwaveform where themag-
nitude ofPb1 is larger than that ofPb2 . Note that the properties
of Pb1 and Pb2 may satisfy the following conditions: 1) the
sum of Pb1 and Pb2 should be equal to Pb, 2) there exists
coefficient β such that

Pb1 − Pb2 ≈ βQAC,b2 . (9)

The second property is motivated by the fact that the second
reflected pulse pressure (Pb2 ) produces the second reflected

flow rate (QAC,b2 ). Thus, determining a reasonable coefficient
β is crucial in the decomposition process. To find such β, note
that Pb is written as

Pb =
P− Z ′CQAC

2
=
P− Z ′C (QAC,f − QAC,b1 − QAC,b2 )

2
,

(10)

by assigning the QAC value defined in (8) to the QAC value in
(3c). By separating the last term (Z ′CQAC,b2/2) in (10), which
is related to the effect of the second reflection on the flow
rate, we can introduce the following expressions

Pb1 =
P− Z ′C (QAC,f − QAC,b1 )

4
+

(
1
4
+ ρ

)
Z ′CQAC,b2 ,

(11)

Pb2 =
P− Z ′C (QAC,f − QAC,b1 )

4
+

(
1
4
− ρ

)
Z ′CQAC,b2 ,

(12)

for some parameter ρ > 0. Note that the relationship (11)
and (12) satisfies the properties 1) and 2) above when β =
2ρZ ′C in (9). This formulation reflects that the difference
betweenPb1 andPb2 is proportional toQAC,b2 . In other words,
in the absence of QAC,b2 , no further reflection waveform is
produced. In the decomposed reflection waveform equations,
the parameter ρ plays the role of controlling the weights for
the characteristic impedance coefficient, i.e., as ρ gets larger,
Pb1 gets larger and Pb2 gets smaller. In this work, this param-
eter is chosen to be ρ = 1/2. This choice results in β = Z ′C
in (9), i.e., Pb1 − Pb2 = Z ′CQAC,b2 . In other words, the scale
of the characteristic impedance Z ′C remains the same. When
a large value of ρ is chosen (ρ > 1), the magnitude of Pb2
would be too small, making the post processing of the basis
functions challenging. However, other choices of ρ gives
similar decomposition results when 1/4 < ρ < 1. From
(10)-(12), the resulting decompositions are formulated as

Pb1 =
Pb + Z ′CQAC,b2

2
, (13)

Pb2 =
Pb − Z ′CQAC,b2

2
. (14)

The new decomposition (three-component decomposition
of PPW) algorithm is summarized next. The proposed algo-
rithm has two parts. The first part decomposes P into Pf
and Pb with similar techniques described earlier and the 2nd

part of algorithm involves with the decomposition of Pb into
Pb1 and Pb2 . During the 2nd part of the algorithm, the post
processing of Pb1 and Pb2 must be performed to complete
the three-component decomposition of pulse pressure wave-
forms, obtaining smooth Pf , Pb1 and Pb2 .
Algorithm 1. Three-component decomposition of PPW.
1) Decompose of P into two parts, Pf and Pb.

a) Substitute P and QAC to (3b) and (3c) to obtain Pf
and Pb.
b) (Post processing) Perform the process

(Pf ,Pb) = PPP(Pf ,Pb,T1,T2),
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FIGURE 8. Decomposition of PPW at age 85 via Algorithm 1.

2) Decompose of Pb into Pb1 and Pb2 .
a) Substitute Pb and QAC,b2 to (13) and (14) to obtain
Pb1 and Pb2 .
b) (Post processing) Perform the process

(Pb1 ,Pb2 ) = PPP(Pb1 ,Pb2 ,T2,T3).
Fig. 8 shows the decomposition of P85 using the proposed

algorithm. Fig. 8 (a) shows Pf and Pb obtained by the first
step. The final three components obtained after the post pro-
cessing are shown in Fig. 8 (b).

E. PPW APPROXIMATION MODEL
This section introduces a new approximation model based on
the three decomposed waveforms by the proposed algorithm
as basis functions to reconstruct PPWs. Once a target PPW
is decomposed by Algorithm 1, the waveforms of Pf , Pb1
and Pb2 are used as basis functions. These basis functions
along with their control parameters are what defines the
skeleton model. In order to enhance the flexibility of the
model, the basis functions have been slightly modified such
that the resulting functions (say P′f , P

′
b1
, and P′b2 ) have the

duration of 500 ms or less and

P85 = Pf + Pb1 + Pb2 = P′f + P
′
b1 + P

′
b2 .

Here, the heights of the modified functions P′f , P
′
b1
, and

P′b2 are 99.68, 56.59 and 10.17, respectively. The functions
are then normalized so that they each have a height of 1

FIGURE 9. Basis functions P1, P2 and P3.

FIGURE 10. Example of operator Lk where k = 0.5. The shape of P is
narrowed uniformly with respect to the local peak of P .

(see Fig. 9). For simplicity, the resulting waveforms are
written as P1, P2 and P3, where each waveform is obtained
from Pf , Pb1 and Pb2 , respectively. Consequently, the Pi’s
(i = 1, 2, 3) are constructed so that the following linear
combinations produce the exact graph of P85:

P85 = 99.68P1 + 56.59P2 + 10.17P3 + min(P85), (15)

where min(P85) = 87.72.
Now, let us describe how the new model is used to recon-

struct the target PPW. Given a target P, the approximation P̃85
is expressed by the three basis functions Pi’s, (i = 1, 2, 3)
together with nine parameters w1, w2, w3, k1, k2, k3, t1, t2
and t3:

P̃(t) = w1Lk1{P1(t − t1)} + w2Lk2{P2(t − t2)}

+w3Lk3{P3(t − t3)} + min(P). (16)

In the model above, t1, t2, and t3 play the role of the linear
transportation (or delay) of the basis functions P1, P2, and P3,
respectively. The operator Lk is a broadening operator for the
basis functions. Lk{P} broadens the shape of Pwith respect to
the location of the peak of P. For example, if k = 1, Lk{P} =
P (no broadening). For k = 0.5, the support of Lk{P} becomes
half of P while maintaining the same shape (see Fig. 10). If
k > 1, the shape of Lk{P} is uniformly widened. Finally,
the weighting factors (w1, w2 and w3) are used in the linear
combination of Lk1{P1}, Lk2{P2} and Lk3{P3}. For example,
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FIGURE 11. Evolution of objective function Obj (P̃15).

the expression in (15) can be viewed as the exact approxi-
mation of P85 using parameters w1 = 99.68, w2 = 56.59,
w3 = 10.17, k1 = k2 = k3 = 1 and t1 = t2 = t3 = 0ms.
To obtain optimal parameters for the approximationmodel,

an optimization problem can be established. Given a target P,
the objective function can be defined, which contains the least
square error, the radial AI error and the maximum value error:

Obj(̃P)=||̃P− P||2+α(AIP̃−AIP)
2
+α(max {̃P}−max{P})2.

Here, || · || stands for least square norm (L2-norm),

||P|| =

√∫
T
P2ds,

and the radial AI of P is defined as

AIP =
Late Systolic Pressure fromP
Early Systolic Pressure fromP

.

The parameters in (16) are defined such that the objective
function is minimized.

(w,k, t) = argmin(w,k,t)Obj(̃P), (17)

where wi = (w1,w2,w3), k = (k1, k2, k3) and t = (t1, t2, t3).
The parameter α > 0 in Obj(̃P) plays the role of the penalty
parameter for radial AI and maximum value of P̃, i.e., as
α increases, the solution for (17) will minimize the differ-
ence of AI (and the maximum) value between P and P̃. In
this study, the parameter α was chosen to be 40. When the
parameter gradually increases starting at α = 40, given the
minimizing problem (17), the difference between P’s AI and
reconstructed P̃’s AI becomes smaller, while the L2-error
between P and P̃ becomes too large. On the other hands, if α
was smaller than 40, AI index of the reconstructed P̃ was not
accurate. We note that w1 Lk1{P1(t − t1)}, w2 Lk2{P2(t − t2)}
and w3 Lk3{P3(t − t3)} are approximations of the forward
wave, the first reflected wave, and the second reflected wave
of the PPW, respectively.

Let us describe the fitting process to solve (17) for the
target waveform P65 (the process for the rest of age groups
is similar). It is important to find reasonable initial guesses
for the w(0)

= (w(0)
1 ,w

(0)
2 ,w

(0)
3 ), k(0) = (k (0)1 , k (0)2 , k (0)3 ) and

t(0) = (t (0)1 , t (0)2 , t (0)3 ) to minimize the objective function. The
initial guesses for wi’s are obtained from the weights in (15),
i.e., w(0)

1 = 99.68, w(0)
2 = 56.59 and w(0)

3 = 10.17, since
the waveforms P65 and P85 are similar. For the time delay
parameters, the initial guesses were chosen to be t (0)1 = t (0)2 =

t (0)3 = 0. The initial guesses for the broadening parameters
were chosen to be k (0)1 = k (0)2 = k (0)3 = 1.
After selecting reasonable initial values for the control

parameters, using an iterative method based on a line search,
they were updated in each iteration step to minimize the
objective function. This parameter fitting process was divided
into two steps to avoid non-physiological solutions. Firstly,
(17) was solved with α = 0 using the iterative method based
on a line search starting fromw(0), k(0) andw(0), resulting the
parameters w(1), k(1) and t(1). The obtained parameters w(1),
k(1) and t(1) are then used to determine the final parameters
w(2), k(2) and t(2) which are obtained by solving (17) with
α = 40. Fig. 11 shows the evolution of the objective function
of P̃15 for each iteration step.

One of the benefits of the proposed approximation model
is that the FRW can be recovered from the PPW once the
parameters w, k and t are determined. The following algo-
rithm summarizes the flow rate recovery process.
Algorithm 2. Flow Rate Recovery Process.

1) Compute the AC part of Q̃ by

Q̃AC =
2w1Lk1{P1(t − t1)} − P̃

Zc
. (18)

2) Compute the DC part of Q̃ by

Q̃DC =
P̃ave
Zc

.

where P̃ave is the average of P̃ over one period.
3) Q̃ = Q̃AC + Q̃DC .
Eq. (18) is derived from (3b) along with the fact that

w1 Lk1{P1(t − t1)} is an approximation for the forward
wave of the target PPW. It is noteworthy that ZC is used
in Algorithm 2 not Z ′C . The values of ZC for age =
15, 35, 65, 85 are provided in the results section.

III. RESULTS AND DISCUSSION
A. APPROXIMATION OF THE PPW FOR AGES 15, 35,
AND 65
In this subsection, we present the approximation capability
of the proposed mathematical model (16) which reconstructs
the age-related RAPWs by a linear combination of three basis
functions. The validation was focused on the ability of the
model to describe waveforms of different ages by controlling
the basis functions. In order to evaluate the performance of
the model, the differences of the numerically derived PPWs
and the in vivo PPW data were compared in terms of least-
square norm, radial AI, and maximum values.

Table 2 summarizes optimal values of the three parameters,
wi, ki, and ti, that are obtained by solving the minimization
problem in (17) for ages 15, 35, 65, and 85.
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FIGURE 12. Comparison of Page with P̃age for age = 15, 35, and 65.

The results show that all the weighting parameters, w1,
w2, and w3, increase as the age increases. This is because
the maximum value of the PPW grows with increasing age.
For the time delay related parameter ti, the difference t2− t1,
decreases as the age increases. This result coincides with the
analysis of [28] that the reflected wave travels faster with
increasing age.

By applying the optimized values to the approximation
model, age-related pulse waveforms (Page) can be recon-
structed. Fig. 12 compares the absolute differences between
the real values (Page) and the estimation values (̃Page) of the
average pulse waveform for age = 15, 35, and 65. In order to
evaluate the performance of the approximation model, three

TABLE 2. Errors from the three-waveform decomposition for
age = 15, 35, 65, and 85.

TABLE 3. Errors from the three-waveform decomposition for
age = 15, 35, 65, and 85.

TABLE 4. Errors from the two-waveform decomposition for
age = 15, 35, 65, and 85.

kinds of errors are considered. First, one is the relative L2-
norm, i.e.,

||̃Page − Page||
||Page||

.

The second is the relative AI error, and the last is the relative
max error.

Table 3 shows the errors between Page and P̃age for age =
15, 35, 65, and 85. As shown in Table 3, themaximum relative
L2 error across all ages is 5.88%. For the relative AI and
maximum error values, the maximum errors are 5.97% and
0.63%, respectively.

To assess the performance of the proposed approximation
model based on three-component waveforms, the same error
analyses are conducted for the two-component-based approx-
imation model, which consists of one forward wave and one
reflected wave. Given a targeted P, the two components-
based approximation P̂(t) is given by

P̂(t) = w1 Lk1{P
∗

1(t − t1)} + w2 Lk2{P
∗

2(t − t2)} + min(P),

where P∗1 and P∗2 are the forward and reflected waveforms,
respectively. The parameters are determined by solving the
same minimization problem shown in (17).

Table 4 shows the results for the two-waveform decom-
position model. The L2 errors of the two components-based
model are over 14% for age = 15 and 35, indicating that
the error between the target PPW and the approximated
PPW is substantial. Furthermore, the AI errors are over 24%
when age = 15 and 35. Thus, it is clear that the three-
component model outperforms the two-component model in
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FIGURE 13. Recovered FRW for age = 15, 35, 65, and 85.

FIGURE 14. Evolution of parameters, w, k, t, min(P), for (16) for age
between 15 and 85.

accurately approximating target pulse pressure waveforms. In
other words, the decomposition of the reflected waveform is
required for better approximation of the PPW for all ages.
It is expected that more than three decompositions could
enhance the accuracy of the approximation model. Therefore,
we expect to develop a generalized decomposition algorithm
for the reflected waveforms and to resolve the optimum
parameters for the decomposed reflected waves in a future
work.

B. FRW RECOVERY FOR AGES 15, 35, 65, AND 85
In Algorithm 2, the values of ZC affect the minimum, maxi-
mum, and average values of Q. This implies that ZC can be
determined as long as the average of the FRW is known.

The average flow rate in a radial artery can be computed
using the following formula:

Flow Rate = π (Diameter/2)2 · (Velocity).

The diameter of the right and left radial arteries was measured
as 2.3 ± 0.4 mm and 2.2 ± 0.4 mm, respectively, in [29].
The blood velocity of the right and left radial arteries was
measured as 7.2(4.2− 10.2) cm/s and 8.8(6.6− 11.3) cm/s,
respectively, in [30]. Thus, using these published data, the

FIGURE 15. Approximation of PPW for age = 15, 25, 35, . . . , 85.

FIGURE 16. Radial AI of P̃ .

average flow rate can be computed as 3.14 · (1.125 mm)2 ·
8.0 cm/s = 0.31 m`/s. By finding ZC such that the resulting
Q̃ has an average value of 0.31 m`/s, ZC for age =15, 35,
65, and 85 can be calculated. Table 5 shows the values of ZC
and resulting average of flow rate. The results show that the
characteristic impedance in the radial artery increases with
increasing age. This trend corresponds to the behavior of
characteristic impedance in the central artery.

Fig. 13 shows the recovered FRWs by Algorithm 2 for
age = 15, 35, 65, and 85.
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TABLE 5. Characteristic impedance and average of the FRW for age = 15,
35, 65, and 85.

C. APPROXIMATION OF PPW FOR ALL AGES
By piecewise-linearly interpolating the parameters w, k, t
and min(P) from age = 15 to age = 85, the PPW can be
reproduced for all ages between 15 and 85 by substituting
these parameters into (16). Fig. 14 shows the evaluation of
parameters w, k, t and min(P) for the age group considered
in this study. Fig. 15 shows the approximated PPWs for age =
15, 25, ..., 85. While Fig. 15 (a) shows reproduced PPWs of
the young to middle ages, from 15 to 45 year old with an
increment of a decade, those of the ages from 55 to 85 year
old with an increment of 10 years are shown in Fig. 15 (b).
Fig. 16 shows the variation of radial AIs as the age varies

from 15 to 85-year-olds. As shown in the figure, the radial AI
increases as the age increases. Furthermore, with increasing
age, the radial AI linearly increases but plateaus at approx-
imately 60-year-old. This result is similar to the age-related
changes in central aortic stiffness reported in a group of South
Asian individuals [31].

IV. CONCLUSION
This study has developed a novel mathematical model for
analyzing RAPWs at all ages. It validated the performance
of the model in reproducing age-related pulse pressure wave-
forms with in-vivo RAPW data. The approximation model
is developed based on three decomposed components of the
85-year-old PPW and nine control parameters of the
decomposed waveforms. Solving the minimization prob-
lem, the optimal parameters of the approximation model
were determined for age 15, 35, and 65. The effects of the
model parameters were investigated with aging. As the age
increases, the weight-related parameters increase uniformly
and the time delay-related parameters, the delays of the first
reflection waveforms, approach those of the forward wave-
forms. These behaviors of the parameters coincide with the
aging effect on the stiffness of the aortic vessels. In the
results section, the performance of the model is evaluated by
conducting error analysis between the approximated PPWs
and the real PPW data. The results show that the maximum
relative L2 error was 5.88% and the maximum AI error was
5.97%. Comparing the errors between two and three decom-
positions of the approximation model, this study showed that
the proposed decomposition model with one forward and two
reflected waveforms can play an important role in accuracy of
age-related PPWs. Beyond the error analysis, this study
demonstrated that the model can recover the FRW from
the decomposed waveforms of the PPW without measuring
the flow velocity. Moreover, this study reproduced PPWs
for a wide range of ages from 15 to 85 years old with an
increment of a decade by piecewise-linearly interpolating the
parameters of the model. In summary, the effectiveness of

the proposed approximation modeling is validated for recon-
structing both the PPWs and FRWs based on the hemody-
namics of the RAPW at age 85.
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