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ABSTRACT Cyber-attacks are causing losses amounted to billions of dollars every year due to data breaches
and vulnerabilities. The existing tools for data leakage prevention and detection are often bypassed by using
various different types of sophisticated techniques such as network steganography for stealing the data.
This is due to several weaknesses which can be exploited by a threat actor in existing detection systems.
The weaknesses are high time and memory training complexities as well as large training datasets. These
challenges become worse when the amount of generated data increases in every second in many realms.
In addition, the number of false positives is high which makes them inaccurate. Finally, there is a lack of a
framework catering for the needs such as raising alerts as well as data monitoring and updating/adapting of
a threshold value used for checking the data packets for covert data. In order to overcome these weaknesses,
this paper proposes a novel framework that includes elements such as continuous data monitoring, threshold
maintenance, and alert notification. This paper also proposes a model based on statistical measures to detect
covert data leakages, especially for non-linear chaotic data. The main advantage of the proposed model is its
capability to provide results with tolerance/threshold values much more efficiently. Our experiments indicate
that the proposed framework has low false positives and outperforms various existing techniques in terms of
accuracy and efficiency.

INDEX TERMS Data leakage, network steganography, covert channel, TCP/IP protocol.

I. INTRODUCTION
The rapid expansion of Information and Communication
Technologies (ICTs) and highly interconnected critical
infrastructures have created various cyber security threats and
challenges. The majority of global trade is done through the
Internet for fast and cost effective services. Security is one
of the significant factors to protect these online businesses
and services from different kinds of cyber-attacks. Security
attacks are causing losses of billions of dollars every year
and getting more sophisticated day by day. Data leakage
can be defined as the intentional or unintentional disclo-
sure of confidential or private data to a party who does
not have permission to access it [1]. Steganography is a
covert communication technique. In network steganography,
different communication protocols such as Transmission
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Control Protocol (TCP) [2], Internet Protocol (IP) [3], Hyper-
text Transfer Protocol (HTTP) [4], Real-time Transport Pro-
tocol (RTP) and RTP Control Protocol (RTCP) [2] are used
for covert communication. A covert channel is a communi-
cation channel that is neither designed nor intended to exist,
and it can be used to transfer information in a manner that
violates a given security policy.

Based on existing literature, covert channel detection
techniques are categorised into approaches based on pat-
tern, machine learning and statistics. The pattern-based
approaches [5] have the common denominator of match-
ing a captured packet header against a known pattern in
order to identify if the packet has covert data in the header.
These techniques provide the benefit of high accuracy and
the speed of detection, but they suffer from the inability
to cope with new threat vectors and incomplete datasets,
resulting in high maintenance requirements. The machine
learning based approaches [6] use a set of rules created from
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the classification of complex datasets. These overcome some
shortcomings of the pattern based approaches by improving
the ability to cope with incomplete datasets and offering
insights into latent information within the datasets. However,
the benefits are offset by the shortcomings of large system
footprints, low detection speed and highmaintenance require-
ments. Finally, the statistical approaches [7] measure devia-
tions from expected stochastic behaviour, which effectively
means that they are also capable of handling incomplete
datasets. Additionally, they offer high detection speed and
ability to detect new threat vectors. The main shortcoming of
these approaches, however, is the possibility of false positive
results.

It has been identified that the common problem with exist-
ing approaches is the inability to adapt in order to detect
new attack vectors, particularly when the attack vectors are
masked, i.e., the data leakage occurs via the fields in packet
headers where the data can be non-linear [3], [8]. A non-linear
type of covert data means that the change of output is not pro-
portional to the change of input. Unlike linear covert data with
rather simple dynamics, non-linear covert data has very com-
plex dynamical behavior, so it is not easy to reverse-engineer
the covert data to its original form. When non-linear data is
sensitive to initial conditions, it becomes non-linear chaotic
data. Sensitivity to the initial conditionsmeans that each point
in a chaotic system is arbitrarily and closely approximated by
other points. A classic example is that of double pendulums
where a slight difference between the points of the release of
the two pendulums causes a large difference in the trajectories
taken by them. Effectively, this means that machine learn-
ing or pattern finding based approachesmay not be suitable as
they work in the realms of fixed pattern locations. Thus the
pattern and machine learning based approaches fail in such
cases, as there is no fixed pattern and the classification of non-
linear data is mathematically not viable [3], [9]. Statistical
approaches do offer some degree of effectiveness, but again
similar to machine learning based approaches, they fail due to
the chaotic nature of non-linear data being leaked via packet
headers [10]. Overall, this makes it difficult for existing
techniques to differentiate between normal data and the data
masked to appear as normal data. Additionally, it is also
observed that various techniques suggested in the literature
fail to cope with the diversity of fields in the TCP header and
it is this inability that makes them unsuitable for coping with
new threats [9].

In this paper we therefore propose:
• A covert channel detection framework for TCP, which
can be used to detect concealed data in a multitude of
fields in a TCP header in real-time, whilst having a
very small system footprint. The proposed framework
is novel in that not all deviation scores from a decision
maker are tagged as data leakage incidents; rather, our
proposed solution focuses on further analysis using a
novel approach to the quantification of skewed results,
which informs the probability of data leakage. The pro-
cess uses the means of moving average for making

decisions about data leakage, thereby increasing the
level of accuracy as well as reducing the likelihood of
Type I (asserting that something is true when it is actu-
ally false) and Type II (asserting that something is false
when it is actually true) errors. Moving average offers
the smoothening of the erratic data and provides the
ability to observe trends that help reduce the likelihood
of the aforementioned errors.

• The use of a statistical threshold calculation technique,
which adopts a hybrid (based on regressive auto-
correlation and classical statistics) approach to calcula-
tion that improves on the limitations observed in existing
covert data leakage detection techniques. The resultant
calculated threshold value is based on expected val-
ues across multiple operating systems, thus ensuring
longevity with regard to its validity and thereby ensuring
that various flavours of operating systems are not sus-
ceptible to leakage.

• A statistical technique that quantifies the level of covert
communication by computing the deviation of observed
data from an expected threshold value. The technique is
a two-stage analysis process where a deviation score is
calculated in real time over a buffer of collected TCP
headers as well as over a larger collection of TCP head-
ers. This offers insights into temporal data leakage detec-
tion for larger data collections, informing the analyst of
time based indicative analysis as well as on-the-fly out-
lier analysis, which are both improvements on existing
detection techniques. Note that although existing statis-
tical techniques offer probabilistic matching, they fail to
accommodate non-linear data of chaotic nature. A sta-
tistical threshold calculation technique, which adopts a
hybrid (based on regressive auto-correlation and classi-
cal statistics) approach to calculation, improves on the
limitations observed in the existing techniques.

The paper is organized as follows. In Section II we provide the
background information about TCP/IP based steganography
and a brief description of related works within the context of
covert channel detection. Section III presents our proposed
covert data monitoring framework. Section IV specifies our
statistical algorithm for folding non-linear chaotic random
data. Section V provides a description about the maintenance
of thresholds - an algorithm for the creation of thresholds.
Section VI presents an algorithm used to quantify outliers
(i.e., covert data). Section VII describes our experiments,
the evaluation of the experiment results and a comparison of
our work to existing approaches in the field of covert data
detection. Finally, our conclusion is given in Section VIII.

II. BACKGROUND AND RELATED WORK
Steganography can be implemented in different fields in
TCP/IP. However, in the past, stenographic techniques have
failed in TCP because of a different probability distribution to
that of the unmodified TCP/IP implementations. According
to [11], the TCP/IP header is highly susceptible to steganog-
raphy. This comprises header fields such as Type of service,
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IP flags, Fragments offset, IP options, TCP timestamp, Packet
order, Packet timing and TCP initial sequence number. For
details please refer to [11] that provides descriptions per
field. The existing research has shown that covert channels
are divided into three major categories, i.e., covert timing
channels, covert storage channels and covert network chan-
nels [12]. A covert timing channel takes advantage of the
performance of a system component to send a secret mes-
sage. Storage based covert channels use the method of send-
ing intended hidden information by using the common area
between processes inmemory, or say, themainmemory of the
system. The main aim of covert network channels is to hide
secret data inside the carriers/packets, i.e., normal network
traffic of users. In an ideal situation, hidden data exchange
cannot be detected by third parties unaware of the covert
channel usage [2]. The HTTP and TCP/IP protocols are
linked to known types of covert network channels. For exam-
ple, in the TCP/IP type of covert network channel, TCP/IP
based modification performs stenographic covert channels
over network protocol header values to conduct secret com-
munication [9], [12], [13].

In order to prevent data leakage, authors in [14] have
formulated data leakage prevention problems as Partially
Observable Markov Decision Processes. The model created
encodes a mechanism for monitoring that is not visible to the
recipients of the data. The technique has been called digital
watermarking. The research goal of [14] is to create optimal
information sharing strategies for the sender and optimal
information leakage strategies for a malicious recipient as
a function of the ability of the monitoring mechanism. The
experiments show the effects of different settings on the cost
of data leakage, fuzziness level and trust of the sender in
recipients.

Statistical techniques involve data capturing followed
by the measurement of deviation from expected stochas-
tic behaviour, i.e., they are appropriate where observations
are not reproducible exactly. Other measurements include
the audit of records, categorisation of various activities,
amount of activity and also system resource usage. The
deviations are calculated by comparing the resultant to pre-
known/calculated stochastic expectation. If the measures are
outside the postulated thresholds, the result is categorised
as failure/leakage activity. There are other approaches where
failure is linked to the level of irregularity in the data under
observation and it is considered as an outlier if it is not within
postulated thresholds. Various statistical techniques can be
categorised into the approaches of such Univariate Analysis
Models and Multivariate Analysis Models. In a Univariate
Analysis Model analysis, the measurements are obtained
from an individual variable or attribute to measure the over-
all irregularity. In Multivariate Analysis Model analysis, the
measurements are obtained from more than one variable.
Techniques such as Principal Component Analysis, Multiple
Regression Analysis or Partial Least Squares are used to
identify the prevailing patterns in the data that are categorised
as trends and hence depict outliers that are being monitored.

This type of analysis has the known advantage of reducing the
probability of the Type I error and decomposing correlated
measurements into a new set of uncorrelated measurements
that is beneficial for pattern recognition.

Various detection techniques for covert channels have var-
ious costs in terms of the processing power and sensitivity
of execution. Protocol based detections are simple to imple-
ment and have low processing power requirements. However,
they can only detect badly written implementations. Signa-
ture based detection is more sensitive and raises a notifica-
tion when protocol implementation signatures do not match.
Processing requirements for signature-based detection are
higher than those for protocol based detection. However, they
are not as high as the requirements for the behaviour-based
detection of malicious packets. Signature-based detection is
the most sensitive and efficient technique, but it has a very
high false positive rate.

III. PROPOSED COVERT DATA
MONITORING FRAMEWORK
In the previous section, we discussed the extent of the short-
comings of existing solutions and indicated the challenges in
creating a solution for covert data monitoring on TCP headers
within the realms of network communication. In order to
resolve the above, we have devised a novel Covert Data
Monitoring Framework to specificallymonitor complex, non-
linear, chaotic, random and dynamic data with a degree of
uncertainty. It focuses mainly on protection against data leak-
age over covert channels. The framework also focuses on the
detection of both deliberate and accidental covert data leak-
age and endeavours to notify the relevant authorised parties
about detected incidents.

The framework is a hybrid one, bringing together var-
ious components that operate and reside on the hosts
protected against data leakage. There is a degree of collab-
oration between various host components in order to ensure
that the framework’s threshold profiler remains updated
autonomously. Furthermore, it has been designed to be self-
contained with a small system footprint, while ensuring that
its detection speed remains high and the results remain effec-
tive. The framework uses a statistical approach for monitor-
ing, detection and decision-making. The framework resides
on the top of an operating system and has the capability
to obtain data from the network layer and to utilize oper-
ating system functions such as notifications, as illustrated
in Figure 1. The proposed framework operates by monitoring
incoming network data in real time and comparing it with the
threshold profiles managed by the threshold profiler compo-
nent. The threshold profiles are designed specifically to cope
with dynamic, non-linear, chaotic and random data and they
are calculated using a novel threshold calculation/adaptation
algorithm. It is by comparing the real time data against
the threshold values so that a small modal change in the
header field values can indicate a leakage, which also takes a
small amount of time. The framework has been designed to
refine the threshold profiles periodically, using the threshold
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FIGURE 1. High level architecture of covert data monitoring framework.

adaptation algorithm. This adaptation allows the framework
to evolve and also ensures that unknown data leakage strate-
gies and attacks can be combated. The framework is so dis-
tinct in that not all deviation scores derived by the decision
maker component are flagged as data leakage incidents; these
scores are further analysed using a novel approach to the
quantification of skewed results, which informs the probabil-
ity of data leakage.

The various operations of the framework have been cat-
egorized into six different phases illustrated using different
colours in Figure 2. Note that the flowchart attempts to
present a successful time scenario and potential consequences
without depicting the cases of failure at runtime. These phases
are described in detail below.
Trainer (Light Grey): It is part of the training phase. During

the initial training stage, the framework will initiate the com-
putation of an optimal number of dimensions in order to find
the correlation between the various points of given data series.
Note that this phase is only triggered once for a data type in
the ISN (Initial Sequence Number) field and no subsequent
computation is required unless a data type changes.
Threshold Calculator (Blue): It is also part of the training

phase. During the threshold calculation stage, the system
collects the network data and stores them in a persistent
storage. Note that it is assumed that the data collected at this
stage is free of any covert data leakage activity. In order to
calculate the threshold, an iterative process is required that
would consume trainer data and compute a threshold value.
Threshold Value (Dark Grey):The threshold value is stored

in this phase in a persistent storage. Note that the threshold
value can be computed by the Threshold Calculator using the
trainer data or adapted via the Adapt Threshold phase as a
result of outlier detection.
Data Monitor (Green): This phase of the framework is

where the real time monitoring of TCP packets is conducted.

FIGURE 2. Covert data monitoring framework at runtime.

The monitoring includes the comparison of a computed third
order feature variance value to the threshold value from the
previous phase. Note that during runtime this phase does not
require a large number of hardware resources as the compar-
ison is conducted with a small buffered set of incoming TCP
packets.
Outlier Analysis (Yellow): Once the data monitoring phase

raises an alarm regarding a breach of the threshold value,
the statistical outlier analysis phase is started. This phase uses
deviation to calculate the amount of movement in the third
order feature variance value and computes a moving average
value by comparing it to historic values computed over the
last four periods. The notification phase will begin only if
the average value is skewed towards a breach; otherwise, the
alarmwill be recorded but no notification event will be raised.
This is to reduce the amount of Type I and Type II errors.
Notify (Light Blue): This notification phase proactively

raises alarms and also records a data leakage breach. It is one
of the requirements of the framework. Notification methods
include calls to low level functions of the operating system to
take remedial actions, to disable network interfaces and func-
tions if necessary, and to send alert emails to the administrator
of the system being monitored.
Adapt Threshold (Orange):The threshold adaptation phase

includes threshold recalculation if the amount of skewness
found during the outlier analysis is larger than expected. The
adaptation forms a closed loop whereby the threshold value
can be recomputed proactively to increase the likelihood of
detecting outliers and to improve the overall accuracy of the
framework. The newly adapted threshold value is stored in
the Threshold Value persistent storage.
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IV. PROPOSED STATISTICAL ALGORITHM FOR COVERT
CHANNEL DETECTION
As described in [15] and in Section II, the ISNs generated
by operating systems are not truly random; they are pseudo
random numbers that have initial relation to ISNs generated
in the past. In order to forecast a future value in series,
there are a number of forecasting methods, e.g. trend curve
based prediction for linear systems as well as logarithmic
regression, and Auto-Regression Integrating Moving Aver-
ages (ARIMA) [15] for non-linear data. ARIMA is used to
compute the number of initial values (dimensions) that are
used to computer a future value. In our case, ARIMA is
employed to compute the embedding dimension that is the
number of past values used to predict future values so that
we can calculate the next ISN value to compare it to the ISN
value within the packet. The comparison is critical, because
the packet would be considered as an outlier if the values are
different beyond the threshold value.

A. MAINTENANCE OF THRESHOLDS
This section discusses the components required for the statis-
tical algorithm used for marinating thresholds. Figure 3 illus-
trates its process. The sequence number in the TCP header
comprises a random initial number used for the communica-
tion between two network nodes. It is mandatory and has a
maximum value of 232.
In order to ensure the integrity of TCP/IP connection,

every stream is assigned a unique random sequence number.
This is done so that attackers may not be able to perform
blind spoofing (a practice where an ISN can be guessed)
and change the data integrity of a packet. According to [16],
it is difficult to generate an unpredictable number using a
computer. The reason for this is that computers are designed
to strictly execute a defined set of commands in a repeatable
and accurate way. A fixed algorithm is used to produce
exactly the same result on a different computer that can hence
predict output values (provided that the internal state of a
remote system is accurately reconstructed) [16]. It is observed
through a pseudo-random number generator (PRNG) that the
algorithm will start generating the same set of sequences over
again because of a limited number of internal states that can
be used by the algorithm [15]. It is observed that PRNG used
for sequence numbers in TCP headers follows patterns (based
on their different implementations) in operating systems [13].
This has been spotted through Phase Space Analysis [16].
It was observed that a correlation between subsequent results
is followedwhen generating random numbers. The aforemen-
tioned property between generated random numbers can be
used to find out if a subsequent random number is corre-
lated in a specific way. For the purpose of creating TCP/IP
packets, a PRNG is used to generate a sequence of numbers
that approximate to properties of random numbers. It is the
randomness of ISNs that makes it difficult for attackers to
predict them. However, the fact that random numbers gener-
ated using an algorithm are actually pseudo random makes
the communication open to vulnerability. It is the uniqueness

FIGURE 3. Flowchart for the creation of features and the threshold
calculation for a profile - Training Process. The figure shows the process
followed for the maintenance of thresholds, where the one dimesional
non-linear data is expanded in terms of previous values to compute the
threshold value.

of ISNs within a given time frame, which ensures that the
fragments of different packets are not assembled into one
packet at the receiving end. A PRNG in operating systems is
modelled as a function of which the input is a short random
seed and the output is indistinguishable from truly random
bits. Various implements of a PRNG exist that implement a
deterministic function [17]. Sheela and Sathyanarayana [18]
reported that pseudo random number generators are derived
from a deterministic, chaotic and dynamic system, thus mak-
ing a connection between chaos and pseudo random number
generators.

Phase space reconstruction is a very useful non-
linear or chaotic signal processing technique to find out
about a dynamic system. Topologically, the phase space and
original system are equivalent and hence it is possible to
recover the non-linear dynamics of a generating system [19].
The implication is that the complete dynamics of the system
are accessible in this space.
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V. PROPOSED STATISTICAL THRESHOLD
CREATION ALGORITHM
The starting point for the analysis of any non-linear dataset
(here, for instance, initial sequence numbers generated for
packet creation in TCP/IP communication) is the construction
of a phase space or the creation of a portrait of the phase
space. The state of the system is described as the state of
its variables, and n state variables observed at time t form a
vector in an n dimensional space called a phase space. The
state of the system typically changes with time and hence
the vector in the phase space describes the trajectory of the
system or the evolution/dynamics of the system. It is this
shape of trajectory that has hints/indications about the system.
Chaotic or periodic systems have characteristics in the phase
space. To reveal the hidden structure of a random number
phase space, its construction using ‘‘delay coordinates’’ is
widely used. For given ISN(i) numbers, the phase space
(datasets) is constructed as follow:

Yi = (ISN (i), ISN (i− 1), . . . , ISN (i− (m− 1)) (1)

Here, i = 1, 2, . . . .i−m+ 1, where i is the number of ISNs,
and m is the dimension. Vector Yi is the new phase space
(dataset) that is formed from time-delayed values of the initial
ISN value scalar measurements. The first order difference (as
shown in Equation 2) is constructed as follows [15]:

χ (n) = ISN (n)− ISN (n− 1)

y(n) = ISN (n− 1)− ISN (n− 2)

z(n) = ISN (n− 2)− ISN (n− 3)

w(n) = ISN (n− 3)− ISN (n− 4) (2)

Here, n = N ,N − 1,N − 2, . . . , 5, and x(n), y(n), z(n)
and w(n) are point coordinates used to create a phase space
dataset.

Chaos theory dictates that phase space vectors are fully rep-
resentative of the non-linear dynamics of an original dataset,
when the embedding dimension m is large enough.

For an optimal embedding m, according to [19], the obser-
vation of a real process generally does not yield all of its state
variables. This is generally either because not all state vari-
ables are known or because not all of them can be measured.

It is clear that the numbers generated are clearly the result
of unknown regression with dependent components. As they
are unknown, it can be assumed that they are formed of
independent variables y1, y2, y3 .., yt where yt+1 is dependent
upon the value of yt . This type of time series is known as
a univariate time series (a series with single observations
recorded over regular intervals). In a univariate time series,
the past value of an independent variable is used to calculate
the value of a new independent variable as depicted in the
following equation:

yt = βyt−1 + ε (3)

Here, β is a constant and ε is an error value. The above
equation explains that sometimes when the set of explanatory
variables required by a regression model is unavailable (true

for random numbers generated as a function of time with
unknown other variates), then it becomes a beneficial choice
to use only a single variable to forecast future values.

Among the models available for modelling a univariate
series are:
• Auto-Regressive Model (AR)
• Moving Average Model (MA)
• Auto-Regressive Moving Average Model (ARMA)
• Auto-Regressive Integrating Moving Average Model
(ARIMA)

In the ARmodel, yt depends only on its own past values yt−1,
yt−2, yt−3, etc. Thus we have yt = f (yt−1, yt−2, yt−3, . . . , εt ),
where εt is the noise or error term. A common representation
of an auto-regressive model depending on p past values is
called an AR(p) model and represented as:

yt = β0 + β1yt−1 + β2yt−2 + · · · + βpyt−p + εt (4)

For Equation 4, it is important to know that the value of p is
about how far back in time the value of y should be picked
in order to estimate yt . Generally, in a real life phenomenon,
it has been observed that past values up to 3 steps (i.e.,
forming an AR(3) model) are sufficient [20]. In this context,
it is critical to compute p so that accuracy can be obtained.

In the MA model, yt depends only on its error terms εt−1,
εt−2, εt−3, etc. A common representation of amoving average
model where it depends on q past values is called a MA(q)
model and defined as:

yt = β0 + ϕ1εt−1 + ϕ2εt−2 + · · · + ϕqεt−q + εt (5)

The ARMA model refers to a combined usage of the AR
and MA models, denoted as ARMA(p, q). Hence, it is rep-
resented as:

yt = β0 + β1yt−1 + β2yt−2 + · · · + βpyt−p
+ϕ1εt−1 + ϕ2εt−2 + · · · + ϕqεt−q + εt (6)

Auto-correlation (ACF) refers to the way in which the obser-
vations in a series are related to each other and measured by
simple correlation between the current observation (yt ) and
the observation in the pth period from the current one (i.e.,
yt−p). It is defined as:

ρk = Corr
(
yt , yt−p

)
=

Cov
(
yt , yt−p

)
√
var (yt)

√
var

(
yt−p

)
Here, Cov is covariance and var is variance. pk informs about
how many periods back one should look into for creating
stationary series.

Partial Correlation (PACF) refers to the degree of correla-
tion between yt and yt−p, which is defined as:

ρk = Corr
(
yt , yt−p

)
=

Cov
(
yt , yt−p|yt−p−1, yy−p−2

)√
var

(
yt |yt−p−1, yt−p−2

)√
var

(
yt−p|yt−p−1, yt−p−2

)
The ACF or PACF is available for various values of
lags of auto-regressive and moving average components,
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i.e., p and q. Based on Equation 2 for the four dimensional
phase vector, ri is constructed as:

ri= [x(i), y(i), z(i),w(i)], i=1, 2, . . . ,M , M = N − 4

(7)

Let R represent the phase space dataset formed from
Equation 2 and Equation 7. The number of phase space
vectors in R is N−4.

R = [r1, r2, . . . , rM ] (8)

In order to extract features / patterns from R, the distance
between two vectors ri and rj is calculated in the phase space
as follows:

di,j

=

√
(x(i)−x(j))2+(y(i)−y(j))2+(z(i)−z(j))2+(w(i)−w(j))2

(9)

Computing the distances between any two vectors in R forms
a 2-dimensional matrix D as shown below:

D =



d1,1 d1,2 · · · d1,M
d2,1 d2,2 · · · d2,M
...

... · · ·
...

dk,1 dk,2 . . . dk,M
...

... · · ·
...

dM ,1 dM ,2 · · · dM ,M


(10)

Equation 10 shows a 2 dimensional distance matrix formed
by the Euclidean distances between the two vectors in R,
with k = 1, 2, . . . ,M . A row vector represents the distances
between a specified vector and all the vectors in R, hence the
row size is M . As the distances between the vector and itself
will always be zero, it makes the diagonal entries of D zeros.

d(k) =
[
dk,1, dk,2, . . . , dk,M

]
, j = 1, 2, . . . ,M (11)

Note that in Equation 11, dk,k = 0. The variance of row vector
dk is calculated as follows:

σ 2
k =

1
M − 1

∑M

i=1

(
dk,i−µk

)2
, i, k=1, 2, . . . ,M (12)

Here, µk is the mean value of row vector d(k). σ 2
k represents

the variance of the Euclidean distances between the specified
vector rk and all other vectors in R. Upon calculation of
the variance, we obtain the variance vector σ 2 as shown in
Equation 13.

σ 2
=

[
σ 2
1 , σ

2
2 , . . . , σ

2
M

]
(13)

Furthermore, Equation 14 below calculates the variance of
vector σ 2. The computed variance is based on 1000 ISNs
that can be obtained by an ISN training sequence. Here µσ
represents the mean value of those in σ 2. It is expected that
the variation in distance will be of the same order, so 10% of
the variance has been selected as the threshold as shown in

Equation 15. The justification of 10% as the threshold is to
ensure that the false positive rate remains low.

varσ =
1

M−1

∑M

i=1

(
σ 2
i −µσ

)2
, i=1, 2, . . . ,M

(14)

Threshold ISN =
varσ
10

(15)

VI. PROPOSED STATISTICAL ALGORITHM FOR
QUANTIFICATION OF OUTLIERS
With a header field that can take random data, it becomes
highly dynamic and difficult to monitor for covert data leak-
age. Therefore, when a threshold breach is reported, it does
not automatically indicate a data leakage event. Instead, every
event (in which a deviation from the threshold is noted) is sub-
jected to further analysis to quantify the outlier. Our proposed
quantification algorithm provides a score to a detected outlier,
which forms a dual stage analysis process. In the first stage,
the actual event of outlier detection is reported. In the sec-
ond stage, the extent of the breach is measured by scoring
the deviation in relation to the threshold. This improves the
accuracy of the detection and reduces the likelihood of Type I
and Type II errors. Figure 4 shows the flowchart detailing
the process that quantifies and decides if a certain packet is
legal or illegal.

VII. EXPERIMENTS AND RESULTS
A. DATASET AND SETUP OF STATIONARY SERIES
Within a TCP packet header, there are a number of fields
that can be used for potential covert data leakage. One of the
fields, which is highly dynamic and therefore tends to be a
favoured choice for data leakage due to its inherent need for
random values, is the ISN field. As discussed in Section IV,
an ISN is a random number generated using a PRNG.
However, such random numbers are produced through a
sequence of numbers, so in reality they are not truly random
numbers. Attackers can predict these numbers. A PRNG is
normally used in Window, Linux and other Operating Sys-
tems. Due to the coupling that exists between the system’s
components, we can reconstruct the system’s phase space
trajectory from a single observation by using a time delay
mechanism (delayed coordinate) as suggested by Takens et al.
in [19]. This reconstruction of the phase space is called time
delay embedding. Figure 5 and Figure 6 show the ACF and
PACF plots for a stationary ISN dataset atm = 4. It is noticed
that ACF and PACF reside outside thresholds, indicating that
the auto-regression of some order will be required. This has
also been tested using the Dickey-Fuller Test (See Figure 7) to
prove that the series has been made stationary, which extracts
a larger set of temporal patterns useful for our analysis.

B. TEST AND RESULTS
The setup of our experiments was conducted on Ubuntu
Linux VM that was mounted using Oracle Virtual Box on
a Windows 7 computer. The choice of the operating system
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FIGURE 4. Flowchart for quantification of outliers, showing the process
followed to decide if a certain packet is marked as legal or illegal.

was dictated by the specification of covert data creation code
called Covert_TCP.

The amount of data collected has direct relation to the
accuracy of threshold values. For the purpose of computing
a threshold value, the following strategies were applied to
ensure that the threshold value obtained had the least amount
of skewness and the subset of collected data being processed
was not too large. To evaluate this, the following data sizes
100, 350, 700, 1000, 2000 and 3000 were used and the
amount of percentage change in the threshold value was
measured to ensure durability and precision.

The results from the computation of threshold values using
these data sizes are shown in Figure 8. The results of this
experiment indicate that using 1000 packets as the data size
provides us with the most balanced value with respect to
the training period as well as the asymptotic point where
the amount of gain achieved by using any higher data size

FIGURE 5. Auto-Correlation Function plotting stationary ISNs with
delayed coordinate at m = 4, where dataset is a collection of 1000 ISNs.

FIGURE 6. Partial Auto-Correlation Function plots for stationary ISN
delayed coordinate data at m =4, where dataset is a collection of
1000 ISNs.

FIGURE 7. Dickey-Fuller test for proving that ISN series has been made
stationary at m= 4 after applying delayed coordinate method for phase
space reconstruction statistical analysis.

approaches to 0. Hence, for our testbed configuration, the
1000 data size and its corresponding value for the threshold
were chosen. Note that this is not constant globally and can
change based on hardware metrics available while computing
the threshold value.
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FIGURE 8. Average changes in threshold value with respect to data sizes
and time required for creation of training model.

The main objective of the experiments was to re-enforce
the threshold model by using it as a benchmark value for
testing independent TCP packets in the context of sending
information as a covert ISN value in the TCP header.

Experiment 1- The data for this experiment was strategi-
cally created in order to have covert sequence numbers in an
alternate pattern, whereby the first TCP packet has a true ISN
while the second TCP packet has a covert ISN inserted into
the sequence number field.

Experiment 2 - The data for this experiment was created
in order to have covert sequence numbers appearing together
in a bulk of six consecutively placed TCP packets followed
by a true sequence number.

Experiment 3 – The data for this experiment has no false
covert entries, i.e., all sequence numbers are true.

In experiment 1, it was found that with the alternate pattern
of covert ISNs injected into TCP packets, our algorithm
successfully located illegitimate entries of covert data in the
TCP packets. The Number of True Positives (NTP) was 3 out
of 4, while the Number of False Negatives (NFN) was 1 out
of 4, causing a Type II error. Figure 9 shows that the Type I
error was found to be very low when alternate packets within
a group were covert packets.

In experiment 2, it was found that with six consecutive
entries of covert ISNs injected into TCP packets, our algo-
rithm was not fully successful in locating illegitimate entries
of covert data in the TCP packets. NTP was 1 out of 4
while NFN was 3 out of 4, causing a Type II error as well.
Figure 10 shows that the Type II error was high as a valid ISN
was placed within a group of covert packets. It was noted that
the variance got skewed with one true entry in a buffer of four
entries. In the cases where all entries were found to be covert,
our algorithm was found to be very effective.

In experiment 3, it was found that with all true entries
of ISNs in TCP packets, our algorithm was very successful
in locating the legitimate entries of covert data in the TCP
packets. The Number of True Negatives (NTN) was 4 out
of 4. Figure 11 shows that all the valid ISNs when processed
through our algorithm were found to be Not Covert.

FIGURE 9. Illustration showing that the accuracy of algorithm had a low
Type I error for alternate covert ISNs with 50% of packets being covert.

FIGURE 10. Illustration showing the accuracy of algorithm with Type I
and Type II errors for contiguous covert ISNs with 25% of packets found
to be covert.

For the evaluation of the outlier quantification algorithm,
the covert data was injected into the ISN field in a TCP
packet using a strategy ASCII conversion, while ensuring that
covert data was being sent in a continuous stream, an alternate
way or with a known gap of valid sequence numbers.

It was observed that Type I errors were low to the amount
of 25% for 4 out of 5 experiments, while type II errors were
found only in one experiment out of 5. It is noteworthy that
these experiments helped with establishing the boundaries
of the algorithm. Furthermore, the quantification algorithm
was also tested on valid sequence number data in isolation to
evaluate errors raised. The algorithm performed as expected
in 3 out of 3 instances and did not report any Type I and
Type II errors.

C. COMPARISON WITH RELATED WORKS
The research work proposed in [21] and [22] adopts a Sup-
port Vector Machine (SVM) technique proved to be highly
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FIGURE 11. Illustration showing that the accuracy of algorithm has no
Type I and Type II errors for valid ISNs. This was a test of our algorithm on
a legal stream of data. There were no alerts raised.

effective to detect covert channels in comparison with other
techniques. As the SVM is the best approach currently used
for covert data channel detection, it was an obvious choice
for us to compare our proposed algorithm against this type
of detection approach in [21] in the context of ISNs. The
areas compared include the number of features used, total
correctness, detection method and average time to detect as
shown in Table 1.

Table 1 shows the results of our proposed detection algo-
rithm against the two different SVM based systems. The
results were produced based on our experiments conducted
on the Windows 7 operating system where, for all cases,
the training data was created using the Covert_TCP tool. The
training data and covert data were stored in the operating
system for analysis in SVM-cases 1 and 2. For our proposed
model, the covert data was sent over the network and analysed
by our model on the fly. Table 1 shows that our proposed
detection algorithm outperforms the SVM-based approach
in each performance metric apart from the number of fea-
tures in the second SVM case. Our algorithm exploits the
fact that ISNs are pseudo random numbers which appear to
be chaotic but can be predicted with certain accuracy. This
greatly reduces the complexity of our algorithm, whichmakes
it simpler to implement. Note that Table 1 indicates that the
accuracy of SVM decreases if non-linear data is used instead
of linear chaotic data. The SVM is unable to detect non-
linear chaotic data. In order to boost the accuracy of the
SVM, the number of features to be considered in a TCP
packet needs be increased to three, i.e., the SequenceNumber,
TCP Control Flag and TCP Checksum fields. The number
of features was increased in order to improve the accuracy
of the SVM. Hence, the computational complexity of the
SVM for the purpose of training is evaluated as O (number
of samples x number of features), which includes solving
convex optimisation. However, our method only uses a single

TABLE 1. Performance comparison between SVM and our proposed
model.

feature and does not contain any convex optimization issue.
This leads to the computational complexity of the method
being O(3× number of samples). This effectively means that
our method is able to not only provide higher accuracy with
a lower number of features but also offer those results in
a fraction of time. By using third order statistical features,
our algorithm has identified normal and stego-ISNs with the
accuracy rate of 100%. For the Windows 7 operating system,
our model needs to be created once with 1000 normal ISNs,
while the SVMuses 10,000 ISNs to train themodel, including
5000 normal and 5000 stego-ISNs. Here, the stego-ISNs
were used in order to simulate existing network conditions
where data leakage is carried in chunks, not in a continuous
stream. Finally, our method is deployed online for steganaly-
sis, whereas the SVMworks only in offline mode. Hence, it is
possible that a covert message would pass through before the
completion of the SVM model training or steganalysis.

VIII. CONCLUSION
A statistical technique has helped with the quantification of
the level of covert communication by computing the devi-
ation of observed data from the expected threshold value.
The technique has a two-stage analysis process where a
deviation score is calculated in real time over a buffer of
collected TCP headers as well as over a larger collection of
TCP headers. It offers an insight into temporal data leak-
age detection for larger data collections, informing an ana-
lyst of time based indicative analysis as well as on-the-fly
outlier analysis, which are both improvements on existing
detection techniques. Furthermore, the proposed framework
is novel in that not all deviation scores derived by our deci-
sion maker component are flagged as data leakage incidents;
instead, the proposed solution offers further analysis using a
novel approach to the quantification of skewed results, which
informs about the probability of data leakage. The process
uses themoving average approach formaking decisions about
data leakage, thereby increasing the level of accuracy as well
as reducing the likelihood of the Type I and Type II errors [9].
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