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ABSTRACT The application of cloud computing has diversified with the adoption of Internet of Things
(IoTs) and edge computing. However, it has increased the uncertainty of workload demand; thus, the efficient
utilization of cloud computing resources become more challenging. Traditionally, dynamic consolidation
of workload inside cloud data centers relies on identifying overload and under-load hosts using either
static or dynamic threshold value. In this paper, we propose a Utilization Driven Model (UDM) model to
estimate the number of under-utilized and over-utilized processing machines through percentile ranks of low
and high utilization frommean value of resource utilization of hosts and the value of mean absolute deviation
of resource demand. UDM swiftly reacts to any change in workload demand and adapts the system to the
current demand of resource utilization. The UDM approach not only impacts the energy consumption and
quality of service but also increases the elastic nature of cloud by robustly managing the sudden changes
in workload. Experiment results show that UDM is an efficient server consolidation technique, improving
30% energy, 40% quality of service compared to contemporary techniques. Thus, the UDM is more robust
to support stochastic resource demand compared to traditional techniques.

INDEX TERMS Server consolidation, cloud computing, efficient resource utilization, cloud data centers,
dynamic workload consolidation.

I. INTRODUCTION
Cloud Computingmanages a large diversity of heterogeneous
services and applications, particularly in the era of 5G. It pro-
vides computing resources and services to the organizations,
based on on-demand and pay as you go model. The enormous
size of modern cloud computing infrastructure consumes
a huge amount of electricity for cooling, and illumination,
and data center related operations. Estimates reveal that the
energy cost contributes almost 40% to the total cost of the
data center [1]. Apart from cost, carbon emission associated
with modern cloud data centers amounts to almost 2% of the
total global emission of CO2 [2], [3]. A significant amount of
energy consumption and carbon emission can be reduced by
utilizing computing resources, efficiently [4]. In cloud data
centers, computing resources are allocated through Virtual
Machines (VMs) or containers, so that the underlying cloud
infrastructure may be shared among the users. Only a small
but varying fraction of allocated resources are utilized by
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organizations at a certain time [5]. Therefore, to enhance the
utilization rate of active computing resources, more resources
are allocated to processing machines than their total capac-
ity. Resource utilization rate being unpredictably variable,
the allocation of workload is dynamically consolidated on
the optimal number of processing machines by migrating
VMs from underutilized processing machines to other suit-
able machines [6]. However, it may lead to aggressive con-
solidation in case resource utilization requests to Processing
Machines (PMs) exceed their capacity, too often resulting in
the Quality of Service (QoS) issues. In cloud computing, QoS
is often defined via Service Level Agreements (SLAs) [7].
A good server consolidation policy must ensure reliable QoS
along with reducing energy consumption for the execution of
the workload. Thus, to bring balance between the conserva-
tion of energy and quality of service, it is equally important
to manage both, under-utilized and over-utilized hosts.

Studies have also shown that the pervasive adoption of
cloud in the IoT framework has increased the uncertainty
of resource utilization. As a result, it has exacerbated the
problems of inefficiencies in resource provisioning causing
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degradation in the provision of quality of service as defined
by Service Level Agreement (SLA) [8] and an increase in
energy consumption. This has increased the significance of
elasticity of resource provisioning in the cloud data center.
Resource elasticity is an important feature of clouds that
refers to the ability of a cloud to adjust its active resources
as per resource demand. The adjustment is made to accom-
modate changes in the resource utilization rate of a service
as well as to facilitate acquiring or releasing resources on
demand. In a highly distributed cloud environment based on
IoTs and edge computing with stochastic workload demand,
it has become ever more challenging to maintain elasticity
as required. Resource management decisions based on cur-
rent load demand may lead to achieving this elasticity [9].
By doing so, resource provisioning can be managed robustly.
Traditionally, resource optimization in a cloud data center
corresponds to an energy-quality trade-off problem and poli-
cies mainly focus on bringing the best scenario out of it.
Uncertainty of workload demand is catered, to an extent,
by monitoring resource utilization and dynamically adapt-
ing the resource provisioning. To forestall the repercussion
of sudden change in workload demand, prediction based
approaches have also been implied, as discussed in the next
section in detail. However, increased stochastic resource
demand due to changing environment, after the integration of
IoT and edge computing, requires an extremely robust adap-
tion of resource provisioning with more focus on elasticity.
There is an ample need to improve the underlying infras-
tructure of service delivery as well as the robust mechanism
and policies for the execution of workload that are tolerant
to uncertainty and stochastic behavior of resource demands
to meet the recent challenges. Kratzke [10] observes that the
evolution of cloud computing architecture is a steady process
of resource utilization optimization.

Keeping in view, the proposed Utilization Driven Model
for server Consolidation helps in tackling the NP-hard prob-
lem of workload consolidation efficiently along with catering
to the new challenges of increased uncertainty in workload
demand. Utilization Driven Model (UDM) for server consol-
idation in the cloud data center emphasize on current resource
demand. UDM optimizes resource utilization in a stochas-
tic environment along with increased elasticity of resource
provision that is best suited for IoT focused environment.
UDM focus is not limited to optimizing energy consumption
and quality of service but it also manages active resources by
keeping utilization rate high and variance of utilization low.
By robustly adapting the resource provision in a stochastic
environment, UDM adds up the elastic nature of the data
center. Thus, UDM contributes to solving traditional as well
as new challenges faced by cloud data center due to the
increased reliance of IoTs on it. It improves energy efficiency
by increasing the average resource utilization and maintains
the quality of service by lowering the variance in utilization
on active hosts.

The remaining paper has been arranged in the follow-
ing sections. Section II presents the literature review and

discusses the work in the field of dynamic consolidation of
workload. Section III explains the utilization drivenmodel for
consolidation, along with its algorithm. Section IV provides
experiment setup and results of UDM based algorithm along
with six other server consolidation techniques. Section V
explains the result with comparative analysis on the basis of
performance and final section concludes the work.

II. RELATED WORK
Dynamic consolidation of workload on the optimal number
of servers under time-varying resource demand is an active
research area and several strategies have been proposed in
this regard. Best Fit Decreasing (BFD) algorithm has been
utilized for allocation of virtual machines (VMs) to suitable
host processing machines in a data center. In BFD, VMs
are sorted in decreasing order of their resource demand.
Then Best Fit algorithm is used to allocate the VMs to
the processing machines, turn by turn. To allocate VMs to
suitable PMs, Beloglazov et al. [11] proposed a modified
version of BFD algorithm known as Power-Aware Best Fit
Decreasing [PABFD] heuristic. Similar to BFD, PABFD, also
sorts the VMs in the decreasing order of resource demand.
PABFD uses CPU as a resource demand to sort the VMs.
It then, turn by turn, allocates the VM to the processing
machine based on the least increase in power consumption.

For dynamic server consolidation, under-load and overload
host are detected using upper and lower resource utiliza-
tion thresholds. After that, the workload is re-allocated to
suitable hosts. In another work [12], the authors proposed
three heuristics for dynamic consolidation of servers based on
adaptive thresholds of resource utilization. Historical traces
of workload are used to adjust the utilization thresholds.
Three adaptively adjusted host overload detection methods
were proposed: Inter-Quartile Range (IQR), Median Abso-
lute Deviation (MAD), and Local Regression (LR). Inter-
Quartile Range (IQR) uses first and third quartile as the
lower and upper threshold of utilization. The first quartile
is the measure of 0.25 percentile while the third quartile
is the 0.75 percentile. Local Regression uses a linear equa-
tion to map the relationship between input variables and
a dependent output variable. MAD is a median of abso-
lute deviation from the median value of the observed data.
As compared to standard deviation, MAD is more resilient
to outlier data. For the reallocation of VMs, they used the
PABFD algorithm. Farahnakian and Pahikkala [13] proposed
a K-nearest neighbor (DC-KNN) algorithm for dynamic
consolidation of VMs on the optimal number of servers.
K-value is predicted using cross-validation technique and
K-nearest neighbor regression is employed to predict the
workload on PMs. Based on cluster results, server consoli-
dation is executed. Li [14] identified the overload threshold
of resource utilization based on Markov decision process.
He utilizes a modified version of the Bellman optimality
equation to adaptively adjust the overload threshold value.
He considered resource utilization, energy consumption, and
quality of service. A prediction based algorithm, utilization
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prediction-aware best fit decreasing (UPBFD) algorithm
was proposed in [15]. UPBFD is based on best fit
decreasing which also predict workload demand and perfor-
mance for consolidation of workload.

Salimian et al. [16] proposed a fuzzy threshold-based
approach for the detection of under-utilized and over-utilized
processing machines. They applied Sugeno fuzzy rule set
based fuzzy inference engine to detect over utilized hosts
for energy and performance efficient consolidation of virtual
machines. In [17], a self-adaptive heuristic for the detection
of under-utilized and over-utilized processing machines was
presented. It used queuing theory to propose a probabilistic
model of the data center. Consolidation related decisionswere
taken from the assessment results obtained from the proba-
bilistic model. In their work [18], authors propose a slightly
different approach for reducing the workload execution time.
They proposed that the mapping of tasks and servers should
be based on the nature of tasks and task relative resource
availability of servers. They are of the view that task schedul-
ing time can be reduced if careful mapping of servers and
tasks is carried out. In their work [19], authors utilized neural
network model along with a factor model to forecast the
change in resource utilization using historical data or resource
utilization. Abbasi and Jin [20] proposed algorithms that
apply Fuzzy AHP on a graphed-theoretic model for efficient
workload placement and server consolidation. This approach
is easy to implement and efficient for a limited number of
processing machines and tasks, but for larger networks of
machines and tasks, the combinatorial approach increases the
complexities in resource allocation. To efficiently consolidate
workload on optimal hosts, Han et al. [21] proposed two
heuristics, remaining utilization-aware (RUA) algorithm and
power-aware (PA) algorithm. RUA initially places the VMs to
the suitable hosts while PAfinds proper hosts for VM replace-
ment during the consolidation phase.

Another class of algorithms for efficient resource
utilization is known as Meta-heuristic based algorithms.
A meta-heuristic based algorithm, Simulated Annealing, was
proposed in [22] that used the optimizing technique for
finding an approximation to the global optimum of a function
in a very large search space. Annealing is a technique used in
metallurgy in which metal is heated and then cooled in a con-
trolled manner to improve its crystalline shape and remove
defects. In this process, perturbation phase is analogous to
VM consolidation. First, a host with the least utilization rate
is selected as a source host. Then workload is transferred
from this host to some host having medium utilization rate.
In this way, the workload is consolidated on fewer processing
machines. Occasionally a less optimized solution is selected
for adopting the processing to escape stagnation of solution in
localminima and localmaxima. Joshi andKaur [23] proposed
a Cuckoo Algorithm based server consolidation method.
It deals with consolidation as a multi-dimensional packing
problem for optimizing utilization of computing resources.
Joshi did not consider the dynamic consolidation and did
not cater to the variable workload demand and resource

utilization. In their work [24], the authors modified the
Grey Wolf Optimization algorithm for server consolidation,
named as levy based multi-objective gray wolf optimization
(LMOGWO) algorithm. The idea is based on the behavior of
grey wolf when they hunt for food. Zheng et al. [25] proposed
a meta-heuristic based algorithm for optimizing resource
utilization in a cloud data center based on biogeography
combining optimization algorithm. He focuses on current
resource demand to optimize the energy consumption and
quality of service but ignores the stochastic needs of workload
demand. Ant Colony Optimization (ACO) based algorithm
was proposed by Farahnakian et al. [26] for consolidating
the workload. The method LiRCUP is utilized to identify
the outlier hosts a global agent was utilized to dynamically
consolidate the workload on the optimum number of servers.
LiRCUP uses a static value of upper and lower thresholds
to identify over-utilized and under-utilized hosts. This can
effectively reduce the search space to a limited number of
VMs. Similar to [26], Particle Swarm Optimization (PSO)
based algorithm was proposed by Li et al. [27] for VMs
consolidation that also utilizes static thresholds for detecting
under-utilization and over-utilization hosts. Another PSO
based VM consolidation model is proposed by Li et al. [28].
The proposed model incorporates Euclidean distance of
resource and degree of user satisfaction along with traditional
energy consumption and quality of service related traits.
PSO, in combination with the proposed model, is utilized to
optimize the objective function based on power consumption
per QoS value.

Dynamic consolidation helps in optimizing resource uti-
lization in the cloud data center [29]. Meta-heuristic based
methods [22]–[28] have occasionally shown better results,
but they tend to slow down the optimization processes with
the exceeding number of VMs involved as the search space
grows quite significantly. Some works [25]–[27] tried to
limit the number of VMs for reducing search space by tak-
ing a static value of threshold of utilization. This solves
the problem of growing search space to some extent but
it impacts the optimization process adversely. It has been
shown [12] that adaptive threshold based techniques yield far
better results than static threshold based techniques. Some
methods [12]–[17] utilize adaptive thresholds that can adjust
their values based on prediction. Historical data is used to
predict resource utilization and to adjust the threshold value
accordingly. However, due to increasing uncertainty of work-
load demand in modern cloud infrastructures based on IoTs
and edge, these techniques become lethargic to the change
in resource demand that is not predictable from past data.
This impacts the robustness and elasticity of the resource
provisioning of the cloud system.

Utilization driven model for server consolidation, as
proposed in this work focuses on robustness in resource pro-
vision and mainly relies on current load demand. It abruptly
reacts to a change in workload by adjusting utilization
threshold for efficient resource utilization. It focuses on
five significant aspects of dynamic workload consolidation
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simultaneously, in addition to improve the energy consump-
tion and quality of service; it considers high utilization of
processing machines with low variation of load on them.
UDM uses percentile ranks to estimate under-utilized and
over-utilized hosts based on current workload in such a
way that the consolidation process is robust. Thus, it also
adds to the elasticity of the cloud environment. In order
to focus on degraded electric consumption percentile ranks
are based on the mean utilization rate of active processing
machines, whereas to maintain the quality of service, varia-
tion in resource demands is also given significant importance.
This increases the utilization rate when workload-demand is
uniform and changes it according to the level of variations
in workload demand. The process is done rather robustly,
by incorporating percentile ranks to provide the number of
over-utilized and under-utilized hosts.

III. UTILIZATION DRIVEN MODEL FOR SERVER
CONSOLIDATION BASED ON CURRENT DEMAND
For dynamic consolidation of servers in data centers, under-
utilized and over-utilized machines are identified using
static or dynamic thresholds. Then workload is migrated
accordingly. Utilization DrivenModel (UDM) for server con-
solidation, as proposed in the work, estimates the number of
under-utilized and over-utilized hosts using current resource
demand by VMs and utilization rate of PMs. Estimation is
made after determining the upper and lower percentile rank.
First, we calculate the ‘mean’ value of resource utilization
of active hosts and the value of ‘mean absolute deviation’ of
the current resource demand of active VMs. Then the values
of the upper and lower threshold are obtained using mean
value and the value of mean absolute deviation, as discussed.
Finally, upper and lower percentile ranks are determined
using thresholds. These percentile ranks estimates the number
of over-utilized hosts and under-utilized hosts in time-varying
scenario.

Suppose i is a number of active hosts and h is a
host with u representing corresponding current resource
utilization of h then the set of all hosts with corre-
sponding resource utilization is as follows {(h,u)} =
{(h1, u1) , (h2, u2) (h3, u3) , . . . . . . , (hi, ui)}. Likewise, for
j number of virtual machines with v as a virtual machine and
d as a corresponding resource demand of v, set of all VMs
with corresponding resource demand is as follows {(v,d)} ={
(v1, d1) , (v2, d2) (v3, d3) , . . . .,

(
vj, dj

)}
. Mean value of uti-

lization µu of active hosts and the value of mean absolute
deviationDd for resource demand by VMs can be determined
using the following equations

µu =
1
i

i∑
n=1

un (1)

Dd =
1
j

j∑
n=1

|dn − m (d)| (2)

Here µu is mean resource utilization of active hosts, un is
the utilization of nth host, Dd is the mean absolute deviation

from the median for resource requests, m (d) is the median
of resource requests by VMs, dn is the resource demand
by nth VM. Here it is pertinent to mention that out of different
types of mean absolute deviation we used mean absolute
deviation from median because it yields the least value as
compared to all other mean absolute deviations and is helpful
for the purpose of best convergence.

We determined upper threshold of utilization Tu as
‘‘complement 1 of the product of µu and Dd ’’ as follows

Tu (u, d) = 1− µu × Dd (3)

Whereas lower threshold of utilization Tl is a split function
with value as ‘‘complement 1 of sum of µu and Dd ’’ when
µu + Dd < 1 and with value as ‘‘product of µu and Dd ’’
when µu + Dd ≥ 1.

Tl (u, d) =

{
1− (µu + Dd ) if µu + Dd < 1
µu × Dd if µu + Dd ≥ 1

(4)

As indicated in (3) and (4), upper threshold of utilization Tu
and lower threshold of utilization Tl are based on resource
utilization of hosts µu and resource demand of virtual
machines Dr . It means that we incorporate both current uti-
lization of hosts and current resource demand of VMs to
determine the utilization thresholds.

In order to see the effectiveness of the technique and to
formulate the optimization function for resource consolida-
tion, acceptance rangeR is calculated by subtracting the lower
threshold Tl from the upper threshold Tu of utilization of
resources. Acceptance range is the range of resource utiliza-
tion where hosts are considered to be well utilized i.e. neither
the resources are being under-utilized nor there is a significant
QoS related issue and it can be determined as follows

When µu + Dd < 1

R = Tu − Tl
= 1− µu × Dd − (1− (µu + Dd ))

= 1− µu × Dd − (1− µu − Dd )

= 1− µu × Dd − 1+ µu + Dd )

= µu + Dd − µu × Dd

When µu + Dd ≥ 1

R = Tu − Tl
= 1− µu × Dr − µu × Dr
= 1− 2× µu × Dr

From the above values of R, optimization function is deter-
mined as

R (u, d) =

{
µu + Dd − µu × Dd if µu + Dd < 1
1− 2× µu × Dd if µu + Dd ≥ 1

(5)

This acceptance rangeR gets itself fine-tunes depending upon
the current resource demand, utilization rate of resources
and nature of stochastic behavior. This range gets wider and
lower when resource demand is highly uncertain and it gets
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narrow and high when the resource demand is uniform in
nature. This optimizes resource utilization without impacting
the quality of service. It is pertinent to see how R converge the
consolidation process towards optimal resource utilization.
As µu is the mean resource utilization of the active hosts
and Dd is the mean absolute deviation from the median of
resource demand. The high values of µu and Dd will result
into an increase in range R and a decrease in the values of
Tu and Tl . On the other hand, the low values of µu and Dd
will result in a decrease in range R and an increase in the
values of Tu and Tl . When only one’’ of the values of µu and
Dd are high, it will result in a moderate value of range R,
Tu and Tl . So, (5) will always converge the solution towards
optimal utilization.

Instead of using directly as a threshold of utilization,
we used the values of Tu and Tl to calculate the percentile
ranks Pu and Pl for estimating over-utilized hosts and under-
utilized hosts using (6) and (7), respectively

Pu = 100× Tu (6)

Pl = 100× Tl (7)

Percentile utilization Pi of host i can be determined using (8),
where n represents the number of hosts with resource utiliza-
tion less than the resource utilization of i and N represents the
total number of active hosts.

Pi =
n
N
× 100 (8)

Hosts, with resource utilization percentile Pi more than Pu,
are marked as over-utilized hosts and hosts with resource
utilization percentile Pi less than Pl are marked as under-
utilized hosts.

As percentile represents the percentage of the number of
observations instead of the value of observed phenomenon,
the method directly estimates the number of over-utilized
hosts and under-utilized hosts instead of linking with the
threshold value of resource utilization. Taking percentile
ranks instead of thresholds for identifying outlier hosts makes
the cloud system more elastic. Incorporating the mean uti-
lization rate of active hosts in optimizing function helps in
increasing the utilization of active resources. Hence it helps
to reduce energy consumption. On the other hand, incor-
porating the mean absolute deviation of resource demand
helps to ensure the quality of service as it caters for the
sudden changes in workload demand. We, further analyze the
effectiveness of optimization function by taking four different
cases.

1) Let supposeµu andDd are low and have values, 0.50 and
0.05, respectively, then Pu will be 97.5 and Pl will
be 45 and this will result in the selection of 2.5%
of machines as over-utilized and 45% of machines as
under-utilized.

2) If µu and Dd are relatively high and have values,
0.90 and 0.15, respectively, then Pu will be 86.5 and Pl
will be 13.5 and this will result in the selection of 13.5%

of high utilized machines as over-utilized and about
13.5% will be selected as under-utilized hosts.

3) If µu has relatively low and Dd has high value, 0.50 and
0.15, respectively then Pu will be 92.5 and Pl will
be 35 and this will result in the selection of 7.5% of high
utilized machines as over-utilized and about 35%will be
selected as under-utilized hosts.

4) If µu has relatively high and Dd has low value, 0.90 and
0.05, respectively then Pu will be 95.5 and Pl will be
5 and this will result in the selection of 4.5% of high
utilized machines as over-utilized and about 5% will be
selected as under-utilized hosts.

Thus the model identifies hotspots based on dispersion in
resource demand and mean value of resource utilization. The
Algorithm 1 presents a utilization driven model for server
consolidation based on current resource demand. List of hosts
and virtual machines along with their available resources and
requested resources, respectively, have been provided as an
input to the UDM algorithm and list of over-utilized hosts
and under-utilized hosts are obtained as an output of the
algorithm. UDM algorithm, calculates the upper threshold
Tu and lower threshold Tl of utilization, using (1), (2), (3),
and (4), after determining µu and Dd .
The values of Tu and Tl are used to calculate the percentile

ranks Pu and Pl for estimating over-utilized hosts and under-
utilized hosts. The use of percentile ranks Pu and Pl instead
of the values of Tu and Tl , makes consolidation process robust
to cater to the uncertainty of workload demand. On the basis
of the values of Pi, Pu and Pl , over-utilized and under-utilized
hosts are identified. As indicated in step 9 of the algorithm,
any host having Pi more than Pu is marked as over-utilized
host. On the other hand, step 12 segregates under-utilized
hosts on the basis of host having Pi less than Pl . Thus, UDM
algorithm first determines the upper and lower threshold val-
ues based on current resource requests and current resource
utilization of active hosts. After than the percentile ranks
of over-utilization are determined using threshold values to
identify the over-utilized and under-utilized hosts. Finally, the
lists of under-utilized and-over utilized hosts are returned for
further consolidation process. We used a slightly modified
PABFD algorithm for replacement of VM from the list of
over-utilized and under-utilized hosts obtained using UDM.
While selecting a host with the least power increase as is
the case with PABFD, we assigned additional value of power
increase to the hosts that are in shutdown state. This increases
the priority to active hosts for replacement of workload and
increased the resource utilization of active hosts.

IV. EXPERIMENT AND RESULTS
A. EXPERIMENTAL SET UP
In order to perform experiments to evaluate our proposed
Utilization Driven Model (UDM) based algorithms with
six other server consolidation policies, i.e. Static Thresh-
old (STR), Inter-Quartile Range (IRQ), Local Regres-
sion (LR), Median Absolute Deviation (MAD), K-nearest
neighbor (DC-KNN), and Utilization Prediction Best Fit
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TABLE 1. Specification of servers.

TABLE 2. Features of virtual machines.

TABLE 3. Features of planet lab traces.

Decreasing (UPBFD, we used CloudSim toolkit. The
CloudSim toolkit is a well known platform that is used to sim-
ulate experiments for Cloud computing environments [30].
The data center used in this study comprised of 800 hetero-
geneous servers with characteristics given in Table 1.

Relatively large memory size of VM types is to enable
over-subscription.

Real-time trace of workload demand, taken from Planet
lab, has been used in Cloudsim Toolkit [31]. In the work,
we are comparing seven policies based on five performance
indices. However, for evaluation purpose, two traces from
Planet Lab are used i.e. 20110303 and 20110322 having the
highest and the lowest standard deviation of the resource
request. Features of these two traces are provided in Table 3.
This selection is made to study the effect of burst on the
performance of consolidation technique. Therefore, one of
the trace (20110303) having relatively more bursty traffic
compared to other trace (20110322) used in this study. This is
identified with the help of standard deviation of the resource
request.

As the workload is dynamic, with 288 instances of new
workload every 300 ms, the total time to execute workload
is 86,400 ms. The consolidation of VMs is performed on
receiving a new workload. Furthermore, to execute UDM,
IRQ, MAD, LR, and ST, we used PABFD VM replace-
ment technique along with the Minimum Migration Time
(MMT) VM selection algorithm. For selecting VMs from
over-utilized hosts to migrate, MMT selects VM that requires
the least time to migrate until the over-utilized host becomes
normal again.

B. EVALUATION METRICS
In order to evaluate the performance of UDM algorithm,
as proposed in this work, we selected five matrices:
Energy Consumed (EC), Service Level Agreement Violations
(SLAV), SLA violation Time per Active Host (SLATAH),
Performance Degradation due to Migrations (PDM), and
number of migrations required for the execution of workload.

1. EnergyConsumption (EC) is the total amount of energy
consumed by processing machines for the execution
of workload. Energy consumption is the primary con-
sideration for efficient allocation policies; therefore,
low energy consumption is desirous. In order to cal-
culate the energy consumption, CloudSim uses the
SPECpower [32] benchmark which is based on the
current CPU utilization of processing machines.

2. The number of migrations counts the total number
of VM migrations required to perform the execution
of workload. It reflects the network congestion con-
tributed through various policies.

3. SLA violation Time per Active Host (SLATAH) rep-
resents the degradation of quality of services due to
over-utilization of hosts. As long as a host remains
overloaded, it cannot fulfill resource demands to all
the VMs assigned to it, thus results in a poor per-
formance. SLATAH reflects the fraction of duration
an active host remains over-utilized during workload
performance and is calculated as follows

SLATAH =
1
L

L∑
i=1

Tsi
Tai

(9)

where L represents the number of hosts in a datacenter,
Tsi corresponds to the total time, during which the CPU
utilization of host i has experienced 100% utilization
resulting in the SLA violations, Tai corresponds to the
total time of host being in an active state.

4. Performance Degradation due to Migrations (PMD)
reflects the QoS degradation due to VM migrations.
PDM is given by as follows

PDM =
1
M

M∑
j=1

Cmj
Crj

(10)

Here M represents the total number of migrations,
Cmj represents the cost of migration due to VM j, and
Crj is total resource requested by VM j during its life.

5. SLA violation (SLAV) is the fraction of time SLA
violations occur when the workload is executed.
It reflects the quality of service maintained by consol-
idation policy. Workload consolidation policies having
lower values in SLA violations are desirous. SLAV is
the composite of SLATAH and PDM and calculated
as following

SLAV = SLATAH × PDM (11)
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TABLE 4. Results for Policies using trace 20110322.

TABLE 5. Results for Policies using trace 20110303.

C. RESULTS
The performance of seven workload consolidation strategies
performed on Cloudsim toolkit is covered in this section.
Table 4 and Table 5 provide results of consolidation algo-
rithms alongwith UtilizationDrivenModel for consolidation,
in each row of the table.

The results of all five indices, Energy Consumption (EC)
measured in kWh, number of VM migrations, SLA time per
active host, Performance Degradation due to Migrations and
SLA violations, as discussed in previous sub-section, have
been provided in the respective columns of the tables.

Table 4 indicates the results obtained using planet lab
workload trace 20110322 for seven policies in terms of
energy consumption, migrations and quality of service
(SLATAH, PDM, and overall SAL violation). UDM has exe-
cuted the workload with the consumption of energy as low as
117.33 kWh whereas power consumption for other policies
ranges from 140.11 kWh (UPBFD) to 200 kWh (STR). The
migration count for UDM stands at 15,775 whereas other
policies cause migrations ranging from 19,379 for UPBFD
to 32,368 for LR. SLA stands as low as at 0.00210 for
UDM, while other policies contribute more SLA violations
ranging from 0.0041 to 0.00461. Table 5 provides results of
experiments using Planet lab trace of 20110303. UDM has
again shown improvement in results as compared to other

policies. Energy required to perform the workload demand
remained as low as 110.47 kWh by UDM. UPBFD required
133.10 kWh and STR required 192.31 kWh of energy for
the execution of same workload. Migration count for UDM
was lowest and stands at 12,111. It was the second best
for UPBFD with value 16,242 and the highest for LR with
26,866 migrations. SLA violations stand at 0.00174, whereas
it ranges from 0.00234 to 0.00451 for other policies.

D. DISCUSSION
Results of experiments show that UDM improved the energy
consumption from 16% to 42% as compared to the second
best policy UPBFD to worst policy STR, in terms of energy
consumption for trace 20110322. Likewise, UDM improved
the quality of service in terms of SLA violations (percent time
when SLAV occurs) 13% as compared to UPBFD and 53%
to LR. For this trace, utilization driven model proposed in the
work showed, on an average showed 35 % improvement in
energy consumption, 31% in the number of VM migrations,
and 37% improvement in SLA violation.

For trace 20110303 UDM consumed 17% less energy than
UPBFD and 42% less energy than STR, UPBFD is the sec-
ond best and STR is the worst policy in terms of energy
consumption for the second workload trace. It showed 26%
improvement in quality of service as compared to UPBFD.
On average, UDM consumed 36% less energy with 43%
improvement in the number of migrations, and 45% of
improvement in SLA violations as compared to other six
policies. Thus, the UDM showed improved results in all the
metrics we described above with low energy consumption,
the number of migrations and quality of service related indi-
cators. As for as other policies are concerned, they yield less
efficient results for all the indicators. UPBFD showed the
second-best results and then DCKNN. Other polices gave
mixed results for different parameters. Further analyses for
better performance of UDM as compared to other policies
have been carried out in the next section.

V. PERFORMANCE ANALYSIS
A. ENERGY EFFICIENCY ANALYSIS
The results of five indices described in the section are
obtained using the cloudsim. To provide a holistic view of
these indices, Zhou et al. [33] formulated energy-efficiency
metrics as a composite of energy consumption and quality of
service, as follows

P =
1

EC × SLAV
(12)

Here P indicates the energy-efficiency of the policy, EC is the
energy consumption and SLAV represents the overall SLA
violations occurred during workload execution. The energy
consumption and SLA violations are inversely proportional
to the efficiency of the system and their lower values are
more desirous. Thus, energy efficiency indicator presented
by Zhou et al. takes the reciprocal of the product of power
consumption and SLA violations. We used the model pre-
sented by Zhou for evaluating the energy-efficiency of seven
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Algorithm 1 Utilization Driven Model Algorithm
Input:

HOST_LIST = {hi |i = 1, 2, 3, . . . .n};
VM_LIST = {vi |i = 1, 2, 3, . . . .m};

Output:
OVER_UTILIZED_LIST = {ho|hi ∈ ho}
UNDER_UTILIZED_LIST = {hu|hi ∈ ho}

1. µu =
1
i

i∑
n=1

un as (1)

2. Dd = 1
j

j∑
n=1
|dn − m (d)| as (2)

3. Tu = 1− µu × Dd as (3)

4. Tl =

{
1− (µu + Dd ) if µu + Dd < 1
µu × Dd if µu + Dd ≥ 1

as (4)

5. Pu = 100× Tu as (6)
6. Pl = 100× Tl as (7)
7. for every hi in HOST_LIST do
8. Pi =

n
N
× 100 as (8)

9. if Pi > Pu then
10. OVER_UTILIZED_LIST ← Pi
11. end if
12. if Pi < Pl then
13. UNDER_UTILIZED_LIST ← Pi
14. end if
15. end for
16. return OVER_UTILIZED_LIST
17. return UNDER_UTILIZED_LIST

under considerationVMconsolidation policies. Thus, to eval-
uate the performance of consolidation techniques, energy-
efficiency graph for all the policies under consideration has
been provided after calculating the P using (13). This will
help in comparing the policies holistically as Efficiency graph
provides the combined value of energy consumption and
quality of service.

Fig. 1 provides holistic performance of policies with policy
name on x-axis and energy-efficiency value on y-axis as cal-
culated using (13). Performance for both the traces has been
represented in separate columns with policy name labeled.
The high value of P implies that UDM has been the most effi-
cient VM consolidation policy, followed by UPBFD and then
the others. In the case of trace 20110322, UDM is 38% more
efficient than the second-best policy (UPBFD) and 230%
more efficient than the worst performer (LR). For workload
trace 20110303, UDM is 63%more efficient than the second-
best policy (UPBFD) and 280%more efficient than the worst
performer (LR). Apart from indicating the better performance
of UDM, the above results show that the improvement is
not uniform for both the planet lab traces. Some policies are
more efficient to perform 20110322 traces while others are
more efficient when executing the workload trace 20110303.
As both the traces have different values of the mean and
standard deviation of workload demand, therefore policies
tackle the varied dispersion of workload demand differently.

FIGURE 1. Performance measure as a composite of Energy Consumption
and SLA violations for seven policies using both planet lab traces as
workload.

FIGURE 2. Numbers of active machines during each consolidation cycle
are indicated.

Some policies react to stochastic demand more efficiently
than others. It is pertinent to studywhich policymay act better
in the increasing stochastic and uncertain environment due to
the rapid integration of IoT with the cloud.

As the first trace is less stochastic with lower variance in
workload demand than the second trace, the graph indicates
how well a policy may react to the increased uncertainty in
workload demand. The results indicate that when the resource
request is highly dispersed in nature UDM’s performance
increased from 38% to 63% as compared to UPBFD and
it increases from 230% to 280% as compared to LR. Thus,
UDM is better able to handle non-uniform workload demand.
It is because of extremely robust over-load and under-load
detection mechanisms based on (5) complemented by the
percentile value of upper and lower limits of the utilization of
threshold provided in (3) and (4). This makes UDM an ideal
server consolidation policy for the changing environment of
cloud-IoT due to its ability to cater to the increased uncer-
tainty and variability in workload demands.

B. WORKLOAD CONSOLIDATION ANALYSIS
As we have described in the previous section that the exper-
imental setup to execute seven policies is based on cloudsim
and uses 800 hosts for the execution of the workload.
The nature of planet lab workload traces is dynamic and it
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FIGURE 3. Mean utilization rate of resources of active hosts during each
consolidation cycle.

FIGURE 4. Standard deviation of utilization rate of resources of active
hosts during each consolidation cycle.

introduces fresh workload 288 times and every 300 mS. This
makes total execution time to 86400 mS. There are 288 total
consolidation cycles during the simulation of each policy.
To further evaluate the effectiveness of the policies under
consideration, it is pertinent to show the number of machines
being used, mean resource utilization on these machines and
standard deviation of utilization at every cycle of consoli-
dation. This will indicate how well each policy is utilizing
the available resource for the execution of workload. For this
purpose, for all the policies under consideration, the number
of active hosts at each cycle of consolidation as obtained
during the experiments has been graphed in Fig 2-4.

Lower the number of machines being used is bet-
ter, as energy consumption increases with the increasing
number of active machines. As indicated in Fig. 2, on an
average, UDM utilizes 35.5 machines for the workload per-
formance; UPBFD utilizes 44.5 machines whereas all other
policies except UDM utilize about 60 machines for workload
performance. Thus UDM utilizes 20% lesser machines than
UPBFD’s and 40% less machine than average of all the other
policies.

Fig. 3 and 4 represents the mean and standard deviation
of the utilization of resources of hosts by all the VM con-
solidation policies at each cycle of VM consolidation. The
graph provided in Fig. 3 shows the average resource uti-
lization of active processing machines at each cycle of

VM consolidation as a ratio to the total capacity of machines.
It is quite clear that average resource utilization by processing
machines is much higher for UDM as compared to all other
policies and it varies from as low as 0.70 to as high as 0.93.
Average of this, for complete workload performance, remains
at 0.82 for UDM, 0.71 for UPBFD, 0.67 for DCKNN, and
around 0.50 for rest of the policies. Thus utilization driven
model has 15% more utilization of active resources than
UPBFD and about 50% more than all the policies. One more
thing that can be noticed from the graph in Fig. 3 is that
UDM achieved its saturation level in just a couple of cycles of
consolidation whereas other consolidation policies took 8 to
10 cycles to achieve saturation. This shows the robustness of
the consolidation by UDM.

Fig. 4 indicates the graph of the standard deviation of
resource utilization on active hosts as a ratio of machines’
total capacity. It indicates that when the workload was con-
solidated using UDM, the average of the standard deviation
of utilization for all the cycles of consolidation stands at 0.15.

All other policies show the standard deviation of utilization
about double of that of UDM. The value ranges from 0.08 to
0.23 for UDM with average at about 0.15 which is about
23% less than UPBFD. The above results showed that our
proposed policy has utilized resources much better than the
others. It uses less number of machines with a high utilization
ratio. The high utilization ratio of UDM is due to the R func-
tion provided in (5), robustly converges the acceptable range
according to current resource request making it possible to
efficiently utilization of available resources of active hosts.
This increase in mean utilization and decrease in the stan-
dard deviation of utilization makes UDM more energy and
SLA violation savvy server consolidation policy.

VI. CONCLUSION
Diverse applications of cloud computing has intensified the
challenge of efficient utilization of computing resources.
With the increased uncertainty of workload demand,
maintaining quality of service along with degraded power
consumption has become more challenging than ever. Pre-
diction based approaches mostly rely on historical data for
forecasting workload and adapting the system. However,
with increased stochastic nature of workload demand, more
emphasis needs to be given on robust adaption to the change
in utilization. Utilization Driven Model focuses on varying
utilization rates and adapts the utilization threshold accord-
ingly. This approach enhances the elasticity of cloud resource
provisioning, making the cloud more robust to change than
traditional approaches. Experimental results have shown that
UDM approach is more elastic; hence, it increases the uti-
lization rate of active hosts to the optimal. The approach
helps in maintaining quality of service with reduced energy
consumption.
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