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ABSTRACT As the number of high-rise buildings is increasing, more methods of exterior-wall cleaning
are being developed. There are a few models based on artificial intelligence that determine the type and
level of contamination primarily by moving the cleaning area. In this study, we propose an system using
YOLOv3 algorithm, color-detection, to install on façade cleaning robot and brightness-discrimination. There
are three types of contaminant-detection parameters: size, color, and brightness, and these parameters are
subjected to a robust optimization process to maintain a constant detection rate under different conditions.
The three parameters are determined via Taguchi method with signal to noise ratio and noise factors.
An environment for algorithm testing is established, and artificial contamination is implemented on the
specimen. A field test with the detection algorithm shall be performed in the near future.

INDEX TERMS Façade cleaning, image processing, service robot, Taguchi method optimization, parameter
optimization, detection algorithm.

I. INTRODUCTION
In recent years, as the number of high-rise buildings has
increased, the market demand for exterior-wall cleaning ser-
vice for such buildings has also increased. Reference [1]
Because the task of cleaning such walls is very dangerous
for the workers, it is necessary to replace them with robots.
To this end, various exterior-wall-cleaning robots have been
developed [2]. By attaching these robots to a system that
can detect contaminants on an exterior wall, we can perform
numerous tasks. Recently, the gondola-embedded façade
cleaning robots are proposed [3]–[6]; however, the detection
method of the contamination is not researched yet. Based
on the type of contaminant, an appropriate cleaning solution
can be automatically identified, and the contamination of the
exterior wall can be transmitted to a central management
system that shall automatically monitor the cleanliness of the
wall.

To develop this exterior-wall contaminant-detection sys-
tem, we searched for a surface-contaminant-detection
method. This detection method had to be compact because
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it were to be installed on a mobile platform attached to the
exterior walls of buildings. In addition, it must be possible
to detect all types of contaminants including dust, rusty
stains, and avian feces. There are two methods of detecting
contamination of exterior-wall surface. First method is irra-
diating an IR ray (infra red ray) and analyzing the reflected
light [7]. However, liquid contaminants are not the only type
of contaminants on the exterior walls of buildings. This can
give rise to an error in the detection result, thereby making
this method difficult to apply. There is a surface-contaminant-
detection method that uses Mini Raman Lidar [8]. However,
the system is too large to be installed on a mobile platform
attached to the exterior walls of buildings.

Because workers in the field identify contaminants with
the naked eye, we propose a machine-vision system that
uses CNN(convolutional neural network) and image process-
ing [9]. In this study, the contaminants on the exterior walls of
buildings are classified into three types: object, area, and par-
ticle. TheYOLOv3module detects object-type contaminants;
irregular contaminants such as avian feces are detected using
this module [10]. Next, area-type contaminants are detected
using the color-detection module; contaminants that exist in
areas of the same color such as rusty stains are detected
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FIGURE 1. Contamination detection system overview: (a) original image, (b) image pass after YOLOv3 module result, (c) image pass after color-detection
module, (d) image with marked area processed in grayscale module. (e) background and color area sample provided in advance, and (f) reference image
of clean facade provided in advance.

using the HSV color space and flood fill algorithm [11].
Finally, particle-type contaminants are detected using the
grayscalemodule. The darkness level of a picture is computed
by comparing its average brightness in a certain area with
the reference average brightness of the clean exterior wall.
Dust build up on the surface changes the average brightness
of the picture. using this point, grayscale module indirectly
measures the amount of dust on the surface. A previous study
can be referred to for more details [9].

In this study, we use the Taguchi method to tune the system
parameters such that the machine-vision system described
earlier is robust to various external brightness levels and
distance from the facade [12], [13]. Parameter tuning for var-
ious engineering problems was performed using the Taguchi
method [14]. The removal rate of EN24 steel used as a
workpiece material was optimized. In addition, the Taguchi
method can be used to optimize end-milling parameters [15].

Inside the system, three modules process information in
a sequence, and the system parameters of each module are
different. Because the processing of information is sequential,
the first step involves the tuning of parameters of the You
Only Look Once(YOLO) v3 module. Secondly, with the
system parameters of the YOLOv3 module fixed, we proceed
with the tuning of system parameters of the next module
(i.e., the color-detection module). Finally, we tune the system
parameters of the third module (i.e., the grayscale module)
with the system parameters of the previous two modules
fixed.

This paper is organized as follows. First, we define
the problem in Section 2. We briefly introduce the
machine-vision system that we wish to optimize and
describe the Taguchi method, test bench, and specimen. Sec-
tions 3 through 5 define the parameters to be optimized
and the objective function of each module. The design of
each experiment using the Taguchi method and the selec-
tion of orthogonal arrays are discussed. Section 6 conducts

experiments using orthogonal arrays and presents the tuned
parameters. Section 7 tests the system using the tuned sys-
tem parameters and verifies the results of the optimization.
Section 8 presents the conclusion.

II. PROBLEM DEFINITION
In this study, Taguchi method is used to tune the parame-
ters of the contaminant-detection machine-vision to deliver
a constant level of accuracy under various conditions. It must
be possible for this machine-vision system to be installed on
a mobile platform that moves on the facade of a building.
Therefore, we determine a system parameter that effectively
performs contaminant detection when an image is taken,
irrespective of the brightness of the image or the distance
between the facade and the camera.

A. DETECTION SYSTEM OVERVIEW
The structure of the machine-vision system for parameter
tuning in this study is shown in Figure 1. The system con-
sists of the YOLOv3, color-detection, and grayscale modules.
First, the YOLOv3 module detects object-type contami-
nants and make a box around of each detected objects, the
bounding-box. The detected object bounding-box informa-
tion is sent to the next module, and the size information of the
box is sent to next module as object-type contaminant infor-
mation. The color-detection module extracts information of
the region that has a specific color by using the HSV color
space for the remaining regions out of the bounding boxes.

The bounding-box information of the detected area is sent
to the next module, and the size information of the detected
area is sent as area-type contaminant information in propor-
tion to the overall size of the image. In this process, we use
a sample image for the background and color area provided
in advance. The grayscale module calculates the average
value of brightness by converting the remaining areas except
for the bounding box detected by the previous two modules
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into grayscale images. Thereafter, the amount of particle-type
contaminant is estimated based on the darkness of the picture
compared with the reference value previously stored. For
more details, please refer to a previously published article [9].

B. USER CONDITION DEFINITION
The optimization system must be installed on a mobile plat-
form attached to the building facade. The setting of the cam-
era is fixed, but the height and brightness may be different.
Therefore, it is necessary to build a system that can perform
robust detection under various height and brightness condi-
tions. Therefore, we have selected these as user conditions.

C. ROBUST OPTIMAL PARAMETER DESIGN
Robust optimal parameter design is an experiment aimed
at determining the value of the design variable that main-
tains the best condition without affecting the accuracy of the
system even if the user conditions change. We choose the
Taguchi method to perform the optimization. As detailed in
this book [12], the robustness of the system in the case of
this method is expressed as the signal-to-noise ratio (SNR).
Tuning is performed by selecting the design variable with
the highest SNR. To define the SNR, we first need to create
an objective function that can effectively evaluate the results
of the system. For a larger-the-better problem, SNR can be
defined as

SNR = −10 log

∣∣∣∣∣1n
n∑
i=1

(
1
yi

)2
∣∣∣∣∣ (1)

where n is the total number of times the experiment is con-
ducted, and yi is the value of the objective function of the i-th
experiment.

For a smaller-the-better problem, SNRcan be defined as

SNR = −10 log

∣∣∣∣∣1n
n∑
i=1

y2i

∣∣∣∣∣ (2)

Because conducting experiments for each design variable
shall consume a considerable amount of time, an orthogonal
array is used. We do not need to use every combination of
design variables. Instead, the experiment can be conducted
with an orthogonal array determined by the level and number
of design variables. Next, we collect the results of the exper-
iments, calculate the SNR, perform sensitivity analysis, and
tune the design variables through additional experiments. The
orthogonal array is given by

LE
(
nc
)
, (3)

where n is the level of each variable, c is the number of
variables, andE is the number of rows in the orthogonal array.
L4(23), L9(34), and L27(313) are commonly used orthog-

onal arrays. An orthogonal array depends on the number of
chosen design variables and their level, and the number of
correlation variable combinations usedwhen a strong correla-
tion between two specific variables is suspected. The degree
of freedom of an orthogonal array must be greater than the

degree of freedom of the experiment. For an orthogonal array
LE (nc), the DOF (degree of freedom) can be defined by

DOF = E − 1 (4)

The experiment consists of a design variable with two levels
and b design variables with three levels (2a × 3b). The DOF
of the correlation variable combination with x-level variables
and y-level variables is

Corrxy = (x − 1)× (y− 1) (5)

DOF = (2− 1) a+ (3− 1) b+
∑

Corrxy (6)

To determine the orthogonal array of an experiment that
contains a combination of correlation variables, wemust refer
to a linear graph that demonstrates the relationships among
the columns of the array. After identifying the location where
the correlation variable combination can be placed in the
linear graph, we select the orthogonal array. Linear graphs
of various orthogonal arrays are detailed in a book [13].

After conducting the designed experiment, we calculate the
average SNR for each level of each design variable, and then
express it as a graph for sensitivity analysis. This allows us to
analyze the significance of each design variable and the way
each affects the outcome.

D. TEST BENCH AND SPECIMEN
In order to carry out the robust design as described above,
specimens and test benches were fabricated to modify each
control factor in the learned network. The test bench was
made of aluminum profiles in order to provide a uniform
image of the specimen. The structure of the test bench shown
in Figure 2 is composed of a holder for fixing the camera,
a light source, bracket for adjusting the height, and table for
photographing the specimen. The specimens were placed on
a photography table, and six pictures were taken according
to the user conditions of two heights and three brightness
levels. Additional pictures were taken at 90◦, 180◦, and 270◦

to ensure reliability.

FIGURE 2. Test bench for specimen capture.

As shown in Figure 3, the specimens were {Bird
feces, Rust, Dust}, which were grouped into three groups:
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FIGURE 3. Specimens made for experiment.

FIGURE 4. Specimen images used in experiment: (a) three levels of
brightness and two levels of distance for one specimen, and (b) four
directions taken for one specimen.

{0,0,1Cup}, {1,1,2Cup}, and {2,1,3Cup}. These contami-
nated specimens were fabricated into two color sheets, and
six specimens were produced. The test specimens were tested
for brightness (three steps) and distance (two steps) between
the specimen and the camera via the user condition factor.
To ensure the diversity and reliability of the study, each
specimens of four degrees of 0, 90, 180 and 270 degrees were
made. Thus, 24 pieces of picture data were taken from one
piece of paper, and a total of 144 pieces of picture data were
obtained. Figure 4 shows pictures taken for each specimen.
We performed a robust optimal design procedure by changing
each system parameter of each module. Then, this process
was repeated through an SNR analysis to derive the optimal
result.

III. YOLOv3 MODULE EXPERIMENT DESIGN
This module detects object-type contaminants such as avian
feces that can be attached to a wall by embedding the

FIGURE 5. Results of each YOLOv3 module process step: (a) original
image, (b) bounding boxes after passing DNN inside, (c) image after NMS
processing, and (d) final image after confidence-level filtering.

YOLOv3 algorithm [10]. As you can see in Figure 5, this
module detects the object-type contaminant in three steps and
sends the class and count of the object information to the next
module. In addition, the bounding-box information of the
detected object is sent to the next module (the color-detection
module) and is used to prevent the next module from res-
canning the previously examined area. The YOLOv3 module
first passes an image through an internal trained deep neu-
ral network (DNN) to print the object’s class and bounding
boxes. Next, we combine the overlapping boxes for an object
into one by using an algorithm called non-maximum suppres-
sion (NMS). Finally, if the confidence level assigned to each
bounding box is less than a certain threshold, then the box is
deleted to derive the final detection result.

A. DESIGN VARIABLES
1) NMS THRESHOLD (A)
After passing through the CNN inside YOLOv3, there are
a number of bounding boxes. At this time, NMS is used
for merging overlapping bounding boxes for an object into
one. The NMS process first sorts the bounding boxes of a
particular class in order of confidence. Then, starting with
the bounding box with the highest confidence, the bounding
box with Intersection over Union (IoU) above a certain NMS
threshold is deleted given that it detects same object [16]. This
process is repeated until the end, and then the box with the
highest confidence is used among the remaining bounding
boxes except the box that was the reference, and the process
is repeated. At this time, NMS threshold is a real number
between 0 and 1. Too large a value can result in multiple
bounding boxes for one object, and a small value can result in
only one bounding box for multiple objects. Therefore, this
value is set as a system parameter called design variable A.

2) CONFIDENCE THRESHOLD (B)
After the NMS process, various bounding boxes remain.
Among them, there may be bounding boxes that do not match
the actual results. In this case, the confidence level indicates
the probability of accurate object in the bounding box. So bet-
ter accuracy can be obtained by deleting the bounding boxes
that have a value below a certain confidence threshold. The
confidence threshold is a real number between 0 and 1. If this
value is too large, then the correct bounding box may be
deleted, and if it is too small, then the incorrect bounding box
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may remain. Therefore, this value is set as a system parameter
called design variable B.

B. ORTHOGONAL ARRAY
We set the NMS threshold to a three-level design variable A
and the confidence threshold to a three-level design variable
B. After the NMS process, the confidence threshold was used
for the result, so we planned an experiment to consider the
correlation variable combination of A and B. The DOF of
this experiment is (3 - 1) × 2 + (3 - 1) × (3 - 1) = 8.
Therefore, theDOF of the orthogonal array in this experiment
must be at least 8. Because there is one correlation variable
combination, we need to ensure that this combination can
fit in the linear graph. Therefore, we selected orthogonal
array L9(34) in this experiment. It has a DOF of 8, and it
is confirmed that a pair of correlation variable combinations
can be put through a linear graph. A linear graph is available
in [13]. More detailed information about orthogonal arrays
and linear graphs appears in Appendix 1.

C. DESIGN OBJECTIVE FUNCTION
The YOLOv3 module that we wish to optimize has two-part
outputs. One is the class and count of objects that shall be
passed externally as object-type contaminant information.
The other is a bounding box that shall be passed to the
next module. Therefore, evaluating the detection result of the
YOLOv3 module requires a method of merging the accuracy
of the class, count, and bounding box into one result.

The information about each object class was examined, and
then the average was calculated. In this case, we did not go
through this process because there is only one class: avian
feces. IoU was selected as an indicator for the bounding box.
IoU is a measure of the similarity between two bounding
boxes. It uses the ratio of the union of the true and the detected
bounding boxes and the intersection areas of the two boxes.
Therefore, when the intersection area with the true bounding
box is too small or the detected bounding box is too large,
the IoU value is reduced. In this paper, IoU values between all
true bounding boxes and detected bounding boxes are used.

We want to merge accuracy of area with information about
the number of bounding boxes. The more the number of
true bounding boxes same with detection boxes, the better
the result. In addition, each bounding box must be in a
meaningful position. To measure this value, we introduce
three numbers: TBc (true box count), DBc (detected box
count), CBc (correct box count). TBc is the number of true
bounding boxes, andDBc is the number of detected bounding
boxes. CBc is the number of boxes pared to TB among the
detection bounding boxes. The method of calculation that
was applied was a modification of the evaluation method
of PASCAL VOC, the object detection algorithm competi-
tion [13]. In PASCAL VOC, if more than one bounding box
exists for the same object, all the boxes are invalidated, but
we decided to leave only one box.

For each detected bounding box, if there is no intersection
area with the true bounding box, or if there are two or more,

with one correct bounding box, that detected bounding box
cannot be true bounding box. In addition, if the IoU with the
true bounding box and detected bounding box is not more
than 50%, then it is not the correct bounding box. Lastly,
two or more detected bounding boxes for a true bounding
box have an IoU value of 50% or more. If they overlap, only
one is considered a correct bounding box. An example of a
correct bounding box is shown in Figure 6; in (a), the IoU
value for a true bounding box with an intersection area did
not exceed 50%, whereas (b) had intersections with two or
more true bounding boxes at the same time, and (c) had no
intersection. Because (d) and (e) have an IoU value of 50%
ormore for one true bounding box, only one of them is treated
as a correct bounding box.

FIGURE 6. Example of TBc, DBc, and CBc. True box count is number of
true bounding boxes. Detected count is number of detected bounding
boxes. Correct box count is number of correct boxes matched to true
bounding box.

Next, a new index, the count accuracy ratio CAR (α, β) ,
was defined to merge IoU and count information into one
index called errIoU c(error of IoU with count). At this time,
CAR(α, β) is as follows:

Only if (α ≥ β),

CAR (α ≥ β) =
(

β

α + ε

)(α−β)/α

, ε = 2 (7)

where (α − β)/α is the error ratio, and ε is a spacer
constant.

As can be seen in Figure 7, the CAR index always has a
value between 0 and 1 depending on the error ratio. Even
if they have the same error ratio, the larger the value of α,
the larger the result value of the CAR index. In object detec-
tion, detecting half of two objects in one screen and half
of 10 objects in one screen cannot be treated in the same way.
Because the latter is a more difficult task, the greater the total
number of objects, the better the output, even under the same
error ratio. Depending on the spacer constant, the graph lines
for α values are bent downward and become spaced apart.
We determined the CAR value to be 0.5 when one of the
two objects is detected (i.e., CAR (2,1) is 0.5, and the spacer
constant is 2).

Using the CAR index, IoU, TBc, DBc, and CBc are
integrated to define an object function called errIoUc.
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FIGURE 7. CAR(α, β) plot with α = 1–4. CAR(2,1) = 0.5.

The calculation method is as follows:

If (DBc 6= 0 and TBc 6= 0)

errIoU c = 1− IoU× CAR(TBc,CBc)× CAR(DBc,CBc)

Else if(DBc = TBc = 0)

errIoU c = 0

Else if (DBc = 0 and TBc ≥ 1)

errIoU c = 1

Else if (DBc ≥ 1 and TBc = 0)

errIoU c = 1 (8)

Because this is a smaller-the-better problem in the Taguchi
method, it is calculated using Equation (2) after the
experiment.

IV. COLOR-DETECTION MODULE EXPERIMENT DESIGN
This module converts an image into the HSV color space [11]
and extracts a part with a specific color. This module is
mainly used to detect area-type contaminant (ex-rust stain).
You can see the results of each process in Figure 8. First,
the image is converted to the HSV color space to find the
hue and saturation values of each pixel. Next, we map the
hue value to the hue detection range we want for each pixel
with a value above the specified saturation for each pixel. The
hue detection range is automatically determined using sample
pictures of the area with the color to be detected for a specific
brightness and sample pictures of the rest of the background.

At this time, hue margin value is given for hue detection
range to cope with noise generated when shooting with a
real camera. Then, the image is down-sampled to a certain
size and the result is stored in a flag map. The sampling
of one point is accomplished by using a median blur algo-
rithm for the mapped hue value [18]. This blurs various
color-difference noises caused by the camera characteris-
tics. Finally, the flood fill algorithm is applied to the flag
map to create the area-bounding-box information for the
detected color area. This only checks the area other than the

object bounding box detected by the YOLOv3 module. Last,
the sum of the number of detected pixels in the area bounding
boxes in proportion to the number of pixels of the entire
picture is calculated and transmitted to the outside as area-
type contamination information. Please refer to [9] for more
details.

A. DESIGN VARIABLES
1) HUE MARGIN (C)
After extracting the hue value of the photo using HSV color
space, it is used to create a hue depth map. In this module,
we receive a sample image of the area-type contaminant and
its background image at initialization. Then, we calculate and
save the hue range wewant to find. The determined hue-range
information at initialization is used to create the hue depth
map. By slightly increasing the range of both ends of the
hue range, we tried to solve the color difference noise that
occurs in the real-time detection image that was not in the
sample image. If the range is increased too much, it will
recognize too many colors; and if it is too small, it will be
vulnerable to color-difference noise. Therefore, we set this
range-increase value as a system parameter called design
variable C.

2) MEDIAN FILTER SIZE (D)
The hue depthmap still has noise from the camera. As you can
see in Figure 8(c), there is a significant amount of fine noise
left when shooting an image. If you pass through the color-
detection process using this image, then the result will be very
unstable. We use median filters to drastically reduce these
noises and stabilize the results [18]. Adjusting the length of
one side of the median filter will change the performance.
If this value is too large, then the processing time will be
long, and the boundary will become blurred. If this value is
too small, then the noise of the hue depth map will remain.
Therefore, we set this value as a system parameter called
design variable D.

3) DOWN-SAMPLING SIZE (E)
Earlier, we used a median filter on the hue depth map to
reduce noise. The next step, the process of creating a bound-
ing box using the flood fill algorithm, is greatly affected
by the size of the image. Area-type contaminants are often
unclear in boundary areas, unlike in problems such as object
segmenting. Therefore, there is a relatively low need for
precise measurement of the boundary of the area. Thus,
down-sampling reduces the size of the flag map from the
hue depth map and reduces the number of times the median
filter is used. Therefore, we specified the number of pixels
between pixels that are down-sampled. If this value is too
large, then the area information of the area-type contam-
inant begins to be crushed in the detection result. If the
value is too small, then the process time is increased. There-
fore, we set this value as a system parameter called design
variable E.
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FIGURE 8. Results of each color-detection module process step: (a) bounding box after YOLOv3 module process, (b) detected color using HSV color
space, (c) hue depth map, (d) median blurred hue depth map, (e) flag map, and (f) final detection.

B. ORTHOGONAL ARRAY
We set the hue margin to a three-level design variable C, the
median filter size to three-level design variable D, and the
down-sampling size to a design variable E. Since the hue
depth map was created and the median filter was used simul-
taneously during the down-sampling process, we planned
an experiment that considered the correlation variable com-
binations of C and D, D and E, and C and E. The DOF
of this experiment is (3 - 1) × 3 + (3 - 1) × (3 - 1) ×
3 = 20. Therefore, the orthogonal array in this experi-
ment should have at least 20 DOFs. It should have a linear
graph that contains three correlation variable combinations.
We selected L27(313) as the orthogonal array for this experi-
ment. It has aDOF of 26, and it is confirmed that three pairs of
correlation variable combinations can be put through a linear
graph.More detailed information about orthogonal arrays and
linear graphs appears in Appendix 2.

C. DESIGN OBJECTIVE FUNCTION
There are two parts of information from the color-detection
module that we want to optimize. First, the area class and
area ratio are sent to the outside as color-area detection info.
Second, we create a bounding box for the color area and pass
it to the next module so that the grayscale module cannot
calculate the area of the other detection module. Therefore,
this object function must combine three pieces of information
into one.

The area class was not calculated separately because only
one class (rusty stain) exists on the specimen. The area ratio is
the ratio of the area occupied by the area-type contaminant to
the total area. In this case, the ratio of the area of the area-type
contaminant to the total area of the photograph previously
calculated for the specimen is called the true area ratio TAr .
The area ratio of the specimen calculated using the system
parameter determined by using the orthogonal array is called
the detected area ratioDAr , and each is calculated as follows:

TAr =
Dp
Tp

(9)

where Dp is the detected pixel count, and Tp is the total pixel
count of image.

DAr =
Dfp ×M2

TAr
(10)

where Dfp is the detected flag map pixel count, and M is the
median filter size.

In this paper, we defined an index called the Area Accu-
racy Ratio (AAR) to merge TAr and DAr into one value.
Figure 9 shows the plot of the AAR index. The calculation
method is as follows:

FIGURE 9. Graph of AAR(α, β) by β.

If (0 < β ≤ 2α)

AAR (α, β) = 1−

∣∣∣∣α − βα
∣∣∣∣ (11)

Else

AAR (α, β) = 0 (12)

If the desired reference value is put into α, and the detection
result is put into β, then the closer the values of α and β,
the closer they are to 1; and the farther apart they are,
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the closer they are to 0. By using this, two values can be
merged into one AAR(TAr ,DAr ).

IoU is used as an index for the accuracy of the bounding
box for area-type contaminants. It does not need to compare
box counts as we did with the YOLOv3module. Thus, we did
not use any additional indexes. The IoU can be calculated for
the true bounding box and the detected bounding box as a
value between 0 and 1.

Among the system parameters to use the Taguchi method
in the color-detection module, the median filter size and sub-
sampling size have a tradeoff between the detection accuracy
and processing time. Thus, if the processing time is not con-
sidered when defining an object function, then the optimality
and results of both parameters will go to the extreme. There-
fore, information about the processing time should be merged
with the object function. The detection system introduced in
this paper processes the color-detection module after passing
through the YOLOv3 module when a new image arrives.
Owing to the nature of the module, the processing time of the
YOLOv3 module is very long at around 3200 ms. Therefore,
the processing time of the color-detection module is not to
exceed 32 ms, which is 1% of 3200 ms, to avoid a dominant
effect on the overall processing time.

The above information merges TArDAr , the bounding box
IoU, and the processing time threshold information into one
object function called the error of IoU with area errIoUa. The
formula is as follows:

If (Pt < 34ms)

errIoUa = IoU × AAR (TAr ,DAr ) (13)

Else

errIoUa = 1 (14)

where Pt is the processing time of color-detection module.
Since this is a smaller-the-better problem in the Taguchi
method, it is calculated through Equation (2) after the
experiment.

V. GRAYSCALE MODULE EXPERIMENT DESIGN
This module indirectly measures how many particle-type
contaminants such as dust accumulate through the darkness
of the picture. After going through the first two modules,
we calculate the average brightness for the rest of the bound-
ing boxes. Then, the module calculates the difference com-
pared with the average brightness of the preliminary picture
of the clean exterior wall surface. An example of each process
is shown in Figure 10. In this process, when calculating
the average brightness, a method of converting brightness
information using RGB values contained in pixels is needed.
It is necessary to conduct experiments to determine which of
the three methods is the best.

A. DESIGN VARIABLES
1) COLOR SPACE (F)
The result depends on which method is used to calculate
the average brightness in the area. There are various ways

FIGURE 10. Grayscale module’s example area and results of each step:
(a) image from second module (color-detection module) and bounding
boxes from previous modules, (b) reference image and cleaned outer wall
with same light condition, and (c) calculating area other than bounding
boxes from previous modules.

to change the RGB value to a brightness value. The result
depends on which color space is to be changed. In this paper,
we experimented to select one of three color spaces: YUV,
HSV, and CIELab. The Y (luminance) value of the LUV color
space is one of the most popular grayscale conversion meth-
ods. The V (value) value of the HSV color space represents
the brightness value in the color space most commonly used
in image editing tools. We used the RGB to HSV conversion
formula in this paper [19]. The L (lightness) value of the
CIELab color space perceptually represents the brightness
value in a uniform color space. We used the RGB to CIELab
conversion formula from this paper [20]. The choice of value
will affect the output of the module. Therefore, we set this
value as a system parameter called design variable F.

B. DESIGN OBJECTIVE FUNCTIONS
The information from the grayscale module we want to opti-
mize determines how the average brightness has changed
for the reference image. Similar trends must be shown to
represent the amount of dust accumulation on the surfacewith
a brightness difference. To measure this, a certain percentage
of dust is applied to the specimen, and the similarity of the
result of the grayscale module to that ratio is calculated. In the
specimen of this paper, the amount of dust was applied to
the specimen in different ratios of 1:2:3. Thus, in the ideal
case, each measurement is on one straight line. Therefore,
after estimating a straight line using linear regression with
the Least Square Method (LSM), the R-value (coefficient of
determination) is obtained. The closer the R-value is to 1,
the better the linear regression. The formula for this is as
follows:

x̄ =
x1 + x2 + x3

3
, ȳ =

y1 + y3 + y3
3

(15)

a =

∑3
i=1 (yi − ȳ)(xi − x̄)∑

(xi − x̄)2
, b = ȳ− ax̄ (16)

where xi, yi isonespecimentdustset (1:2:3),
xi = i(i = 1, 2, 3), yi : average brightness difference result

of the i-th specimen.
Linear regression using LSM is as follows:

fi = axi + b (17)
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The R-value is

R2 = 1−

∑
i (yi − fi)

2∑
i (yi − ȳ)

2 (18)

We calculated the R-value using a specific color space
for all specimens. The average of these values is used as a
measure of how much the average brightness difference cal-
culated in the color space reflects the actual amount of dust.
We defined a new index: the Brightness-to-Dust Correlation
(BTDC). Its formula is as follows:

BTDCCS =

∑N
j=1 R

2
j

N
(19)

where R2j is the R-value of j-th specimen dust set (1:2:3),
CS is the current color space calculation method, and
N is the total number of specimen dust sets.

VI. CONDUCTING EXPERIMENTS
We defined the design variable, orthogonal array, and object
function for each module above. The entire system proceeds
in the order of YOLOv3, color-detection, and grayscale mod-
ules. The result of the a module does not affect the previous
one. With the value of the found system parameter fixed, the
Taguchi method was again used for the next module. In this
way, we optimized the entire system.

A. YOLOv3 MODULE
Two design variables of the YOLOv3 module are A (NMS
threshold) and B (confidence threshold). The first experi-
ment conducted using the Taguchi method can be found in
Appendix 3. When we saw two correlation variable combina-
tion results, no strong correlation was found. Therefore, in the
first experiment, the value of A did not have much correlation
with the result, and it can be seen that B increased the SNR
toward the first level.

In the second experiment, the level of A was maintained,
whereas B was enlarged to a level below that of the first
experiment. The results of the experiment can be found in
Appendix 4. The correlation variable combinations still do
not exhibit much correlation. Looking only at the design
variables, A tended to be highest at levels 1 and 2, and B
tended to increase as it fell to level 1. Considering that A and
B are the thresholds, if they have the same SNR value, then
the one with the higher level must be chosen.

A third experiment was conducted to find the highest
A and B values at which the SNR reached the highest point.
In the third experiment, the values of levels 1 and 2 of A
were slightly expanded. B was enlarged slightly between
levels 2 and 3. The results of the experiment can be found in
Appendix 5. There was still no correlation in the variables.
In the design variable results, A had the highest value at
level 2, and B maintained the maximum SNR at level 2.
The value at that time was selected as an optimized value.
Therefore, the optimum value A was determined to be 0.3,
at level 2, and B was 0.25, at level 2. Figure 11 shows the
maximum SNR for each conducted experiment.

FIGURE 11. Each maximum SNR graph of YOLOv3 module optimization.

B. COLOR-DETECTION MODULE
Three design variables of the color-detection module were C
(hue margin), D (median filter size), and E (down-sampling
size). The first experiment conducted using the Taguchi
method can be found in Appendix 6. A weak correlation was
found for C∗D and D∗E. C∗E was not considered because of
its relatively low correlation. To get a closer look, we drew
two variable combination plots and analyzed them. For C∗D
combinations, it was best when D and C were at level 1 or
when D was at level 3 and C at level 3. However, in both the
cases, the direction toward level 3 improved the overall SNR.
In the D∗E combination, E at level 2 and D at level 1 were in
the better direction.

In the second experiment, C, D, and E were expanded
near level 3. The results of the experiment can be found
in Appendix 7. There was little correlation between C∗E
and C∗D; however, the correlation of D∗E was prominent.
We checked the variable combination plot. The SNR improv-
ing toward D was level 1, and E was level 1. Because C does
not need to consider correlations, we confirmed the design
variable result for C; C did not have a considerable amount
of influence.

In the third experiment, C was expanded between levels
2 and 3 and D and E were expanded near level 1. The
experimental results can be found in Appendix 8. When we
confirmed the correlation variable combination result, C∗D
and C∗E had a weak correlation. D∗E was found to correlate
and confirmed the variable combination plot. The best SNR
was achieved when D and E were at level 2. The correlation
for C was not noticeable; thus, we confirmed the design vari-
able result of C. Consequently, C exhibited the best SNR at
level 2. Therefore, the optimal value was determined as 10 for
C at level 2 and 19 for D and E at level 2. Figure 12 shows
the maximum SNR for each experiment.

C. GRAYSCALE MODULE
Grayscale modules do not require optimization using the
Taguchi method. This is because only one design vari-
able exists in this module. Color space is not a variable
that has a continuous value. We did not use the Taguchi
method but computed the object function for the three color
spaces. We selected the color space that provided the best
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FIGURE 12. Each maximum SNR graph of color-detection module
optimization.

FIGURE 13. Each BTDC value of color space design variable.

BTDC value.More detailed experimental results can be found
in Appendix 9.

As shown in Figure 13, the method using the V value
from HSV delivered the highest BTDC value. The method
that used the L value from CIELab was good. The color
space that delivered the lowest BTDC value was the method
using the L value from LUV. Therefore, we decided to use
the HSV color space as the RGB-to-grayscale conversion
method.

VII. INTEGRATED TEST & RESULTS
The optimized system parameters were applied to the inte-
grated detection system. The 144 specimens introduced in
Section 2D were used for the test, and the SNRs of the
YOLOv3 module and color-detection module were then cal-
culated. The change was compared using the initial SNR
as the highest SNR in the first experiment of each module.

TABLE 1. Initial and optimized values of design variables.

FIGURE 14. SNR differences between initial system parameters and
optimized parameters.

TABLE 2. Design variables.

TABLE 3. Orthogonal array.

FIGURE 15. Linear graph.

TABLE 4. Design variables.

The value of each system parameter can be checked
in Table 1. The increase in SNR of each module can be noted
in Figure 14.

VIII. CONCLUSION
This paper briefly introduced a machine-vision system that
detects contaminants on building facades and optimized
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TABLE 5. Orthogonal array.

FIGURE 16. Linear graph.

TABLE 6. Design variable level.

the system using the Taguchi method. Camera height and
image brightness were selected as user conditions, and
144 specimen images were prepared accordingly.

FIGURE 17. Design variable results.

FIGURE 18. Correlation variable combination results.

TABLE 7. Design variable level.

FIGURE 19. Design variable results.

The images were captured at distinct brightness levels, rota-
tion angles, and facade distances. Optimization was per-
formed using the Taguchi method in the following order:
the YOLOv3 module, color-detection module, and grayscale
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FIGURE 20. Correlation variable combination results.

TABLE 8. Design variable results.

FIGURE 21. Design variable results.

FIGURE 22. Correlation variable combination results.

module. The SNR difference between the initial and opti-
mized values highlighted the improvement in overall system
performance.

TABLE 9. Design variable level.

FIGURE 23. Design variable results.

However, some problems were also encountered. First,
in the optimization process of the grayscale module, the ratio
of amout of dust applied to the surface was only 1:2:3.
Current optimization result would be less stable than the
experiments in more steps of ratio with amount of dust. Next,
when optimizing the color-detection module, traces of avian
feces were found on the rusty stain. If the YOLOv3 mod-
ule detects avian feces in the previous module and wraps
it in a box, then the next module does not check that
area. This gives rise to errors if the box contains rusty
stains.

In the future studies, we shall investigate the use of object
segmenting instead of using the bounding box. This shall
allow us to separate contaminants of different types more
effectively. In addition, we shall consider further optimization
of the grayscale module by producing more diverse speci-
mens with a dust ratio of 5:7 or more steps.

We plan to perform the field test. The experiments in this
paper is done in lab condition; therefore, there are some
factors to be considered to be check in the field test. The
illumination problem due to the high sunlight is the most
sensitive factor to be considered. The deviation of the lights
in between day and night should be compensated carefully
by using hardware design and software filtering. The prob-
lems from integration with cleaning device such as moving
speed and vibration of the camera should also be consid-
ered to determine the robust design factors for the contam-
ination detection. We are going to be share the experience
on the field test after performing and analyzing the results
shortly.
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FIGURE 24. Correlation variable combination results.

APPENDIX
A. YOLOv3 MODULE EXPERIMENT PLAN
See Tables 2 and 3 and Figure 15.

B. EXPERIMENT PLAN FOR COLOR-DETECTION MODULE
See Tables 4 and 5 and Figure 16.

C. YOLOv3 MODULE 1ST OPTIMIZATION RESULTS
See Table 6 and Figures 17 and 18.

D. YOLOv3 MODULE 2nd OPTIMIZATION RESULTS
See Table 7 and Figures 19 and 20.

E. YOLOv3 MODULE 3rd OPTIMIZATION RESULTS
See Table 8 and Figures 21 and 22.

FIGURE 25. Variable combination plot.

TABLE 10. Design variable level.

F. COLOR-DETECTION MODULE 1st
OPTIMIZATION RESULTS
See Table 9 and Figures 23–25.
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FIGURE 26. Design variable results.

FIGURE 27. Correlation variable combination results.

G. COLOR-DETECTION MODULE 2nd
OPTIMIZATION RESULTS
See Table 10 and Figures 26–28.

FIGURE 28. Variable combination plot.

TABLE 11. Design variable level.

TABLE 12. Grayscale module optimization results.

FIGURE 29. Design variable results.

H. COLOR-DETECTION MODULE 3rd
OPTIMIZATION RESULTS
See Table 11 and Figures 29–31.
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FIGURE 30. Correlation variable combination results.

FIGURE 31. Variable combination plot.

I. GRAYSCALE MODULE OPTIMIZATION RESULTS
See Table 12.
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