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ABSTRACT Owing to the flexibility and low cost, cooperative Unmanned Aerial Vehicles(UAVs) have been
attractive in multi-target positioning recently. Although it is popular and easy to accomplish, positioning
based on trilateration method still faces challenges under scenarios with multiple UAVs. First, large accu-
mulated errors will be brought if a single UAV is used to perform trilateration on same targets. Second, due to
the mobility of targets, the time interval between UAVs performing twice successive distance measurement
on one target cannot be long for positioning precision. Finally, the limited energy provided by onboard
battery limits the time for UAVs to perform tasks. Once the energy used by some of the UAVs reaches
limitation, the whole positioning mission will fail. Thus, to complete the mission of locating multiple targets,
this paper is intended to minimize the maximum energy consumption among all UAVs. We formulate the
problem, and decompose it into two subproblems, one of which plans the routes for UAV groups and the
other plans the routes for UAVs in a group. To solve the first subproblem, a heuristic algorithm called
adjusted genetic algorithm (AGA) is proposed to plan trajectories for all UAV groups under constraints
on maximum energy consumption. To guarantee stable performance and reduce computation complexity,
we propose an approximation algorithm, Tree Decomposition united with Christofides Algorithm (TDCA),
and the approximation ratio is proved to be (3 ∗ N ′/(2 ∗ (N ′ − 1))), where N ′ denotes the number of UAV
groups. For the second subproblem, a two-step greedy heuristic algorithm is proposed to plan trajectories
for UAVs in same groups. Extensive simulations show that compared to existing algorithms, the proposed
algorithms can reduce up to 26.6% maximum and 26.3% average energy consumption.

INDEX TERMS Trajectory planning, energy consumption, cooperative UAVs, approximation algorithm,
tree decomposition, Christofides algorithm.

I. INTRODUCTION
Over past few decades, industry and academia have paid
much attention to Unmanned Aerial Vehicles (UAVs)
because of their advantages in flexible mobility and low
cost. As shown in Fig. 1, among all aspects of applica-
tions, multi-target positioning performed by multiple UAVs
has been used most extensively, e.g., military reconnai-
ssance [1], [2] and target detection [3]. UAVs have better
performance in multi-target positioning mission for the rea-

The associate editor coordinating the review of this manuscript and

approving it for publication was Xujie Li .

sons listed below. First, sending people to perform position-
ing mission is difficult and dangerous in scenarios such as
depopulated zone or radiation zone, etc. Second, since the
quality of aerial-to-ground channel is better than ground-to-
ground channel [4], [5], positioning by UAVswill bring about
high precision compared with positioning by Unmanned
Ground Vehicles (UGVs) [6]. Recently, with the miniatur-
ization of UAVs, it becomes a tendency to execute mission
cooperatively. Cooperative work by multiple UAVs is more
flexible and robust than that by a single UAV. Therefore, it is
worthwhile studying cooperative multiple UAVs performing
multi-target positioning.
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FIGURE 1. Locating targets by UAVs.

Different UAVs locating different targets is a most straight-
forward idea for multiple UAVs to perform multi-target posi-
tioning. Zhang et al. [7] used the method of single-site
positioning with received signal strength indicator (RSSI) to
locate single target once at a time. There are several kinds of
position information needed to complete single-site position-
ing, e.g., azimuth angle, pitch angle and the distance between
UAV and target. Besides, it is also necessary to get accurate
position coordinates and attitude angles of UAV itself. There-
fore, single-site positioning by single UAV requires relatively
complex measurement means and more position informa-
tion which would lead to accumulated errors. To simplify
measurement methods and take the advantage of cooperative
work of multiple UAVs, trilateration [8] method requiring
only three times of distance measurement is adopted in this
paper.

In theory, three times of distance measurement needed
for trilateration are supposed to be carried out by one sin-
gle UAV or several different UAVs. However, the onboard
equipment will bring accumulated inherent errors in scenario
where only one UAV is used to perform trilateration. Hence,
three different UAVs are used to implement three times of
distance measurement. Furthermore, we need to overcome
two challenges in trilateration. One is that there need to be a
bound on the time interval between twice successive distance
measurement because of targets’ ability to move and mission
requirement (quick attack on mobile targets). The other is
that the onboard energy for UAV is finite and once some
UAVs’ energy consumptions reach limitation, the positioning
mission will fail because of their quit. Thus, it is vital to
study the problem of how to achieve fair energy consumption
among UAVs.

UAVs track the signals of the targets to locate them in
many current works [10]- [14]. Authors in [10], [11] tracked
targets by using single UAV flying towards them. Instead
of flying towards targets, a few sensors or UAVs adopted
angle of arrival (AOA) and RSSI methods to locate targets
in [12], [14]. Dai et al. [12] used static sensors to locate static
targets. Meanwhile, Sallouha et al. [14] used aerial anchors
to locate one target at a time, ignoring the superiority of
cooperative work in saving time in multi-target positioning
mission. To save time consumed in multi-target positioning
mission, planning the trajectories for cooperative UAVs is
extremely necessary. The problem of planning trajectories for

multi-UAV in multi-target scenario can be regarded as a Mul-
tiple Travelling Salesman Problem (MTSP) if multiple UAVs
are viewed as salesmen while multiple targets have different
positions. There have already existed some works planning
the trajectory for UAVs by solvingMTSP problem [18]–[22].
However, in this paper three different UAVs are needed when
locating one target base on trilateration method, which makes
the problem of trajectory planning for cooperative multiple
UAVs performing multi-target positioning different from tra-
ditional MTSP problem.

In this paper, we intend to minimize the maximum energy
consumption among all UAVs to balance the energy con-
sumption by planning trajectories. Apparently, the mission is
to locate multiple targets with cooperative UAVs with trilater-
ationmethod under the objective ofminimizing themaximum
energy consumption. This min-max problem is decomposed
into two subproblems, amultiple travelling salesmen problem
and an allocation problem. For the first subproblem, a heuris-
tic algorithm and an approximation algorithm are proposed to
help solve it. Then, a two-step greedy algorithm is proposed
for the second subproblem. To sum up, the contributions are
listed below:
• We study the problem with the intention to minimize
the maximum energy consumption among all UAVs,
which performs cooperative multi-target positioning
with trilateration method, which is much simpler than
single-site positioning. The problem is decomposed into
two subproblems, an MTSP problem followed by an
allocation problem.

• We propose a heuristic algorithm, an adjusted genetic
algorithm, to help solve the MTSP problem. The heuris-
tic algorithm can provide better performance with the
increase of iteration times. To guarantee stable perfor-
mance and reduce computation complexity, we propose
an approximation algorithm, Tree Decomposition Algo-
rithm united with Christofides Algorithm (TDCA).

• We propose a greedy heuristic algorithm to help solve
the allocation problem. After solving the MTSP prob-
lem, a two-step greedy algorithm is proposed to allocate
the three coarse-grained positions around targets to three
UAVs in one group.

• Weperform extensive simulations to verify the effective-
ness of the two proposed algorithms. Compared to three
other algorithms, simulation results show that the pro-
posed TDCA combined with two-step greedy algorithm
can reduce up to 26.6% of maximum energy consump-
tion while the two-stage heuristic algorithm can reduce
up to 24.9% maximum energy consumption.

The rest of this paper is organized as follows. In Section II,
related works are reviewed. Section III builds the models
and Section IV formulates and decomposes the problem.
Section V proposes a heuristic as well as an approximation
algorithms for Subproblem 1 and Section VI proposes a
heuristic algorithm for Subproblem 2. Section VII shows the
simulation results and discusses the performance of algo-
rithms. Section VIII is the conclusion for this paper.
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II. RELATED WORKS
In this section, current works on UAV based multi-target
positioning is reviewed first, and then we review works about
UAVs’ trajectory planning based on MTSP.

A. UAV BASED MULTI-TARGET POSITIONING
To complete the task of positioning, some works use UAVs
equipped with RSSI sensors to track the targets. Assuming
the transmission power of target to be unknown, authors
in [9]–[11] tracked the target with different estimation meth-
ods. Based on the theory of Differential Received Signal
Strength Indication (DRSSI), Dehghan et al. [9] compared
three different estimation filters to track single target with-
out considering the scenario of multiple targets. Authors
in [10] and [11] tracked the targets using extended Kalman
Filter (EKF) with different states of targets, i.e., static and
dynamic. However, they all ignored the energy consumption
of the UAVs and can track only one target at a time.

Some works use both RSSI and AOA sensors to locate
targets. Dai et al. [12] proposed a numerical method to
improve the accuracy of distance measurement with three
sensors in different positions with the transmit power known.
But the sensors above are static and cannot move around in
a multi-target scenario. Then, Haidari et al. [13] proposed a
method by using a network established of several static sen-
sors and a guidedmoving sensor to locatemultiple RF sources
with unknown transmit power. Sallouha et al. [14] used three
aerial anchors strictly arranged in equilateral triangle to locate
the targets. Since they did not take the energy consumption
of UAVs into consideration either, methods they proposed
cannot be used to solve the problem this paper proposed.

B. MTSP BASED COOPERATIVE TRAJECTORY PLANNING
For cooperative trajectory planning, there have been many
works planning path by solving multiple travelling salesman
problem (MTSP) [15]- [22].

The authors in [15] and [16] both used GA to solve
the problem of path planning with UAVs acting as relay
nodes in message ferry networks and collecting information
from desired regions respectively. Chen et al. [17] are dedi-
cated to solving the multi-robot patrolling problem under the
consideration of two objectives, minimizing both the max-
imum and the total tour distances. To solve multi-objective
MTSP, Shim et al. [18] hybridized local search metaheuristic
approaches with the decomposition estimation of distribution
algorithm to enhance the search behavior of the algorithm.
Considering the existing environmental and inherent instabil-
ity, Sariel-Talay et al. [19] solved multiple traveling robots
problem with a multi-robot cooperation framework employ-
ing a dynamic task selection scheme.

Existing works also proposed algorithms to solve MTSP
by transforming the problem into TSPs. Gu et al. [20] trans-
formed the original problem, a variant of MTSPs into a
standard asymmetric TSP and solved it with Lin-Kernighan
Heuristic searching algorithm. The objective is to avoid static

TABLE 1. Notations.

obstacles/threats detected and subjecting to aircraft dynam-
ical constraints. Kim et al. [21] considered two multiple-
drone-assisted search-and-reconnaissance scenarios, defined
the problems as variations of TSP and utilized graph the-
ory to solve them. Authors in [22] solved TSP problem
with two heuristic algorithms, improved genetic algorithm
and particle-swarm-optimization-based ant colony optimiza-
tion (ACO) algorithm, but the results of these two algorithms
depend on their iteration times. In conclusion, existing works
have done a lot of research on MTSP by directly solving it or
transforming it into TSPs. However, the proposed algorithms
achieved better results with the decrease of time complexity.
Furthermore, because of the trilateration method used in this
paper, there would be a new problem that the trajectory of
three UAVs need to be planned respectively. Thus, existing
works cannot solve the problem of planning the trajectory for
UAVs when using trilateration to locate targets.

III. MODELS
In this section, we build models including network model,
distance measurement model, positioning model and energy
consumption model, to prepare for the problem formulation.
The major notations used are listed in Table 1.

A. NETWORK MODEL
We establish a system including a central station, N UAVs
and M targets illustrated in Fig.2. The calculations on the
information sent from UAVs will be executed by the central
station to get target position. For each target, it is supposed
that the three surrounding positions have already been known
to UAVs so that they can perform trilateration on targets. This
assumption is usual in real scenario, e.g., delivering sensors
to surveillance area by aerial vehicles. Since the application is
to detect sensor network in wild scene where high obstacles
are barely existing, the UAVs are assumed to fly straightly
without considering obstacles. The precise positions of these
sensors are unknown because the delivery is affected bymany
factors, such as wind power, air friction and terrain. Fortu-
nately, three ormore coarse-grained positionswhich surround
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FIGURE 2. UAVs locate the targets based on RSSI and send the position
information to the central station.

the deliver position can be achieved and trilateration can be
implemented by UAVs in these positions. At the same time,
it is assumed that the sensor targets will send out messages
by transmitting wireless signals with transmit power already
known. Under this assumption, we can locate these sensor
targets with trilateration method based on RSSI. To imple-
ment positioning mission, we need to confine the distance
between the target and the UAV to the transmission range.
We also limit the time interval between twice continuous
distance measurement to a limitation. Furthermore, owing
to the fact that one UAV conducting trilateration may bring
about accumulated inherent hardware errors, we are supposed
to ensure that one target will be located by three different
UAVs.

For simplicity, we settle the N collaborative UAVs in
the central station with the coordinate of [0, 0, 0]T initially
and then denote the location of UAV in flight by Un =
[xn, yn, zn]T (n ∈ {1, 2, . . . ,N }). All UAVs will fly at the
same height which is denoted by H0. When locating tar-
gets, the UAVs will send out messages to the central station,
including both their own position information and detection
information, the distance measurement information and the
positioning time. In addition, the received information and
the coordinate of the target m, T (m) = [x(m), y(m), z(m)]T ,
m ∈ {1, 2, . . . ,M} will be analyzed and calculated by the
central station.

B. DISTANCE MEASUREMENT MODEL
Since we have already known the transmit power of the
target and equipped all the UAVs with onboard RSSI devices,
the classic log-distance path loss model is adopted to mea-
sure distances between UAVs and targets [10]- [14]. During
the propagation of the wireless signal, the received signal
strength is attenuated as the distance increases. According to
this law, the relationship between the RSSI attenuation and
the distance can be obtained. There existed several channel
fading models, e.g., Rayleigh fading model and free space
fading model. In this paper since the model is only used
for distance measurement and does not influence trajectory
planning, we choose free space fading model as follows for
ease of presentation:

Pr (d) = P0 − 10λ lg(d/d0), (1)

FIGURE 3. There are two solutions to the equations of the trilateration
method. One of them can be discarded based on height information.

where d0 represents the reference distance and the signal
strength at distance d0 is denoted by P0. The real distance and
the signal strength received at real distance are denoted by d
and Pr , respectively. The path loss exponent is represented
by λ.

C. POSITIONING MODEL
Fig. 3 reveals the schematic diagram of positioning model
based on trilateration method performed on targets by
UAVs.

We denote the positions of the three UAVs by (x1, y1, z1)T ,
(x2, y2, z2)T , (x3, y3, z3)T respectively. Distances between the
mth target and the three UAVs are represented as dm1 , d

m
2 , d

m
3 .

Let the coordinate of the target be (x(m), y(m), z(m))T , and
then we formulate the equation of trilateration as
(dm1 )

2
= (x(m)− x1)2 + (y(m)− y1)2 + (z(m)− z1)2

(dm2 )
2
= (x(m)− x2)2 + (y(m)− y2)2 + (z(m)− z2)2

(dm3 )
2
= (x(m)− x3)2 + (y(m)− y3)2 + (z(m)− z3)2.

(2)

After solving equation (2), we will obtain two positions
for target and discard one of them based of UAV flying
height. To sum up, the target can be precisely located after
completing the three times of distance measurement between
UAVs and target.

D. ENERGY CONSUMPTION MODEL
The energy consumed byUAV can be divided into three parts:
energy for motion, energy for positioning and energy for
communication.

The energy for motion ensures that the UAV can move and
keep aloft. In this paper, UAVs are supposed to fly in constant
speed and since the power does not vary too much in low
speed condition, the time for UAV to fly is corresponding
to the length of flying routes when performing tasks. Thus,
we calculate the energy consumption based on UAV flying
routes. Project the trajectory of the nth UAV on the horizontal
plane, and denote it by q(n, t) = [x(n, t), y(n, t)]T . For ease
of presentation, UAV’s trajectory is assumed to be discretized
into Kn segments, representing Kn times positioning. The
distance from the position for the nth UAV to perform the
(k − 1)-th positioning to the position to perform the k-th
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positioning can bewritten as dnmo(k) = ||q(n, k)−q(n, k−1)||.
The energy for motion is

Enmo(k) = emo · dnmo(k)

= emo ‖q(n, k)− q(n, k − 1)‖ , (3)

where the energy consumed per unit horizontal distance is
denoted by emo and measured in Joule/meter [23].
The energy for positioning is related to the time that

UAV uses to hover and to range. Observe that the difference
between the energy consumed per second for flying and hov-
ering is minor. The time used to hover for UAVs to perform
distance measurement is very short, since we only need to get
the strength of the signal in this position, which can be done
in no more than one second. Thus, the assumption is made
that the positioning-related energy can be simplified into a
constant Enp (k) = ep corresponding to the energy for UAV
to fly for one second [24]. Moreover, the energy consumed
by distance measurement is much smaller than the energy
for motion. We then express the energy consumed by the nth
UAV to perform the kth positioning as

Ensum(k) = Enmo(k)+ E
n
com(k)+ E

n
p (k)

= emo||q(n, k)− q(n, k − 1)|| + ep. (4)

The energy for communication Encom(k), is much smaller
than the energy consumed to ensure UAV’s motion in practice
according to [26]. Therefore, we will ignore it when consider-
ing the total energy consumption in this paper. Then, the total
energy consumed by nth UAV is expressed as

E(n) =
Kn∑
k=1

Ensum(n, k)

=

Kn∑
k=1

[emo||q(n, k)− q(n, k − 1)|| + ep]. (5)

IV. PROBLEM FORMULATION AND DECOMPOSITION
In this section, the trajectory planning problem is formulated
with the intention to minimize the maximum energy con-
sumption. To solve this min-max problem, the UAVs will be
divided into groups with three UAVs each so that the problem
can be decomposed into two subproblems.

A. PROBLEM FORMULATION
We formulate the optimization problem to minimize the max-
imum energy consumed by all UAVs below.

min
q,m

N
max
n=1

Kn∑
k=1

[
emo · ‖q(n, k)− q(n, k − 1)‖ + ep

]
(6)

s.t. dmi = ||Un − T (m)||,mi 6= mj, i 6= j,

and i, j = 1, 2, 3, (C6-1)

dmi ≤ R, (C6-2)

tm(i)− tm(i− 1) ≤ δt , (C6-3)
Kn∑
k=1

[emo · ||q(n, k)− q(n, k − 1)|| + ep] ≤ eη. (C6-4)

We explain the constraints above in detail in the below.
To avoid twice distance measurement on one target being
continuously performed by the same UAV, we record the
positioning information as dmi = ‖Un − T (m)‖ with mi
marking the UAV performing the ith distance measurement
on the mth target and satisfying the constraint that the mth
target should be located by three different UAVs as illus-
trated in (C6-1). In (C6-2), R represents the upper bound of
the maximum distance between UAV and target. Inequation
(C6-3) expresses that the time interval between the twice
successive distance measurement, ith and (i − 1)th, on the
same target should be as small as possible, where the time
of the ith distance measurement on the mth target is denoted
by tm(i) and δt is supposed to be as small as possible so that
the time intervals among UAVs locating the same target can
also be small correspondingly. Then, the target can be located
within a relatively small time interval with relatively high
precision considering their possibility of moving. Since the
onboard battery carried by the UAV provides limited energy,
we should constrain the energy consumed to implement the
mission to an upper bound denoted by eη in (C6-4).

B. DECOMPOSITION
For ease of presentation, the problem formulated can be
viewed as to allocate multiple targets to multiple UAVs to
locate, which is more like an MTSP problem. The difference
is that UAVs acting as travelling salesmen in our problem
has to cover three positions surrounding the targets instead
of directly locating targets themselves. Thus, our formulated
problem is more intractable than a pure MTSP problem and
is difficult to be directly solved.
In this subsection,we propose to decompose it into two

subproblems. The basic idea is dividing UAVs into groups
of three. These UAV groups will be treated as travelling
salesmen. According to the theory of trilateration, three
coarse-grained positions around the target need to be cov-
ered by UAVs. Thus, each group will have three UAVs and
the centroid of the three known positions will be viewed
as a city. We first need to plan routes for these travelling
salesmen to cover all the cities, which can be treated as
an MTSP problem. Then, each group will be recovered as
three UAVs and each city will be recovered as three posi-
tions. The second subproblem is to allocate UAVs to cover
all the locations so that we can get exact routes for all
UAVs.
After the UAVs being divided into groups of three, each

group of three UAVs will be treated as a unit, which covers
the same set of targets in the same order, in which case
constraints (C6-1) and (C6-3) can be omitted. In this paper,
N UAVs are supposed to be divided into N ′ = N/3 groups.
If N is less than 3 or N is not divisible by 3, the remaining
UAVs which cannot form a group will result in accumu-
lated error when performing three times of distance mea-
surement on the same target. Besides, if we use more than
3 UAVs to locate one target, because we assume that each
distance measurement is accurate without error, only three
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FIGURE 4. A possible trajectory of a UAV group. A UAV group contains
three UAVs. The centroid of three known positions of a target is
considered as the virtual location of the target. The trajectory passes
through the virtual locations of multiple targets.

times of distance measurement will be used and this will
result in resource waste. Thus, N is supposed to be a multiply
of 3 and then the optimization problem will be reformulated
as

min
m

N/3
max
n′=1

Kn′∑
k=1

[
emo ·

∥∥q(n′, k)− q(n′, k − 1)
∥∥+ ep] (7)

s.t. dmi = ||U (n′, k)− T (m)|| ≤ R, (C7-1)
Kn′∑
k=1

[emo · ||q(n′, k)− q(n′, k − 1)|| + ep] ≤ eη. (C7-2)

The n′th UAV group will cover Kn′ targets. The prob-
lem formulated intends to minimize the maximum energy
consumption among all UAV groups. The problem seems
to have similarity to the MTSP problem with each group
corresponding to a salesman and the centroid of the three
positions surrounding the target to a city.

The two subproblems are defined in the below.

• Subproblem 1: Plan routes for the salesmen to cover
all cities and minimize the maximum cost among all
salesmen.

• Subproblem 2: Allocate the three positions recovered
from each city to the three UAVs recovered from each
salesman and minimize the maximum energy of the
energies consumed by the three UAVs.

1) SUBPROBLEM 1: MTSP PROBLEM WITH MIN-MAX
OBJECTIVE
Fig. 4 illustrates the Subproblem 1 planning the trajectories
for all UAV groups, which has similarity to an MTSP prob-
lem [15]. Nevertheless, the objective of the traditional MTSP
problem is to minimize the total cost of all salesmen. Sub-
problem 1 has a major difference from the traditional MTSP
problem is that its objective is to minimize the maximum
energy consumed by all UAV groups, which corresponds
to minimize the maximum cost. We formulate the problem

below:

min
N/3
max
n′=1

Kn′∑
k=1

[
emo ·

∥∥q(n′, k)− q(n′, k − 1)
∥∥+ ep] (8)

s.t.
Kn′∑
k=1

[emo · ||q(n′, k)− q(n′, k − 1)|| + ep] ≤ eη,

(C8-1)

q(n′, 1) = q(n′,Kn′ ). (C8-2)

The objective is to minimize the maximum energy con-
sumption among all UAV groups under constraints on energy
consumption in (C8-1). And once the UAV consumed eη
energy or the whole positioning mission is finished, this UAV
group has to quit the mission and return to the central station,
as illustrated in (C8-2).

2) SUBPROBLEM 2: PLANNING ROUTES FOR UAVS IN EACH
GROUP
Each UAV group will be recovered as three UAVs and each
city will be recovered as three positions in Subproblem 2.
Then, allocating the three positions to the three UAVs will
be considered.

Take one UAV group as an example. There assume to
be M ′ targets which will be covered by this UAV group.
We let p(m′, i) denote one of the three coarse-grained posi-
tions around them′th target which is allocated to the ith UAV,
in which case the ith UAV will pass through p(m′, i).
We formulate Subproblem 2 as

min
p

3
max
i=1

M ′∑
m′=1

[
emo ·

∥∥p (m′, i)− p (m′ − 1, i
)∥∥+ ep] (9)

s.t. p
(
m′, i

)
6= p

(
m′, j

)
, i, j ∈ {1, 2, 3} , i 6= j (C9-1)

M ′∑
m′=1

[
emo ·

∥∥p (m′, i)− p (m′ − 1, i
)∥∥+ ep] ≤ eη,
∀i ∈ {1, 2, 3} (C9-2)

p (0, i) = p
(
m′ + 1, i

)
, ∀i ∈ {1, 2, 3} (C9-3)

The objective is to minimize the maximum energy con-
sumption among three UAVs in group n′. The constraint
described in (C9-1) is that each position will be covered only
once. The energy consumed by UAV group n′ has an upper
bound eη in constraint (C9-2). The UAVs need to return back
to the central station as described in (C9-3).

However unfortunately, Fig.5 illustrates that, there are six
possible route choices for UAV to take when flying from one
target to next. As the number of targets increase, the total
number of possible route choices for three UAVs will grow
exponentially. Thus, exhaustive search is not suggested to be
performed for optimal solution.

V. HEURISTIC AND APPROXIMATION ALGORITHMS FOR
SUBPROBLEM 1
In this section, two different algorithms, a heuristic algo-
rithm and an approximation algorithm, are proposed to solve
Subproblem 1, the MTSP problem.
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FIGURE 5. Six possible choices to fly from one target to the next. The
known coarse-grained locations for the (m′ − 1)th target along the route
are labeled as 1, 2 and 3. Similarly, that for the m′th target are also
labeled as 1, 2 and 3. The table lists all six possible flying options for the
three UAVs. For example, the first option is to let the UAV visiting location
1 of the (m′ − 1)th target visit location 1 of the m′th target, the UAV
visiting location 2 of the (m′ − 1)th target visit location 2 of the m′th
target, and the third UAV visit location 3 of the m′th target.

A. HEURISTIC ALGORITHM
In heuristic algorithm, the classical genetic algorithm (GA) is
adapted to help solve theMTSP problem [22]–[25]. The basic
idea of our algorithm is to change the objective fromminimiz-
ing the total cost to minimizing the maximum cost. Besides,
we also add one constraint on all routes length corresponding
to the all UAVs costs instead of utilizing the predefined
iteration number as the only constraint on iteration times,
which may reduce unnecessary iteration operations. Once the
routes satisfy that they have similar length or the iteration
times reach the predefined number, the result achieved will
be checked to choose the best routes based on the minimum
value of the maximum route cost. We use the difference
value between the maximum and minimum length to justify
whether the UAV flying routes have similar length. When the
value is smaller than an actual value in simulation, the routes
length will be justified as similar. The process of algorithm is
specified in Fig. 6.

We initialize the population of routes by labeling targets
as integers randomly. And then based on the number of UAV
groups N ′, we need to select N ′-1 breaking points to allocate
targets to UAV groups as well as plan routes for UAV groups
as illustrated in Fig.7.

With crossover and mutation operation, we then get the
route populations and find the best routes among them. After
evaluating the member of chosen population, we next gener-
ate new population based on evolutionary operator [22]–[25].
With the increase of iteration times, the adapted genetic algo-
rithm can provide better performance. However, when the
number of targets gets larger, the computation time increases
accordingly. Therefore, we propose an approximation algo-
rithm to guarantee low computation complexity.

B. APPROXIMATION ALGORITHM
To solve Subproblem 1, we propose an approximation algo-
rithm, tree decomposition algorithm united with Christofides
algorithm (TDCA). Before explaining and analyzing TDCA,
the multi-UAV’s system needs to be modeled as a complete

FIGURE 6. After initializing parameters and population of routes,
we execute genetic algorithm operators and find the best solution among
populations under the constraints of minimizing maximum route length.
Once i reaches the number of iteration times or all routes has similar
length, we output the best results.

FIGURE 7. Route chromosome sequences for UAV groups. One route
represent a chromosome sequence which stands for one UAV group and
each gene in sequence represents one target. Take three UAV groups and
ten targets as an example. Targets are labeled as integer numbers
randomly. After breaking point selection, we get the UAV groups flying
orders. Number 0 represents the initial position of all UAVs.

undirected graph G = (V ,E), where routes to be travelled
are represented by edges in E and targets to be located are
denoted by vertexes in V .

1) TREE DECOMPOSITION ALGORITHM
First is the tree decomposition algorithm to allocate targets
to UAV groups. Before decomposing, we need to get the
minimal spanning tree of G and aiming to reduce algorithm
complexity, we use the delaunay triangulation to get a com-
plete graph of graph G. And then we calculate a minimal
spanning tree (MST) for preparation of forming subtrees by
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FIGURE 8. Steps of tree decomposition algorithm. We first get the
positions of all targets and a complete undirected graph G based on the
information of target distribution. Second we compute a complete graph
CG of G based on delaunay triangulation. Then we calculate the minimum
spanning tree and last by deleting edges based on constraints, we get the
tree decomposition result.

Algorithm 1 Tree Decomposition Algorithm
Input: M , number of targets; N ′, number of UAV groups;

G(V ,E);
Output: trn, decomposed subtree for UAV group n;
1: Compute a complete graph CG of graph G based on

delaunay triangulation;
2: Calculate a minimal spanning tree mst based on the

complete graph;
3: mst ′← Sort the edges of mst in descent order;
4: for I ← 1 to (M − 1)/N ′ do
5: if max(cost(trn)) >

∑
(cost(trn))/(N ′ − 1) then

6: for i← 1 to M − 1 do
7: temp = mst ′(i), mst ′(i) = 0;
8: if min(num(n)) > I then
9: update mst ′, len, trn, num(n);
10: else
11: mst ′(i) = temp;
12: end if
13: if len > N ′ then
14: break;
15: end if
16: end for
17: else
18: break;
19: end if
20: end for

deleting edges ofmst under constraints. The specific steps are
illustrated in Fig.8 and Alg.1 below.

In Algorithm 1, line 5 gives the most important constraint
on the maximum weight of all subtrees which corresponds
to the constraint on the maximum energy consumption of all
UAV groups. Lines 6-14 express that we will delete the edges
of minimal spanning tree in orders to form subtrees, which

FIGURE 9. Steps of Christofides algorithm. After allocating targets to UAV
groups, we first compute a complete graph CG′ based on Delaunay
triangulation. Second, we calculate the minimum spanning tree T and
pick out the vertices with odd degrees to form a minimum-weight perfect
matching A. Then unite T and A and calculate an Euler tour EC . Finally,
remove the repeated vertices and edges for the final results C∗.

Algorithm 2 Christofides Algorithm
Input: G′(V ,E);
Output: C∗, circuit route for UAV group n;
1: CG′ ← a complete graph computed by delaunay trian-

gulation method on G′;
2: T ← a minimal spanning tree by calculation on CG′;
3: O← vertices with odd degrees in T ;
4: A← a perfect match graph of O with minimal weight;
5: C ← A ∪ T ;
6: EC ← an Euler circuit calculated on C ;
7: C∗← EC− repeated vertices;

can be seen as allocating targets to UAV groups and once
the number of subtrees reaches the number of UAV groups,
the steps of subtree formation should be stopped.

2) CHRISTOFIDES ALGORITHM
Second is the approximation algorithm called Christofides
algorithm to plan the trajectory for all UAV groups. The
specific steps are illustrated in Fig.9 and Alg.2 below.

In Algorithm 2, lines 1 and 2 are supposed to calculate a
minimal spanning tree T . Lines 3 and 4 are objected to find a
minimum weight perfect match A for the odd degree vertices
O in T . Lines 5-7 are to union T and A to get the final circuit
route.

3) ALGORITHM ANALYSIS
We will verify the approximation ratio of the proposed
approximation algorithm and analyze its time complexity in
this part.

The system of multi-UAV locating multi-target is mod-
eled as a graph G to simplify the analysis. The mini-
mal spanning tree is represented by mst and its cost is
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W (mst) = w(mst) + p(mst). The subtree with maximum
weight by optimal solution is marked as opt and its weight is
w(opt) after tree decomposition. The cost of the subtree opt
is marked asW (opt). The nth subtree formed by Algorithm 1
is represented by trn with w(trn) weight.
Lemma 1: For Algorithm 1, subtrees after tree decomposi-

tion algorithm satisfy:

W (TR) ≤ 1
N ′−1

N ′∑
n=1

(w(trn)+ p(trn)), (10)

where W (TR) represents the maximum weight of all UAV
groups after Algorithm 1 allocating targets to them.We define
the total weight of all edges in subtree trn as w(trn) and the
total weight of all vertices in subtree trn as p(trn).

Proof: According to line 4 of Algorithm 1, subtrees
satisfy the constraint that the total weight has an upper bound,

1
N ′−1

N ′∑
n=1

W (trn). The target points in trn will be joined with

the central station location point. cost(trn) is the cost of the
trajectory of trn planned by Algorithm 2 on those points.
Thus, we get

W (TR) = max
1≤n≤N ′

{W (trn)}

≤
1

N ′ − 1

N ′∑
n=1

W (trn)

=
1

N ′ − 1

N ′∑
n=1

(w(trn)+ p(trn)). (11)

Lemma 2: In Algorithm 2, the circuit route of the nth UAV
group has an upper bound 3

2cost (p
∗(trn)), where p∗(trn) is the

optimal solution for nth UAV group and cost(·) is the cost.
Proof: The cost of minimal spanning tree of nth UAV

group is smaller than the optimal trajectory, cost(T (trn)) ≤
cost(opt(trn)). In lines 3 and 4 of Algorithm 2, the vertices
of O(trn) is less than half of the vertices of trn. Therefore,
the cost of perfect match graph of O(trn) is less than half of
cost(opt(trn)), cost(A(trn)) ≤ 1

2cost(opt(trn)). Then, we get

cost
(
C∗n
)
= cost(T (trn))+ cost(A(trn))

≤ cost
(
p∗(trn)

)
+

1
2
cost

(
p∗(trn)

)
=

3
2
cost

(
p∗(trn)

)
. (12)

Theorem 1: After TDCA, the maximum cost of all UAV
groups, cost(TR), satisfy:

cost(TR) ≤
3

2 ∗ (N ′ − 1)
W (MST ). (13)

Proof: The cost of TR must be proportional to

the W (TR), cost(TR) ≤ 1
N ′−1

N ′∑
n=1

(cost(trn)) because of

Lemma 1 and 2. Besides, since tr is formulated by deleting

edges from MST , the weight of MST is bigger than the total
cost of opt(trn). The theorem is proved as follows:

cost(TR) = max
1≤n≤N ′

(cost(trn))

≤
1

N ′ − 1

N ′∑
n=1

(cost(trn))

≤
3

2 ∗ (N ′ − 1)

N ′∑
n=1

(cost(opt(trn)))

≤
3

2 ∗ (N ′ − 1)
W (MST ). (14)

The lower bound of cost(max) denoting the maximum cost
of the optimal solution P∗ is proved to make an analysis
on the approximation ratio of the proposed approximation
algorithm.
Lemma 3: Let opt be the optimal trajectory graphs for

UAV groups, max be the trajectory graph with maximum
cost achieved by the optimal solution and cost(max) be the
maximum cost of the UAVs’ trajectories by optimal solution.
It holds that

cost(max) ≥ 1
N ′W (MST ). (15)

Proof: The basic theories of Lemma 2 are that the
maximum cost is bigger than the average and the cost of
minimal spanning tree is smaller than the cost of P∗. Then,
we get

cost(max) = max
1≤n≤N ′

{
cost(P∗n)

}
≥

1
N ′

N ′∑
n=1

{
cost(P∗n)

}
≥

1
N ′
W (MST ). (16)

Theorem 2: The approximation ratio of the proposed algo-
rithm, TDCA is 3∗N

2∗(N−1) .
Proof: Combining Theorem 1 with Lemma 3, we get

cost(TR) = max
1≤n≤N ′

{cost(trn)}

≤
3

2 ∗ (N ′ − 1)
W (MST )

≤
3 ∗ N ′

2 ∗ (N ′ − 1)
cost(max). (17)

Theorem 3: The proposed approximation algorithm TDCA
for the UAVs trajectory planning problem takes O(n3) time,
with a metric complete graph G = (V ,E) and a positive
integer N ′ taken into consideration.

Proof: TDCA is a union of tree decomposition algo-
rithm and Christofides algorithm. We first analyze the time
complexity of tree decomposition algorithm, which includes
two main steps, the calculation of MST and the formation
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of subtrees. The time taken to calculate an MST is O(n2)
while the time consumed to get the subtrees is also O(n2)
corresponding to Algorithm 1. Thus the time complexity of
tree decomposition algorithm is O(n2). Then Christofides
algorithm is also divided into two parts, calculating the MST
and finding a minimum weight perfect match for odd degree
vertices. Calculating the MST costs O(n2) time and finding
the minimum weight perfect match consumes O(n3), which
contributes to the O(n3) time complexity for Christofides
algorithm [27]. Thus, the time complexity of tree decompo-
sition algorithm united with Christofides algorithm is proved
to be O(n3).

In summary, the approximation ratio of the proposed
approximation algorithm, tree decomposition algorithm
united with Christofides algorithm for Subproblem 1 is testi-
fied as 3∗N ′

2∗(N ′−1) where N represents the number of UAVs, and
its time complexity is proved to be O(n3).

VI. A HEURISTIC ALGORITHM FOR SUBPROBLEM 2
In this section, a two-step greedy heuristic algorithm is pro-
posed for subproblem 2.

As shown in Fig.5, there are six possible route choices
for UAV to fly from one target to next. As the the number
of targets increases, the total number of possible routes for
these three UAVs will grow exponentially, which makes it
impossible to perform exhaustive search for optimal solution.
To this end, a two-step greedy heuristic algorithm is proposed.

1) The routes for three UAVs locating adjacent targets
are planned greedily. Routes are all divided into segments,
each of which represents the UAV flying from one target to
another. For each segment, we need to pick out the route
choice which costs minimum energy. We can complete the
selection process in constant time due to the finite 6 possible
route choices. After we determining the routes on all route
segments, they will be concatenated to form entire flying
routes. We specify the algorithm below.

In Algorithm 3, we need to input the number of targets,
the coarse-grained positions around these targets and the
flying choices in each route segment. Lines 5-7 are to find
the maximum route length of the UAV group in each segment
denoted by dmax . Lines 4-8 are to select the minimum value
of dmax , which has 6 values representing the route lengths of 6
choices. In line 10, we record the coordinates for each of the
three UAVs in one group to fly through in the ith segment.

2) Local adjustments are operated on the routes of each
segment. When one segment is adjusted, we keep the route
choices of the rest segments invariable. If the adjustment
taken brings smaller maximum energy consumption, we will
accept it and turn to the next segment. The final output com-
bined with all these adjustments is the solution for Subprob-
lem 2.We detailedly introduce the algorithm in Algorithms 4.

Lines 5-7 store the maximum route length of three UAVs
in one group denoted by Dmax . The minimum route length is
chosen in line 8 with decision on the route choice based on
the value of Dmin. In line 10, the coordinates are recorded for
each of the three UAVs to fly through in the ith segment.

Algorithm 3 Initial Route Planning Algorithm
Input: m, number of targets; x, y, two m × 3 matrices of

targets’ locations; ach, 6 possible flying route choices
Output: ind1, an array to choose choices from ach; X1, Y1,

two m× 3 matrices of three UAVs’ coordinates;
1: for k ← 1 to 3 do
2: X1(1, k)← x(1, k), Y1(1, k)← y(1, k);
3: end for
4: for i← 1 to m− 1 do
5: for j← 1 to 6 do
6: dmax(j) ← the maximum route length of the ith

segment from three UAVs choosing route ach(j);
7: end for
8: dmin(i) ← the minimum value of dmax , ind1(i) ← the

index of chosen route from ach based on dmin(i);
9: for k ← 1 to 3 do
10: X1(i+ 1, k)← x(i+ 1, ach(ind1(i), k)),

Y1(i+ 1, k)← y(i+ 1, ach(ind1(i), k));
11: end for
12: end for

Algorithm 4 Local Adjustment Algorithm for Routes
Input: m, number of targets; x, y, two m × 3 matrices of

targets’ locations; ind1, an array from Algorithm 1
Output: ind2, an array to choose choices from ach; X2, Y2,

two m× 3 matrices of three UAVs’ coordinates;
1: for k ← 1 to 3 do
2: X2(1, k)← x(1, k), Y2(1, k)← y(1, k);
3: end for
4: for i← 1 to m− 1 do
5: for j← 1 to 6 do
6: Dmax(j)← the maximum value of summarizing all

segments’ length based on ach(j), ind1 and ind2 of
three UAVs;

7: end for
8: Dmin(i) ← the minimum value of Dmax(j), ind2(i) ←

the index of chosen route from ach based on Dmin(i);
9: for k ← 1 to 3 do
10: X2(i+ 1, k) = x(i+ 1, ach(ind2(i), k)),

Y2(i+ 1, k) = y(i+ 1, ach(ind2(i), k));
11: end for
12: end for

VII. PERFORMANCE EVALUATION
The performances of the proposed two algorithms will be
evaluated in this section.

A. SIMULATION SETUP
We assume the surveillance area to be a square region and its
side length to be 5km. The targets are subject to Poisson distri-
bution as illustrated in Fig.12 below. The targets are all within
the square region. The distribution of the coarse-grained
positions around the targets is subject to uniform distribution
within a circle range around the targets. The radius of the
circle depends on the constraint on measurement range which
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FIGURE 10. Impacts of different factors on maximum energy consumption.

TABLE 2. Simulation parameters.

is set to 100m in simulation. UAVs are all based at (0, 0, 0)T

and flying at the height of 100m. Referred to the motion
energy consumption parameter in [23], the energy consumed
per unit horizontal distance emo will be set to 13.19J/m. The
positioning energy consumption ep is set to 308.71J accord-
ing to the 308.71W horizontal power consumption [24]. The
energy bound eη will be set to 300kJ in this section. The
configuration is listed in Table 2.

The proposed two algorithms, marked as TDCA-Min_Max
and AGA-Min_Max, will be compared with algorithms as
follows.

• ACO-Rand: this algorithm utilizes ant colony optimiza-
tion algorithm to settle the MTSP problem and then
allocates the three positions to a UAV group in random
order.

• AGA-Rand: this algorithm solves the MTSP prob-
lem with adjusted genetic algorithm (AGA) and then
also allocates the three positions to a UAV group
randomly.

• TDCA-Rand: this algorithm solves the MTSP problem
with TDCA and then randomly allocates the three posi-
tions to a UAV group in random order.

B. SIMULATION RESULTS
Four sets of simulations are performed to specify the per-
formance of the proposed algorithms in this section. To get
the result of one simulation point, several simulations will
be performed for average value. For example, for targets less
than 60, we perform about 100 times simulations for each
simulation point and for targets more than 60, about 50 or
less times of simulations will be performed according to the
actual time consumption. The time used for performing one
simulation on different numbers of targets is shown in Table 3.
Table 3 shows that with the increase of number of targets,
the computation time of TDCA-Rand remains stable while
the computation time of ACO-Rand and AGA-Rand increase

TABLE 3. Computation time.

greatly because of the increase of iteration time to achieve the
same performance as TDCA-Rand. Thus, the computation
time is reduced effectively by our proposed TDCA algorithm
compared with the ant colony optimization algorithm and
genetic algorithm.

1) IMPACT OF NUMBER OF TARGETS
First, the number of UAV groups is set to 4. As the number of
targets increases from 10 to 120, the maximum energy con-
sumption trends of five algorithms are shown in Fig. 10(a).
The maximum energy consumption will be reduced by
0.6% − 26.6% with the proposed algorithms marked as
TDCA-Min_Max and AGA-Min_Max. When the number of
targets is 10 or 120, our proposed algorithms can reduce only
0.6% and 0.7% respectively for two different reasons. The
first is that, the differences between the number of targets
allocated to UAVs by different algorithms are minor when the
number of targets is small. The other is that, when the number
of targets reaches 120, the maximum energy consumptions
of different algorithms all reach the limitation, eη, which
makes their differences minor as the same. Besides, when the
number of targets is 60, the energy consumed by our proposed
algorithm can reduce up to 26.6% maximum energy con-
sumption. And it also can be reduced by 0.5%− 24.9% with
the proposed heuristic algorithm marked as AGA-Min_Max.
As the number of targets increases, the maximum energy con-
sumption of our proposed algorithm is evidently increasing
much more slowly than the others.

Fig. 11(a) illustrates that the TDCA-Min_Max algorithm
will reduce 1.4% − 26.3% of the average energy con-
sumption and the AGA-Min_Max algorithm will reduce
0.6% − 11.8% of the average energy consumption, which
suggests that the proposed two algorithms will also be
able to reduce the total energy consumption of all UAVs.
Compared with the results of ACO-Rand, AGA-Rand and
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FIGURE 11. Impacts of different factors on average energy consumption.

FIGURE 12. Distributions of different numbers of targets.

TDCA-Rand algorithm, our proposed algorithms perform
better in MTSP problem. Besides, comparing AGA-Rand
with AGA-Min_Max and TDCA-Rand with TDCA-
Min_Max respectively, our proposed step-greedy algorithm
performs effectively in Subproblem 2.

2) IMPACT OF NUMBER OF UAV GROUPS
Second, the number of targets is set to 60. As the number of
UAV groups increases from 1 to 10, it is shown in Fig. 10(b)
that themaximum energy consumption has a trend to decrease
and in Fig. 11(b) that the average energy consumption also
decreases. When n′, the number of UAV groups, reaches 4,
the maximum as well as average energy consumptions of all
algorithms drop slowly with the increase of n′. Therefore,
we are not supposed to set n′ to a high one for lower energy
consumption. In practice, we should choose the number eco-
nomically.

3) IMPACT OF STANDARD DEVIATION
Third, fix the numbers of UAVs and targets as well as the
position of the targets while the distributions of positions sur-
rounding the targets are different. The maximum and average

FIGURE 13. Maximum and minimum energy consumption of UAVs.

energy consumption trend of five algorithms are illustrated
in Fig. 10(c) and Fig. 11(c), respectively. The number of
UAV groups is set to 4 and the targets are 60. After solving
Subproblem 1, the targets are allocated to the UAV groups
and the result is fixed when the distribution of the positions
is changing. It turns out that the adjusted GA and TDCA
can effectively minimize the energy consumption of each
UAV, and themaximum energy consumption among all UAVs
can be effectively reduced by the two-step greedy heuristic
algorithm proposed in Section VI.

4) MAXIMUM AND MINIMUM ENERGY CONSUMPTION
Finally, Fig.13 reveals the maximum and minimum energy
consumption trends of all UAVs. As illustrated in this
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figure, the energy gap between the UAVs consuming max-
imum energy and minimum energy is small, which proves
that the two algorithms we propose, TDCA-Min_Max and
AGA-Min_Max, can provide balanced energy consumption
among all UAVs. With the number of targets increasing,
the energy gaps between UAVs consuming maximum and
minimum energy are smaller in Fig.13(b) than in Fig.13(a),
proving the more stable performance of approximation algo-
rithm TDCA than heuristic algorithm AGA.

VIII. CONCLUSION
Planning trajectory for UAVs which perform trilateration
on mobile targets with limited energy is considered in this
paper. We formulate the problem with intention to mini-
mize the maximum energy consumption among all UAVs.
To solve it, we decompose this problem into two sub-
problems by dividing UAVs into groups each of which
has three UAVs. We consider Subproblem 1 as an MTSP
problem, and propose two different algorithms, a heuris-
tic algorithm and an approximation algorithm with approx-
imation ratio of (1.5 ∗ (N ′/(N ′ − 1))), to solve it. Then,
a two-step greedy heuristic algorithm is proposed to achieve
a sub-optimal solution for Subproblem 2. The calcula-
tion time and computation complexity is effectively low-
ered by the approximation followed by a greedy algorithm.
Through extensive simulations, it turns out that compared
to methods choosing routes for UAVs randomly, our pro-
posed approaches are more efficient and the approxima-
tion followed by greedy algorithm can reduce up to 26.6%
maximum energy consumption while the heuristic followed
by greedy algorithm can reduce up to 24.9% maximum
energy consumption. In future work, we will focus on an
approximation or other better heuristic algorithm to solve
Subproblem 2.
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