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ABSTRACT In this paper, a novel deep convolutional neural network (CNN) based high-level multi-task
control architecture is proposed to address the visual guide-and-pick control problem of an omnidirectional
mobile manipulator platform based on deep learning technology. The proposed mobile manipulator control
system only uses a stereo camera as a sensing device to accomplish the visual guide-and-pick control
task. After the stereo camera captures the stereo image of the scene, the proposed CNN-based high-level
multi-task controller can directly predict the best motion guidance and picking action of the omnidirectional
mobile manipulator by using the captured stereo image. In order to collect the training dataset, we manually
controlled the mobile manipulator to navigate in an indoor environment for approaching and picking
up an object-of-interest (OOI). In the meantime, we recorded all of the captured stereo images and the
corresponding control commands of the robot during the manual teaching stage. In the training stage,
we employed the end-to-end multi-task imitation learning technique to train the proposed CNN model by
learning the desired motion and picking control strategies from prior expert demonstrations for visually
guiding the mobile platform and then visually picking up the OOI. Experimental results show that the
proposed visually guided picking control system achieves a picking success rate of about 78.2% on average.

INDEX TERMS Omnidirectional mobile manipulator, visually guided picking control, deep learning,
multi-task imitation learning, end-to-end control.

I. INTRODUCTION
In recent years, research on visual servoing of robot manip-
ulators receives more and more attention because such a
control method provides a robust solution for many robotic
automation applications, e.g., agricultural harvesting [1], [2],
bin picking [3], [4], and object grasping [5], [6]. Among these
robotic control applications, the function of robot grasping
and navigation control plays an important role in a robot
manipulator system to achieve autonomous manipulation
tasks [7], [8], which can be applied in several industrial and
service scenarios. In order for the robot to have such an impor-
tant capability, many studies on the visual servoing of robot
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manipulators have been carried out, and we divide them into
three categories: model-based, feature-based, and data-driven
approaches. Figure 1 illustrates the relationship between the
model-based, feature-based, and data-driven visual servoing
systems. The model-based methods [5]–[8] require analyzing
the three-dimensional (3D) pose information of the OOI in
the environment and use the pose information to determine
an optimal motion trajectory and grip position of the end-
effector. However, the model-based methods often cost much
time on scene interpretation, task-level reasoning, and object
3D pose estimation.

The feature-based visual servoing system can be regarded
as a low-level shortcut through themodel-based control archi-
tecture [9]. The feature-based methods provide an efficient
and effective solution to deal with environment perception
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FIGURE 1. The relationship between model-based, feature-based and
data-driven visual servoing approaches for robot manipulators. The
feature-based approaches can further be divided into position-based and
image-based approaches.

and can be divided into position-based and image-based
methods. The position-based methods replace scene interpre-
tation and task-level reasoning with feature matching [10]
and object 3D pose estimation [11], [12]. On the other hand,
the image-based methods skip scene interpretation, task level
reasoning, 3D pose estimation, and trajectory generation
tasks. However, they are still necessary to perform object 2D
pose estimation to calculate the position and orientation of
the OOI in the image plane.

Recently, data-driven control (DDC) and learning systems
have become an emerging and rapidly growing topic [13].
Unlike the model-based and feature-based methods, the DDC
method calculates the joint control commands from the visual
perception data directly. This feature makes the robot can
efficiently perform a visual servoing task more like human
beings. Moreover, combining the DDC method with deep
learning improves the visual servoing system to directly and
accurately predict the grip action of the robot from the visual
data through the deep CNN model. For instance, Lenz et al.
proposed a deep learning approach to detect multiple robotic
grasps for multiple objects contained in a single RGB-D view
of a scene [14]. Watson et al. proposed a real-time robotic
grasping method based on deep learning [15]. They trained a
deep CNN model using supervised learning to fit the desired
grasping positions from the captured RGB-D data. In [16],
Levine et al. proposed a hand-eye coordination approach
based on deep learning for the application of robotic grasping
from monocular camera images. To learn the hand-eye coor-
dination for grasping, they trained a CNNmodel to predict the
probability of successful grasping under a given the gripper
motion in the task-space using only monocular images.

Several deep learning-based end-to-end control methods
also have been proposed to deal with the robotic grasp plan-
ning problem [17]–[19]. For example, Kumra et al. proposed
a deep CNN-based robotic grasp detector, which predicts the
best grasping pose of a parallel-plate robotic gripper using
the RGB-D image of the scene [17]. Chu et al. [18] proposed
a multi-grasp detector for multiple objects based on a deep
learning architecture with RGB-D image input. Different
from [17], the authors defined the learning problem to be
classified with null hypothesis competition instead of regres-
sion. Recently, Zeng et al. presented a robotic pick-and-place
system, which consists of a deep CNN-based multi-modal
grasping framework and a CNN-based cross-domain image
matching framework [19]. Both subsystems work hand-in-
hand to handle a wide range of object categories without
needing any task-specific training data for novel objects.

As to researches on the DDC-based robot navigation,
Pfeiffer et al. proposed a DDC approach to make a robot
to learn a navigation policy from the raw data of a
2D-laser scanner and the position of the desired target [20].
In this work, the authors proposed a CNN-based end-to-
end architecture as a mapping function and trained it based
on an expert demonstration to map the raw sensor data
into the steering commands of the robot. Although this
method can fit the expert demonstration efficiently, it still
may overfit the desired actions during the end-to-end training
process. To solve the overfitting problem encountered in
end-to-end learning, Tai et al. used deep reinforcement learn-
ing (DRL) to train the robot by learning a navigation
policy based on asynchronous deep deterministic policy
gradient (ADDPG) algorithm [21], which extends the asyn-
chronous off-policy Q-learning algorithm [22] using the deep
deterministic policy gradient (DDPG) [23]. The DRL-based
navigation method also takes the 2D-laser sensor informa-
tion and the desired target position as the system inputs
to predict the steering commands of the robot. The main
advantage of the DRL-based navigation method is that it
can provide a more robust navigation result when using
lower-dimensional sensing information. However, there are
two drawbacks to use the DRL algorithm. First, the model
requires a fine-tuning process to update the network for
each new desired target position. Second, the DRL needs a
trial-and-error learning process, which is inefficient and not
reliable during the model training process. To address these
two issues, Zhu et al. proposed a DRL-based target-driven
visual navigation method, which integrates an actor-critic
model into an AI2-THOR framework to simulate a variety of
agent actions and agent-object interactions [24]. This design
allows users to collect a huge number of training samples
efficiently. Recently, Pfeiffer et al. proposed a target-driven
map-less navigation method based on reinforced imitation
learning (RIL) [25], which leverages prior expert demonstra-
tions to reduce sample complexity while avoiding distribution
mismatching encountered in imitation learning and rein-
forcement learning. The RIL approach not only significantly
improves the convergence rate of the DRL algorithm, but
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FIGURE 2. System architecture of the proposed data-driven visual guide-and-pick control system for a 6-DoF omnidirectional mobile manipulator based
on the deep learning approach.

also generalizes the learned end-to-end navigation policy to
unseen and real-world environments.

In this paper, we propose a novel data-driven visual guide-
and-pick control method based on the end-to-end imitation
learning technique [26]. The proposed DDC method is an
extension of the authors’ previous work [27], which presents
a data-driven visual picking control design of a 6-DoFmanip-
ulator. This work extends the deep learning-based DDC
method to control an omnidirectional mobile manipulator,
which is a more challenging task than that of a stationary
manipulator. The main contribution of this paper is twofold.

(1) We propose a new high-level multi-task control archi-
tecture based on CNN to learn the optimal guiding and
picking actions of an omnidirectional mobile manipulator
from stereo observations of the scene. By doing so, several
computationally intensive processes can be omitted, such as
depth map estimation, point cloud registration, object pose
estimation, etc.

(2) We also propose a new CNN-based multi-task neural
network model to learn a guide-and-pick control policy from
prior expert demonstrations through end-to-end imitation
learning. By combining the DDC method with a deep CNN
multi-task model, the proposed control system makes the
omnidirectional mobile manipulator able to predict the action
for approaching the target and then picking up the object
from the visual sensing data directly without the knowledge
of the kinematic model of the robot. As far as we know,
there is no existing paper that proposes such a modeless
design.

From the experimental results, the average picking success
rate of the proposed deep learning-based data-driven visual
guide-and-pick control method reaches about 78.2% in the
case of performing a random single-object picking task start-
ing from at least 50 cm away from the object.

The remainder of this paper is organized as follows.
Section II describes the system architecture of the proposed

data-driven visual guide-and-pick control system. Section III
presents the design of the proposed CNN-based stereo per-
ception network that provides the stereo feature map of the
scene required in the following guide-and-pick control pro-
cess. The proposed CNN-based guide-and-pick prediction
network is introduced in Section IV. Section V reports sev-
eral experimental results to validate the performance of the
proposed data-driven visual guide-and-pick grasping control
system. Finally, SectionVI concludes the contributions of this
work.

II. SYSTEM ARCHITECTURE
Figure 2 presents the system architecture of the proposed
data-driven visual guide-and-pick control system, which is
a CNN-based high-level multi-task controller consisting of
stereo perception and motion prediction modules. The stereo
perception module receives the captured stereo image to pro-
duce stereo feature maps. Most stereo vision systems include
a depth estimation process to generate a depth map of the
scene for related applications, such as 3D reconstruction,
obstacle avoidance, or grasp planning, etc. In this work,
we utilize the existing VGG19 network [28] as the backbone
model to calculate the feature map of the captured stereo
image.Moreover, we employ twoVGG19 networks to extract
the feature map of the left and right images, respectively.
Next, a concatenating operation is applied on the left and right
feature maps to generate a stereo feature map. The proposed
CNN-based stereo perception module is described in detail in
Section III.

On the other hand, the motion prediction module is a
CNN-based multi-task network to predict the motion direc-
tion of the mobile platform and the joint angles of the 6-DoF
manipulator for approaching and picking up the OOI placed
in the working space based on the stereo feature map. In our
implementation, an Arduino motion control card was used as
a low-level controller to convert both platform motion and
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FIGURE 3. The multi-task imitation learning method used in this work to train the proposed CNN-based guide-and-pick predictor. An Arduino motion
control board is used as a low-level controller to control the omnidirectional mobile manipulator.

joint angle commands into low-level control signals of the
omnidirectional mobile manipulator.

Figure 3 shows the multi-task imitation learning method
used for training the proposed CNN-based guide-and-pick
predictor and the low-level control architecture of the pro-
posed control system. There are two different training
datasets collected from two different expert systems inputting
the same observation. As shown in Figure 3, Expert System 1
and Expert System 2 provide the desired joint angles of the
manipulator and the desired motion direction of the mobile
platform, respectively. To train the proposed CNN-based
motion predictor, we first have to select an appropriate feature
extraction network as the stereo perception model. Next,
we treat the training of the visual guiding and the visual
picking model as a regression problem and a classification
problem, respectively. We then apply the imitation learning
technique to train bothmodels. Section IV presents the details
of the proposed CNN-based guide-and-pick predictor.

On the other hand, we use an Arduinomotion control board
to implement the low-level controller of the proposed control
system for translating the high-level action predictions into
the low-level control commands. Note that the data formats
of the high-level action predictions and the low-level control
commands are 32-bit floating-point and 16-bit fixed-point,
respectively. Thus, we need a data format conversion to con-
vert the data format of the rescaled joint angles obtained
from the sigmoid output layer of the picking predictor from
the 32-bit floating-point to the 16-bit fixed-point for wire-
less transmission over Bluetooth. Furthermore, the output
from the softmax output layer of the guiding predictor is
encoded into a motion direction command, which is a binary
one-hot code to indicate the best action predicted by the
guiding predicator. When the Arduino motion control board
received the fixed-point command data, it sends the joint
control commands and the motor control commands to the
robot manipulator and the omnidirectional motion platform,
respectively.

III. CNN-BASED STEREO PERCEPTION NETWORK
Extracting useful feature maps from the input stereo image
is an essential task in the proposed CNN-based controller.

TABLE 1. Characteristics of the ResNet50, VGG16, and VGG19 models, and
their MSE results recorded in the testing phase.

In order to find the best choice for the proposed CNN-based
controller, we tested three commonly used CNN back-
bone models: ResNet50 [28], VGG16, and VGG19 [29].
Table 1 lists the characteristics of the three CNN backbone
models validated on the ImageNet validation set [30].

To collect training and testing datasets, we manually con-
trolled the mobile manipulator using a remote controller to
approach and pick up an OOI placed in the workspace. At the
same time, we also recorded all stereo observations and the
corresponding control commands to form a training dataset
and a testing dataset. Let oi denote the i-th observed stereo
image and ai =

[
a0 a1 · · · a6

]T
i the i-th joint angle

command vector, in which a0 represents the normalized angle
of the gripper and aj for j = 1 ∼ 6 indicate the six
manipulator joints. Because themotor commands have awide
range of values, the value of each joint angle command is
normalized to the range [0,1] as follows:

aj =
Aj − Amin

Amax − Amin
for j = 0 ∼ 6, (1)

where Amin and Amax denote the minimum and maximum
joint angle, respectively. These two parameters depend on the
joint limits of the hardware system. Aj is the j-th actual joint
angle command, which can be obtained from the following
rescale operation

Aj = (Amax − Amin)aj + Amin, (2)

where aj is the j-th joint angle output of the proposed
CNN- picking predictor.

Let �a
train = {(oi, ai)}|i=1∼N a

train
denote a joint angle train-

ing dataset and�a
test = {(ok , ak )}|k=1∼N a

test
a joint angle test-

ing dataset. In the data collection phase, we totally collected
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304 training samples (N a
train = 304) and 76 testing samples

(N a
test = 76). In the training phase, we randomly divided the

training dataset �a
train into several batches to train the pro-

posed CNN-based picking predictor. Next, we used the mean
squared error (MSE) as the loss function to train the CNN
model of the picking predictor such that

LMSE (�a
batch, π

a
p )
∣∣∣
πf
=

1
N a
batch

N a
batch∑
i=1

∥∥∥ai − πap (πf (oi))∥∥∥2,
(3)

where �a
batch = {(oi, ai)}|i=1∼N a

batch
⊂ �a

train is a batch of
the joint angle training dataset. N a

batch � N a
train denotes the

batch size used in training. πf (•) and πap (•) represent the
CNNmodel of the stereo perceptionmodule and the proposed
picking predictor, respectively. For a given CNN model of
the stereo perception module πf , our goal is to optimize the
picking predictor model πap without updating the given model
πf for each batch such that

π̂ap = argmin
πap

LMSE (�a
batch, π

a
p )
∣∣∣
πf
, (4)

where πf = {πVGG16, πVGG19, πResNet50} is one of the tested
CNN models.

In the testing phase, the testing dataset �a
test was applied

to the optimal picking predictor model π̂ap for computing the

MSE loss of testing LMSE (�a
test , π̂

a
p )
∣∣∣
πf

with respect to each

tested CNN model. Table 1 also records the MSE results of
the testing, and we have some observations from the testing
results.

(1) Although the ResNet50 model validated by the Ima-
geNet dataset is more accurate than the other two models,
it requires the most computational time during the training
phase and the worst MSE result during the testing phase.

(2) The VGG16 andVGG19models have the same compu-
tational time during the training phase, but the VGG19 model
provides the best MSE result during the testing phase.

(3) Based on the testing results, we conclude that the
VGG19 model is the best backbone model to be used as a
feature map extractor for the proposed CNN-based high-level
multi-task controller. Thus, we define πf ≡ πVGG19 as the
feature extraction network in the proposed control system.

IV. CNN-BASED GUIDE-AND-PICK
PREDICTION NETWORK
The proposed CNN-based high-level multi-task controller is
a visual data-driven guide-and-pick predictor that uses the
stereo feature map as the input to predict the best motion
response to the current stereo observation. To train the CNN
model, we adopted an end-to-end imitation learning tech-
nique [26], which aims to learn a new strategy model from a
set of examples provided by demonstrators or human experts.
Each example contains an observation and a corresponding
demonstration action. By imitation learning, the machine
can imitate the behavior of the expert strategy recorded in

the demonstration. In the training phase, the observations
are used as input features, and the demonstration actions are
used as desired targets to learn the best strategy model that is
designed to match the observation-to-action policy generated
by the model with the expert strategy.

FIGURE 4. The network architecture of the proposed CNN-based
guide-and-pick predictor.

Figure 4 shows the network architecture of the proposed
CNN-based guide-and-pick predictor, which consists of a
shared CNN model πs(•) and two fully connected (FC) mod-
els πafc(•) and πmfc (•). The shared CNN model consists of
one max pooling layer and two CNN layers for adjusting
the feature map obtained from the VGG19 model. Each of
the following two FC models contains three FC layers to
fit the modified feature map to the desired action. Let f
denote the stereo feature map obtained from the stereo per-
ceptionmodule. In this study, the strategymodel to be learned
includes a guiding predictor model πmp (f) = π

m
fc (πs(f)) and a

picking predictor model πap (f) = π
a
fc(πs(f)). In the following,

we present the training procedure of both predictor models
based on the end-to-end imitation learning technique.

A. TRAINING OF THE GUIDING PREDICTOR MODEL
Figure 5 illustrates the mechanical structure of the four-
Mecanum-wheeled omnidirectional motion platform used in
this study. We apply a deep learning-based DDC method to
control the motion of the platform in six motion directions,
which are defined by four motor commands. As mentioned
earlier, the proposed CNN-based guiding predictor model is

constructed by the shared CNN model and three FC layers
to fit the stereo feature map f to the desired motion direction.
Here, the final output layer is expected to be a softmax
classifier [31] for the proposed guiding predictor model in
order to predict the best motion direction corresponding to
the current observation.

Let mi =
[
bi1 bi2 · · · biM

]T denote the
i-th motion direction command vector, which is a one-hot
code to indicate one of the defined motion directions. In the
data collection phase, we collected a platformmotion training
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FIGURE 5. Mechanical structure and the corresponding motor actions of
the four-Mecanum-wheeled omnidirectional motion platform [33].

dataset �m
train = {(oi,mi)}|i=1∼Nm

train
with a total sample

number Nm
train = 1264 and a platform motion testing dataset

�m
test = {(ok ,mk )}|k=1∼Nm

test
with Nm

test = 316. In the training
phase, we also randomly divided the training dataset �m

train
into several batches to train the proposed CNN-based guiding
predictor. Next, we employed the cross-entropy (CE) as the
loss function to train the CNNmodel of the guiding predictor
such that

LCE (�m
batch, π

m
fc (πs))

∣∣∣
πVGG19

= −

Nm
batch∑
i=1

M∑
j=1

bij ln p(mj|xi),

(5)

p(mj|xi) =
ex

T
i wj∑M

k=1 e
xTi wk

, (6)

where bij denotes the j-th bit of the i-th motion direction com-

mand vector, and xi = πmfcl(πs(fi))
∣∣∣
πVGG19

is the i-th feature

vector associated with the i-th stereo feature map fi obtained
from the i-th observation oi through the VGG19 network.
πmfcl(•) denotes the mapping function formed by the last FC
layer of the proposed CNN-based guiding predictor model,
and wj is the weight vector of the j-th output at the last FC
layer.�m

batch = {(oi,mi)}|i=1∼Nm
batch
⊂ �m

train is a batch of the
platform motion training dataset. Nm

batch � Nm
train denotes the

batch size. At this stage, we optimized both the guiding FC
model πmfc (•) and the shared CNN model such that

π̂mfc , π̂s = arg min
πmfc ,πs

LCE (�m
batch, π

m
fc (πs))

∣∣∣
πVGG19

. (7)

Finally, the optimal guiding predictor model is given by
π̂mp (f) = π̂

m
fc (π̂s(f)).

In the testing phase, we evaluated the performance of the
optimized guiding predictor model based on the CE loss

function LCE (�m
test , π̂

m
fc (π̂s))

∣∣∣
πVGG19

calculated from the test-

ing dataset, and the testing accuracy was about 86.5%. Since
the output value of the proposed CNN-based guiding predi-
cator is also between 0 and 1, we need to perform a motion
decision process to quantize the output value of the predictor
into a binarized one-hot code, in which the single-bit ‘‘1’’
indicates the best motion direction corresponding to the cur-
rent input observation.
Remark 1: As shown in Figure 5, the desired direction

of motion includes a stop behavior for the robot to stop
the guiding predictor when it is close enough to the target
based on the current stereo perception. This behavior was
also trained during the offline training stage. After the stop
behavior occurs, the robot automatically switches to run the
picking predictor model to perform the picking task.

B. TRAINING OF THE PICKING PREDICTOR MODEL
The proposed picking predictor model is also constructed
by the same shared CNN model, as shown in Figure 4.
Similar to the guiding predictor model, the picking predictor
model also uses three FC layers to learn the mapping between
the stereo feature map and the desired joint angles. How-
ever, we use the sigmoid classifier [32] as the final output
layer of the proposed picking predictor model. Based on this
design, the output range of the proposed predictive predictor
is guaranteed to be 0 to 1, satisfying the condition of output
normalization (1). Therefore, we use the sigmoid function
S(x) = (1+ e−x)−1 as the output layer activation function of
the proposed picking predictor model. In the training phase,
we employed the MSE loss function defined in (3) to train
the CNN model of the picking predictor. However, at this
stage, we only optimized the picking FC model πafc(•) and
kept the shared CNNmodel fixed during the training process.
In other words, given the VGG19 feature extraction model,
the MSE loss function used in the training phase of the
picking predictor becomes LMSE (�a

batch, π
a
fc(π̂s))

∣∣∣
πVGG19

.

In the testing phase, the performance of the optimized
picking predictor model π̂ap (f) = π̂afc(π̂s(f)) was evalu-
ated on the testing dataset using the MSE loss function
LMSE (�a

test , π̂
a
fc(π̂s))

∣∣∣
πVGG19

, and the testing error was about

2.875 degrees on average. Note that the proposedCNN- based
picking predicator has an output range of 0 to 1.

Therefore, we must use equation (2) to rescale the output
value of the predictor to the actual joint angle value.

V. EXPERIMENTAL RESULTS
We implemented the proposed CNN-based guide-and-pick
control system using Tensorflow 1.5.0 running on a laptop
equipped with 2.4GHz Intel Core i7-5500U, 8GB system
memory, and Ubuntu 16.04 operating system. Figure 6 shows
the stereo camera and the laboratory-made 6-DoF omnidirec-
tional mobile manipulator used in the experiment. We placed
the ZED stereo camera in front of the mobile manipulator
for the robot to capture the scene stereo image in front
of the platform easily. In the experiment, we selected the
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FIGURE 6. The stereo camera and the laboratory-made 6-DoF
omnidirectional mobile manipulator used in the experiment.

FIGURE 7. Experimental settings of the visual guide-and-pick control
task: (a) the workspace of the mobile manipulator; (b) the objects used in
the experiments.

video mode of the ZED camera as 720p, which provides
enough image resolution for the proposed CNN-based guide-
and-pick control system. Figure 7 presents the experimental
settings of the visual guide-and-pick control task to validate
the performance of the proposed control method. Due to the
stereo camera and hardware limitations, the yellow region in
Figure 7(a) illustrates the workspace of the manipulator. The
six objects presented in Figure 7(b) were used in the visual
guide-and-pick control experiment. We selected at least one
object and randomly placed the object in the workspace of the
manipulator to test the performance of the proposed visual
guide-and-pick control system.

In the visual guide-and-pick control experiment, we totally
performed 55 tests at three different initial distances, of which
15 times were initially at 50 cm away to the OOI, 15 times
were at 100 cm, and 25 times were at 150 cm. Table 2 records
the picking success rate of the proposed CNN-based data-
driven visual servoing system tested in the guide-and-pick
experiment. It is clear from Table 2 that the shorter the initial

TABLE 2. Picking success rate of the proposed control system tested in
the visual guide-and-pick control task.

distance to the object, the higher the picking success rate
of the robot guide-and-pick control. The maximum picking
success rate achieves 86.7% in the case of 50 cm initial
distance to the object. As the initial distance increased from
50 cm to 150 cm, the picking success rate is decreased from
86.7% to 72.0%. Therefore, the average picking success rate
of the proposed visual guide-and-pick controller is about
78.2% in 55 visual guide-and-pick control experiments. Note
that most failure cases are that the target is not within the field
of view (FoV) of the stereo camera due to a large motion
variation caused by the wheel drift of the omnidirectional
motion platform.

Figure 8 shows one experimental result of the proposed
control system tested in the case of 50 cm initial distance.
In the beginning, the OOI is placed at the right-hand side of
the robot, as shown in the initial stereo observation. Thus,
the first action of the mobile platform corresponding to the
initial stereo observation is Turn-Right to make the robot
facing to the OOI, as shown in the second stereo observa-
tion. Next, the robot attempts approaching the OOI using
three Forward actions based on the 2nd, 3rd, and 4th stereo
observations. When the robot is close enough to the OOI,
the controller stops the action of the mobile platform and
switches to control the 6-DoF manipulator to perform the
visual picking task. Finally, the proposed CNN-based picking
predictor calculates the required joint angles from the last
stereo observation, and then the robot successfully picks up
the OOI, as shown in the object picking result of Figure 8.

Figure 9 shows the experimental result of the proposed
control system tested at 100 cm initial distance. In Figure 9,
the OOI is initially placed at the left-hand side of the robot.
Thus, in the beginning, the robot performs the Turn-Left
action one time to correct the orientation angle between the
robot and the OOI. When the orientation of the robot is cor-
rected, the robot performs four Forward actions to approach
the OOI based on the 2nd, 3rd, 4th, and 5th stereo observations.
Finally, the proposed visual guide-and-pick controller stops
themobile platform and switches to control the 6-DoFmanip-
ulator to pick up the OOI based on the last stereo observation.
Two video clips of the experimental result can refer to the
online webpages of [34] and [35].
Remark 2: To drive the motion platform, we applied the

motor commands for a fixed runtime of 3 seconds and a
fixed speed of 12.5 cm/s. In this control mode, the Mecanum-
wheeled motion platform may have a fairly strong-motion
variation caused by wheel drift. However, the experimental
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FIGURE 8. Experimental result of the proposed visual guide-and-pick control system at 50 cm initial distance to
the OOI.

FIGURE 9. Experimental result of the proposed visual guide-and-pick control system at 100 cm initial distance to the OOI.

results show that as long as the target remains within the
FoV of the stereo camera, the proposed visual guide-and-pick
controller can still overcome such a strong-motion variation
to complete the guide-and-pick task.
Remark 3: As mentioned at the beginning of Section V,

the proposed visual guide-and-pick control system was
implemented on a laptop to test its performance. Thus, in the
experiment, we did not have a GPU equipment to accelerate

the calculation of the deep CNN model. Since all high-level
computations are performed only on the CPU, the processing
speed of the proposed control system at this stage cannot
achieve real-time performance. To constantly evaluate the
stereo image and update the commands in real-time, the
high-level control system requires a high-end laptop equipped
with a high computing power GPU device to handle the
massive calculation of the deep CNN model.
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VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel CNN-based visual guide-
and-pick control method, which helps to realize autonomous
guide-and-pick control of an omnidirectional mobile manip-
ulator using only the stereo visual sensing data. The proposed
visual servoing system combines a CNN-based high-level
multi-task control architecture with an Arduino-based low-
level controller to implement a modeless visual data-driven
guide-and-pick controller. The proposed high-level control
architecture consists of two modules: one is a CNN-based
stereo perception network, and the other one is a CNN-based
guide-and-pick prediction network. The proposed stereo per-
ception network employs the existing VGG19 model to
extract the stereo feature map from the stereo visual sens-
ing data directly without computationally stereo image pro-
cessing, such as depth map estimation, 3D reconstruction,
object pose estimation, etc. Moreover, we design a new
CNN-based guide-and-pick prediction network to work with
the stereo perception network and apply the end-to-endmulti-
task imitation learning method to train the proposed guide-
and-pick prediction model. The experimental results show
that the proposed CNN-based visual guide-and-pick con-
trol system can not only be used with the VGG19 model,
but also can successfully control the omnidirectional mobile
manipulator to approach and pick up the OOI placed in the
robot workspace. Moreover, the picking success rate of the
proposed vision-based DDC system is about 78.2% in 55
visual guide-and-pick control experiments.

In the future, we will extend the proposed CNN-based
high-level multi-task controller to other mobile manipulator
systems. In addition, the capabilities of the proposed con-
trol system applicable to other scenarios and other types of
objects will also be studied to assess its general value in other
situations.
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