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ABSTRACT Since great redundancy of telemetry data of spacecraft, telemetry data compression is a
good solution for the limited bandwidth and contact wireless links. It is important to obtain accurate
data characteristic firstly. State-of-the-art machine learning methods work well on data mining and pattern
recognition under conditions of the given test data set, which could be used as the available tools for
post-event data processing and analysis, such as trend forecasting and outlier detection, but they have not
provided the proper solution from the source on-board. In this paper, four base classes of the telemetry
data are suggested and studied through the time series feature and information entropy analysis, then a
new on-board lightweight self-learning algorithm named Classification Probability calculation - Window
Step optimization (CP-WS) is proposed to obtain the class features and make the decision of each single
parameter from the continuous discrete telemetry time series. Simulation results show that, our algorithm
correctly classifies the simulation and real mission data into the appropriate base class with advantages of
high classification accuracy as 100% and adaptive computational complexity from O(L2) to O(L), which
could be used in satellite on-board data compression for space-to-ground transmission, especially for the
deep space explorers to save important status with less on-board storage space.

INDEX TERMS Telemetry data, self-learning, time series, information entropy, classification, sliding
window.

I. INTRODUCTION
In current space missions, such as manned-space stations,
earth observation satellites, deep space explorers, etc., the on-
board telemetry plays an important role in helping Mission
Control Center (MCC) to monitor the platform status, dis-
cover the abnormal phenomena, and acknowledge the remote
control feedbacks. However, more complicated spacecraft
with advanced applications challenges current space teleme-
try system with the conditions of narrow wireless band-
width and fixed-length frame telemetry, which is difficult
to transmit the increasing telemetry volumes. Meanwhile,
the discontinuous short-term contacts between spacecraft
and ground stations restrict the data transmission capabil-
ity, which restricts the evaluation of parameter’s long-term
behaviors. In addition, the monitoring and interpretation of
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vast telemetry parameters also consume lots of manpower,
which requires automatic assistance by machines.

As a fast-developing technology in recent years, machine
learning (ML) related technologies have been studied
widely in space missions with telemetry in recent years.
Yairi et al. [1]–[3] studied on the satellite health monitor-
ing based on the probabilistic clustering, dimensionality
reduction, hidden markov, regression tree. Tariq et al. [4],
Hundman et al. [5], and Fuertes et al. [6] studied on the
spacecraft anomaly detection based on the K-Nearest
Neighbor (KNN), Support Vector Machine (SVM), Long
Short-Term Memory (LSTM) with the exhaustive testing on
the telemetry of Centre National d’Etudes Spatiales (CNES)
spacecraft. Iverson et al. [7] and Robinson et al. [8] studied
on the space operation assistant based on the data-driven and
model-based monitoring techniques applied in several space
missions. To sum up, the applications of machine learning in
space missions mainly focus on the forecasting and outlier
detection in order to provide the flight control procedure
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with much more information about the spacecraft operation
status, most of which are operated inMCC on ground without
consideration of space-to-ground wireless communication
limits. In addition, current self-learning research focuses on
the telemetry behavior prediction, regardless of the specific
feature differences of various telemetry types in time series
analysis.

In this paper, the self-learning classification algo-
rithm is studied comprehensively in order to achieve the
on-board high accuracy telemetry classification with low
computational complexity and low time latency, which
could be used to obtain the telemetry features for data
compression on time-dependent space environment and
bandwidth-constrained wireless links. Section II introduces
the main characteristics of satellite telemetry concerned with
time series and information entropy. The self-learning classi-
ficationmodel CP-WS for satellite telemetry data is described
in Section III, including the Classification Probability (CP)
calculation and Window Step (WS) optimization. Section IV
gives the classification performance evaluations based on
simulation data and real mission data. Section V concludes
this paper.

II. TELEMETRY CHARACTERISTICS
A. TIME SERIES ANALYSIS
1) TIME SERIES FEATURES
Time series is the data set arranged at sequential time inter-
vals [9], either one dimension or multiple dimensions. The
behavior of time series could be influenced by many fac-
tors: some factors provide the long-term and decisive effects,
which show trend and regularity; the other factors provide
the short-term and non-decisive effects, which show some
irregularity. Real-world time series data is usually composed
of several factors as listed below:
• Trend: the behavior of time series shows a continu-
ous upward, downward, or steady movement in a cer-
tain direction by time, which might be driven by the
long-term factors.

• Cyclic: the behavior of time series shows a sequence
of points circulating above and below the trend line,
with regular changes lasting for a relatively long
time.

• Seasonal variation: the behavior of time series shows a
cyclic fluctuation in a fixed period affected by season.
For example, the temperature of the satellite solar panel
shows a cycle of ‘seasonal’ changes, that is, the temper-
ature in the sunshine area rises while that in the shadow
area decreases.

• Irregular movement: the behavior of time series shows
irregular fluctuations due to accidental factors.

Time series could be classified into different types accord-
ing to various criteria, such as: Dimensional criterion,
i.e., Univariate time series vs. Multivariate time series; Con-
tinuous criterion, i.e., Discrete time series vs. Continuous
time series; Statistical criterion, i.e., Stationary time series vs.

Non-stationary time series. The low-order moments of time
series are usually used to describe their Eigen statistical
characteristics, such as mean, variance, and auto-covariance
function. For discrete time series {Xt , t ∈ T }, Xt is a random
variable with probability p(Xt ), in which:
a) Mean: Defined as µt with µt = EXt =∑
+∞

t=−∞ p (Xt)Xt , for time series {Xt , t ∈ T }.
b) Variance: Defined as σt with σ 2

t = DXt =

E (Xt − µt)2 =
∑
+∞

t=−∞ p (Xt) (Xt − µt)2.
c) Auto-covariance function: Defined as γ (t, s) =

Cov (Xt ,Xs) = E (Xt − µt) (Xs − µs) ,∀t, s ∈ T .
For engineering data analysis, the weak stationary condi-

tion is usually used to test the stationarity of data. If the time
series could satisfy the following three conditions, it can be
judged to be weak stationary:

i ∀t, j ∈ T ,E (Xt) = E
(
Xt−j

)
= µ = const

ii ∀t, j ∈ T ,Var (Xt) = Var
(
Xt−j

)
= σ 2

= const
iii ∀t, j, s ∈ T , γ (t, t − s) = γ (t − j, t − j− s) = γ (s)

2) TELEMETRY DATA FEATURES AND BASE CLASSES
The telemetry data with multiple parameters could be
regarded as the typical high-dimensional discrete time series
data set under fixed sampling time intervals in spacemissions.
The stationary feature and trend behavior are widely studied
to analyze the time series, which could be used to classify the
telemetry data.

FIGURE 1. The classification tree of the satellite telemetry data.

The binary classification tree of the satellite telemetry data
is shown in Figure 1, which could be divided into four base
classes as Stationary (including constant), Linear, Cyclic, and
General non-linear.

(1) Base class 1: Stationary time series

• Random data

The typical random telemetry data follows either Gaus-
sian distribution or Poisson distribution, whose mathematical
expression is Yt = εt .

For Gaussian distribution: Gaussian time series could be
classified to stationary process obviously with the Eigen
statistics as E (Yt) = µ, Var (Yt) = σ 2, Cov (Yt ,Ys) =
γt−s = 0. Some zero-valued telemetry parameters in idle
state are usually influenced by additive Gaussian white
noises, which could be classified into random data with sta-
tionary feature.
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For Poisson distribution: Some telemetry parameters have
characteristics of randomness but not Gaussian. Take the
SEU (Single Event Upset) as an example, the parameter
usually records the number of the SEU appearance from the
launch date till current time, which could be modeled by the
homogeneous Poisson process with the Eigen statistics as
E (Yt) = µ = λ · t , Var (Yt) = σ 2

= λ · t , Cov (Yt ,Ys) =
γt−s = λ ·min {s, t}. As described above, the Eigen statistics
of Poisson time series are related to time, so that it should
be classified into random data with non-stationary feature.
However, the first-order difference of homogeneous Poisson
process could be classified into random data with stationary
feature, which is proved in Appendix A.

• Constant data

The mathematical expression of non-zero constant data is
Yt = µ, the Eigen statistics are E (Yt) = µ, Var (Yt) = 0,
Cov (Yt ,Ys) = γt−s = 0, all of which are time-independent.
The mathematical expression of non-zero constant data with
additive Gaussian white noises is Yt = µ + εt , µ 6= 0 and
εt ∼ N

(
0, σ 2

)
, i.i.d ., the Eigen statistics are E (Yt) = µ 6=

0, Var (Yt) = σ 2, Cov (Yt ,Ys) = γt−s = 0, all of which
are also time-independent. Therefore, constant data could be
classified into stationary time series.

(2) Base class 2: Linear trend time series

In relatively short-term period such as one contact about 10
minutes, the behavior of some telemetry parameters shows an
obvious linear trend. The mathematical expression of linear
trend data is Yt = µ+Yt−1+ εt , which could also be seemed
as the difference stationary process. The iterative deduction
result gives Yt = Y0 + µ · t +

∑t
i=1 εi, and let initial value

Y0 equals to 0, we have combined with one deterministic
time trend and a random walk process. The mean value of
such time series is E (Yt) = µ · t , which is time-dependent.
Therefore, the linear trend time series should be classified to
non-stationary type, which is dominated by the linear trend
factor slope µ. The linear trend could be calculated by the
linear regression method.

(3) Base class 3: Cyclic trend time series

In relatively long-term time period such as one day,
the behavior of some telemetry parameters shows obvious
cyclic trend. The mathematical expression of cyclic trend
data is Yt = µt + εt = f (t) + εt , where f (t) is the time
dependent deterministic function, especially appearing cyclic
feature. The mean value of such time series is EYt = Ef (t),
which is time-dependent. Therefore, the linear trend time
series should be classified to non-stationary type, which is
dominated by the cyclic trend function f (t). The cyclic trend
could be calculated by the fast Fourier transform (FFT) or
empirical mode decomposition (EMD) [10], [11].

(4) Base class 4: General non-linear trend time series

Actual time series data in engineering usually contain
various behavior trends, therefore the data that could not be
clearly classified to certain definite classification attributes to
the general non-linear trend.

B. ENTROPY ANALYSIS
1) TIME SERIES ENTROPY
The information entropy analysis could be used to evaluate
the changes of the effective information with time, which is
important for the telemetry classification algorithm parame-
ters’ initialization, such as the sliding window size and step
forwarding interval. In most time of its life the satellite is
operating in the normal stable status, therefore the teleme-
try system on board could be seemed as the discrete stable
data source. According to the satellite design, the numerical
characteristics of the telemetry source could be expressed as
{a1, a2, . . . , aK } where K is the number of numerical space,
and the time series of such source could be expressed as
{. . . , u−1, u0, u1, . . . , ui, . . .}.
According to stable stochastic process, all the finite-

dimensional distribution probabilities of the source out-
put data sequence are independent of the starting point
of the time axis, that is, P

(
ui, ui+1, . . . , ui+N = EA

)
=

P
(
uj, uj+1, . . . , uj+N = EA

)
, where EA is a particular data

sequence.
Assuming that the length of time series is limited to a finite

number N , e.g. the time slots in one space-ground contact
period or the sliding window size for data processing, then
the finite time series is a random vector (u1, u2, . . . , uN ),
whose information entropy could be expressed by the joint
entropy H (U1,U2, . . . ,UN ). Therefore, the statistical infor-
mation entropy on each element in the numerical value space
could be expressed by HN (U ) = 1

N · H (U1,U2, . . . ,UN ).
If the value of HN (U ) converges to the finite ultimate value
as N → ∞, then it is defined as the entropy rate of the
source, marked as H∞(U ) with the equation H∞(U ) =
limN→∞HN (U ). In current space missions, the telemetry
data is usually measured by equally spaced discrete value in
the range between upper and lower bounds, and we make the
quantization number K as the maximum value for N .

2) TELEMETRY DATA ENTROPY
In order to obtain the high accuracy of data classification,
the information entropy rate should be reduced as much as
possible with less uncertainty, which requires appropriate
number of the time slots in one contact or appropriate sliding
window size marked as parameterW . The value ofW should
satisfy the classification requirement of all telemetry types,
that is W = max{Wi}, i = 1, 2, 3, 4. The mathematical
analysis of the information entropy for each telemetry type
is described as follows.
(1) Base class 1: Stationary time series
• Random data
For random data, the time series is modeled as the inde-

pendent memoryless stable source, whose joint entropy could
be seen as H (U1,U2, . . . ,UN ) =

∑N
i=1H (Ui) = N ·

H (Ui), i = 1, 2, . . . ,N . Therefore the information entropy
rate for random data isH∞(U ) = HN (U ) = H (Ui) = H1(U ),
whose entropy rate does not change with the increase of
parameter N .
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• Constant data
For consant data, the time series is sampled by only

one constant numerical value without changes, therefore the
entropy rate is zero.
(2) Base class 2: Non-stationary time series
For non-stationary time series, the statistical correlation

exists between the historical and future data, which could be
described by mathematical function f (t) as the discrete stable
source with memory. It could be proved that the informa-
tion entropy rate limN→∞HN (U ) certainly exists. Under the
circumstance of equally spaced sampling with time slot 1t ,
the appearance probability p for each quantization rank is
proportional to the difference between neighbor ranks as
p ∝ f (t)−f (1t)

1t = f ′(t).
• Linear trend
For linear trend data, f ′(t) = const 6= 0, therefore

the appearance probability for any quantization rank in the
numerical space is equal to each other as pi = pj =
const, i, j ∈ K , i 6= j. Then we have,

HN (U ) = −
K−N+1∑
i=1

pi log pi = log2 (K − N + 1) (1)

where, pi = 1
K−N+1 , U = {u1, u2, . . . , uN } is the telemetry

time series withN sample points, and the entropy rateHN (U )
decreases with the larger N .
• Cyclic trend
For cyclic trend data, f ′(t) 6= const , therefore the appear-

ance probability for any quantization rank in the numerical
space is not equal to each other, which could be calculated by
the numerical difference for each time slot in any complete
period.

Some special cyclic trend data could be calculated by
mathematical formula, take the sine function as an example,
f (t = i) = sin

(
π
2 ·

i
K−1

)
, i = 0, 1, 2, . . . ,K − 1, where

K is the number of ranks in numerical quantization space.
Then we have the derivative of the sine function as f ′(t) ∝
cos

(
π
2 ·

i
K−1

)
. Let pi = β ·cos

(
π
2 ·

i
K−1

)
be the appearance

probability for rank i, where β is the adjustable scaling factor,
then we could get the information entropy rate in different
time series with increasing length as follows, and the entropy
rate HN (U ) decreases with the larger N .

HN (U ) = −
K−N∑
i=0

pi log pi (2)

where, pi = cos
(
π
2 ·

i
K−1

)/∑K−N
i=0 cos

(
π
2 ·

i
K−1

)
.

• General non-linear trend
For general non-linear trend data, f ′(t) 6= const , therefore

the appearance probability for any quantization rank in the
numerical space is not equal to each other, which could be
calculated by the numerical difference for each time slot in the
entire contact or slidingwindow size. The entropy rateHN (U )
for general non-linear trend data is 0 ≤ HN (U ) ≤ log2 K

with the lower bound 0 and the upper bound log2 K , which is
proved in Appendix B.

3) ENTROPY CALCULATION
There are several widely used entropy calculation algo-
rithms for general non-linear trend data and most of the
cyclic trend data, such as Approximate Entropy (ApEn) [12],
Sample Entropy (SampEn) [13] and Permutation Entropy
(PermEn) [14]. Note that ApEn is a model-independent
statistic algorithm for distinguishing various classes of time
series data, both deterministic and stochastic, in which
lower ApEn values mean more persistence and correla-
tion, larger ApEn values mean more independence. In this
paper, we choose ApEn algorithm [12] to measure the
time-dependent telemetry entropy.

III. CLASSIFICATION MODEL
A. RELATED WORKS
Aswe all known, it is very important to acknowledge the clas-
sification of the non-stationary trend in time series analysis.
In order to transfer the time series data from non-stationary
to stationary, traditional time series analysis only classify
the data into deterministic or stochastic trend at first. Then
based on the theory of Box-Jenkins [9], any non-stationary
time series with deterministic trend could be expressed by the
ARIMA(p, d, q) model. However, it is really time-consuming
to calculate the difference order d in current time series anal-
ysis architecture, as shown in Figure 2. Meanwhile, the rough
classification of deterministic vs. stochastic increases the
number of model parameters and reduces the data transmis-
sion compression efficiency.

FIGURE 2. The traditional time series modeling procedure.

With regard to data-driven machine learning methods, due
to the labor-consuming data labeling work, especially for the
time-dependent telemetry time series, unsupervised cluster-
ing algorithms are usually used to analyze the features of
diverse time series data [15] in most academic and industrial
applications, such as making a comprehensive decision by
multi-features sensing time series data and sparse feature
learning in 5G communications [16]–[19]. However, such
methods could only distinguish the time series with different
behaviors, which could not provide us with enough available
system parameters for further data transmission compression.

The satellite telemetry data usually have no good feature
attributes along with a few outliers and random noises, it is
difficult for current ARIMA and unsupervised clustering
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methods to achieve high accuracy classification with less
model parameters.

B. OUR PROPOSED MODEL
In this paper, we propose the CP-WS telemetry classification
model with the WS (Window-Step) algorithm embedded in
the CP (Classification Probability) algorithm, that is, CP clas-
sification utilizes the classification test probability (cp) to
describe the membership level of the current time series
belonging to a certain classification; and WS optimization
self-learns proper parameters from the continuous telemetry
data stream in order to improve the CP classification perfor-
mance, which could be further used as the data compression
parameters in telemetry transmission missions.

FIGURE 3. The workflow of our proposed CP-WS model.

Our proposed model is shown in Figure 3, the main steps
are listed as follows:

1) Telemetry time series are generated as the data stream
by the on-board telemetry subsystem.

2) A telemetry preprocessing block is used to truncate the
data stream, eliminate local anomalies, and normalize
the original telemetry data.

3) Initialize the WS optimization parameters such as win-
dow size and step interval, by the calculation results of
ApEn algorithm.

4) Classification probability calculation:

• Utilize the initial or optimized window size and
step interval to frame the start and end point of the
subset data of input telemetry time series;

• If the size of the subset data is not empty, thenmake
the stationary test, linear test and cyclic test in turn
with the classification probabilities;

• Calculate and determine the membership of this
subset data, record it with the classification prob-
abilities in local storage space labeled by current
window size and step interval.

5) Optimize window size and step interval by minimizing
the cost function with regularization term.

6) If the input data is not exhausted, repeat step 4) ∼ 5);
else, calculate the classification result according to the
storage records.

As shown in figure 3, a telemetry preprocessing block is
introduced in our proposed CP-WSmodel in order to improve
the classification efficiency, including:

• Data truncation: extract enough available data volumes
from the infinite on-board telemetry time series data
stream for the classification purpose;

• Outlier elimination: detect and repair the local anoma-
lies with high efficiency and low time latency by the
SCREEN algorithm [20], which would be further stud-
ied in our next paper;

• Data normalization: obtain the normalization time
series X̂ from the original time series X by formula
X̂ = X−Xmean

Xmax−Xmin
.

C. CP CLASSIFICATION
1) STATIONARY TEST
In stationary test, we utilize the Augmented Dickey-
Fuller [21] to get the bool hypothesis test result ha,

• ha = 1 indicates rejection of the unit-root null in favor
of the alternative model, which means the time series is
stationary;

• ha = 0 indicates failure to reject the unit-root null, which
means the time series is non-stationary.

Then we choose the value of ha as the stationary test result,
that is, p1 = ha.

2) LINEAR TEST
In linear test, we utilize the residuals of linear fit method [22]
to get the p-Value of the first order variable hp, which indi-
cates rejection probability of the linear trend null in favor of
the alternative model, then we choose the value of (1−hp) as
the linear test result, that is, p2 = 1− hp.

3) CYCLIC TEST
In cyclic test, we utilize the ensemble empirical mode decom-
position (EEMD) [11] with adaptive controlled stopping
condition to obtain the residual value. Then we choose
the ratio rho of the residual value to extreme difference
as the non-cyclic probability, and the cyclic test result is
p3 = 1− rho.

4) CLASSIFICATION PROBABILITIES
Let cpi be the i-th classification test result, with stationary test
as 1-st test, linear test as 2-nd test, and cyclic test as 3-rd test.
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Then we have the classification probability for each type as
follows:

• base class 1: stationary probability: cp1 = p1
• base class 2: linear trend probability: cp2 = p2 · (1− p1)
• base class 3: cyclic trend probability: cp3 = p3 · (1 −
p2) · (1− p1)

• base class 4: general non-linear trend probability: the
residual part, that is, cp4 = (1− p3) · (1− p2) · (1− p1)

5) MEMBERSHIP DETERMINATION
The batch classification probabilities for each base class
are obtained by iteration of the CP-WS algorithm, and in
this paper the maximum statistical mean value is chosen as
the criterion to determine the membership, that is, current
time series data should be labeled as the base class with
the largest statistical mean value among all the classification
probabilities.

D. WS OPTIMIZATION
1) INITIALIZATION
Run the ApEn algorithm iteratively with the adjustable
parameter m under certain stopping criterion, then the initial
window size of our CP-WS algorithm could be set to multiple
times ofm, which might vary among different base classes.

Take the sine function discrete time series simulation data
as an example, which would be described in section 4.1 in
details, the ApEn values decrease sharply with the increase of
parameterm ranging from 1 toN . In our simulation, the stop-
ping criterion is set to 1% of the maximum ApEn values,
which means the ApEn algorithm runs till the ApEn value
calculated in current round is less than the stopping criterion,
and the initial window size is set to m. Note that, the param-
eter r of ApEn is set to 10% of the extreme value difference,
which might also vary among different base classes.

2) OPTIMIZATION OBJECTIVE
In order to improve the performance of our CP classification,
the WS optimization is proposed to provide the proper win-
dow size and step interval for high accuracy classification.
The computational complexity and time latency should also
be considered for our algorithm to be applied in space, there-
fore two regularized factors are introduced into our model in
order to constrain the cost function.

The cost function Ji of WS optimization for i-th base class
(i = 1, 2, 3, 4 indicates stationary class, linear class, cyclic
class, and general non-linear class respectively) is shown in
equation (3).

Ji (X |W , S) =
1
N
·

N∑
j=1

(
1− pij

)
+ c ·W · N +W

/
L (3)

where,

• X : telemetry data time series, X = xn, n = 1, 2, . . .,
|xn| <∞.

• L: the maximum window size of current data subset.

• W : window size, adjustable parameter, ranging from
W0 ∼ L.

• S: step interval, adjustable parameter, ranging from
1 ∼ W .

• N : defined as N =
⌈
(L-W)

/
S
⌉
, which means the

numbers of the window sliding from the beginning to
the end of current data subset. Due to the limitation of
data subset length, the last step might not be the best
trained parameter in order to provide full window size
data. If L � S, the mismatch of tail step could be
neglected.

• j: sliding sequence order, ranging from 1 ∼ N .
• pij: the probability of the i- th base class based on the j-th
window data.

• c: coefficient of the computational complexity regular-
ized factor, which is important forWS optimization, that
is, if c is too small, the optimization result tends to be
larger window, conversely the result tends to smaller.

The equation (3) is composed of three part:
• The first part 1

N ·
∑N

j=1
(
1− pij

)
gives the quantitative

evaluation of classification uncertainty ranging in [0, 1],
which usually decreases with the larger W and N , and
the optimization objective is to minimize such part.

• The second part c·W ·N gives the quantitative evaluation
of computational complexity, the optimization objective
is also to minimize such part. In order to match the first
part in magnitude ranging in [0, 1], the coefficient c is
set to the reciprocal of the maximum W · N , exists on
the condition W = L/2, S = 1. In this paper, the coef-
ficient c is set to 4/L2 for the normalization purpose.
The computational complexity of the WS optimization
is analyzed in Appendix C.

• The third part W
/
L gives the quantitative evaluation of

time latency ranging in [0, 1], which increases with the
largerW , the optimization objective is also to minimize
such part.

The optimization objective is shown in equation (4), that
is, to find the base class with minimum comprehensive loss
of classification uncertainty and computational complexity.

argmin
i

{
argmin
W ∗,S∗

Ji (X |W , S)

}
(4)

3) OPTIMIZATION METHOD
Exhaustive and heuristic methods are widely used in opti-
mization: the former could obtain global optimal solution
with high computational complexity, which is usually used
in off-line data processing on ground; the latter could obtain
local optimal solution with low computational complexity,
such as Simulated Annealing (SA), Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), etc., which could be
used in off-line data processing and on-line static data
processing. However, telemetry data is a time-dependent
dynamic discrete time series with low time latency require-
ment, both exhaustive and heuristic methods are not suitable
to be applied on board with constrained resources.
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FIGURE 4. An example of the CP-WS iterative optimization procedure.

In this paper, we propose a progressivewindow constrained
step forwarding optimization method, WS optimization,
which is embedded in the classification probability calcula-
tion procedure, and self-learns the optimal parameters along
with the window sliding over the continuous telemetry data
stream. As shown in Figure 4, the optimization procedure
could be listed as follows:
• Round 0: initialization: utilize the initial window size
W0 to calculate the initial classification probabilities
CP0 = cp1,0, cp2,0, cp3,0, cp4,0;

• Round 1: fix Step interval as S1, train the window size
from W0 ∼ L until finding the optimal solution W1
based on the optimization objective;

• Round 2: fix Window size as W1, train the step interval
from 1 ∼ W1 until finding the optimal solution S2 based
on the optimization objective;

• Next Odd rounds: round sequence (2n + 1), n =

1, 2, . . ., similar to round 1, fix Step interval as Sn+1,
train the window size from Wn ∼ L until finding
the optimal solution Wn+1 based on the optimization
objective;

• Next Even rounds: round sequence (2n + 2), n =

1, 2, . . ., similar to round 2, fix Window size as Wn+1,
train the step interval from 1 ∼ Wn+1 until finding
the optimal solution Sn+2 based on the optimization
objective.

• Runs until the data exhaust, during which our algorithm
would self-learn from the continuous time-dependent
telemetry time series.

where, Sn indicates the n-th optimal step interval result, Wn
indicates the n-th optimal window size. Apparently, the com-
putational complexity and time latency are both equal to
O(L) due to the continuous data input update, which is only
concerned with the maximum of window size.

IV. EXPERIMENTS AND RESULTS
A. SIMULATION DATA
1) DATA GENERATION
In order to evaluate the performance of the classification
algorithm, we emulate the time data series for some base

FIGURE 5. Simulation data.

classes as stationary and cyclic, whose behaviors are similar
as real mission data.
• Stationary data: Gaussian integer distribution ranging in
[1, 24] with 500 points, as shown in Figure 5(a), which
could be deemed as the available GPS satellite numbers
for automatic guidance and navigation on-board.

• Cyclic data: Sine function data ranging in [1, 3] with 500
points, as shown in Figure 5(b), which could be deemed
as the available voltages of some equipment on-board.

2) ApEn CALCULATION
• Stationary data: Fix parameter r equals to the root vari-
ance of input time series, calculate the ApEn values
with the increasing parameter m ranging from 1 ∼ 10.
As seen in Figure 6(a), the ApEn value of stationary
data falls down dramatically after m = 5 then record
m0,1 = 5.

• Cyclic data: Fix parameter r equals to the root variance
of input time series, calculate the ApEn values with the
increasing parameter m ranging from 1 ∼ 50. As seen
in Figure 6(b), the ApEn value of cyclic data falls down
dramatically after m = 45 then record m0,2 = 45.

• Initial window size: In order to provide enough data
for classification, the initial window size of WS opti-
mization is chosen as the maximum of all the parameter
m0,i(i = 1, 2) close to multiple of 50, therefore we get
W0 = 50.
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FIGURE 6. ApEn of simulation data.

3) CLASSIFICATION
• Stationary data: The classification probabilities of sta-
tionary data are shown as Figure 7(a) with S = 1. When
the window size is larger than 50, the classification
probability of base class 1 cp1 monotonically increases
to nearly 100% (as shown in Table 1), which means
such time series data could be definitely determined to
base class 1 with classification accuracy as 100% by
CP classification in high reliability under the member-
ship determination criterion in section III.C. In order to
improve our algorithm with proper computational com-
plexity and time latency, the WS optimization should be
considered as described in next section.

• Cyclic data: The classification probabilities of cyclic
data are shown as Figure 7(b) with S = 1. When
the window size is larger than 50, the classification
probability of base class 3 monotonically increases to
100% (as shown in Table 2), which means the time
series could be definitely determined to base class 3 with
classification accuracy as 100% by CP classification in
high reliability under the membership determination cri-
terion in section III.C. Similar to stationary data, theWS
optimization is also considered in next section.

4) OPTIMIZATION
• Stationary data: The optimization procedure of each
base class is shown as Figure 8(a). Through the WS
optimization as shown in Table 3, we find the best

FIGURE 7. Classification probability of simulation data.

TABLE 1. The classification probability of base class 1 (Stationary data).

TABLE 2. The classification probability of base class 3 (Cyclic data).

parameters as W = 50 with the lowest cost func-
tion value as Jmin = 0.4984, and the classification

VOLUME 8, 2020 2663



P. Wan et al.: Study on the Satellite Telemetry Data Classification Based on Self-Learning

FIGURE 8. Optimization procedure of simulation data.

TABLE 3. The optimization procedure of Stationary data.

probability of base class 1 equals to 96.16% as shown
in Table 1, which could provide strongly support to
acknowledge the time series as stationary.

• Cyclic data: The optimization procedure of each base
class is shown as Figure 8(b). Through theWS optimiza-
tion as shown in Table 4, we find the best parameters
as W = 85 with the lowest cost function value as
Jmin = 0.7344, and the classification probability of base
class 3 equals to 100% as shown in Table 2, which could
provide strongly support to acknowledge the time series
as cyclic.

TABLE 4. The optimization procedure of Cyclic data.

FIGURE 9. MEMS Gyroscopic X (◦/s) data.

B. MISSION DATA
1) MISSION BACKGROUND
The mission data is the one-day on-board telemetry data of
Tsinghua University smart communication satellite recorded
on July 20th 2018, the parameters used for flight control is no
more than 31. In this paper, we study on 2 typical representa-
tive parameters as shown in Figure 9 and Figure 10 in order
to evaluate our algorithm, in which the ‘MEMS Gyroscopic
X (◦/s)’ should be stationary, and the ‘Temperature of solar
array +X (◦C)’ should be cyclic.

2) ApEn CALCULATION
• MEMS Gyroscopic X data: Fix parameter r equals to
the root variance of input time series, calculate the
ApEn values with the increasing parameter m ranging
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FIGURE 10. Temperature of solar array +X (◦C) data.

from 5 ∼ 45. As seen in figure 11(a), the ApEn value
of stationary data falls down dramatically after m = 10
then record m0,1 = 10.

• Temperature of solar array +X data: Fix parameter r
equals to the root variance of input time series, calculate
the ApEn values with the increasing parameter m rang-
ing from 5 ∼ 200. As seen in Figure 11(b), the ApEn
value of cyclic data falls down dramatically after m =
165 then record m0,2 = 170.

• Initial window size: In order to provide enough data
for classification, the initial window size of WS opti-
mization is chosen as the maximum of all the parameter
m0,i(i = 1, 2) close to multiple of 50, therefore we get
W0 = 150.

3) CLASSIFICATION
• MEMS Gyroscopic X data: The classification probabil-
ities of telemetry parameter ‘MEMS Gyroscopic X’ are
shown in Figure 12(a), in which the classification proba-
bility of base class 1 converses to 100%, that is, the time
series data could be definitely determined to base class
1 as Stationary trend data with classification accuracy as
100% by CP classification in high reliability under the
membership determination criterion in section III.C.

• Temperature of solar array +X data: The classification
probabilities of telemetry parameter ‘Temperature of
solar array +X’ are shown in Figure 12(b), in which

FIGURE 11. ApEn of mission data.

the classification probability of base class 3 converses
to 100%, that is, the time series data could be definitely
determined to base class 3 as Cyclic trend data with
classification accuracy as 100% by CP classification
in high reliability under the membership determination
criterion in section III.C.

4) OPTIMIZATION
• MEMS Gyroscopic X data: The optimization procedure
of telemetry parameter ‘MEMSGyroscopic X’ is shown
as Figure 13(a). Through the WS optimization as shown
in Table 5, we find the best parameters asW = 521 and
S = 183 with the lowest cost function value as Jmin =

0.0057, and the classification probability of base class
1 equals to 100% as shown in Figure 12(a), which could
provide strongly support to acknowledge the time series
as stationary.

• Temperature of solar array +X data: The optimiza-
tion procedure of telemetry parameter ‘Temperature of
solar array +X’ is shown as Figure 13(b). Through
the WS optimization as shown in Table 6, we find the
best parameters as W = 185 and S = 65 with the
lowest cost function value as Jmin = 0.0138, and
the classification probability of base class 3 equals to
100% as shown in Figure 12(b), which could provide
strongly support to acknowledge the time series as
cyclic.
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FIGURE 12. Classification probability of mission data.

C. DATA TRANSMISSION APPLICATION
In this paper, we utilize the continuous generated simulation
data and long-term mission data to make a complete test for
our classification algorithm. The final performance should
be evaluated by the telemetry compression results in data
transmission procedure between the spacecraft and ground
stations.

Take the telemetry parameter ‘Temperature of solar array
+X’ as an example, which is classified into base class 3 as
cyclic trend, then our proposed data recoverymethod could be
used to obtain the dynamic features and recover the original
data. The main steps include:

• Period determination: utilize the fast Fourier trans-
form (FFT) to obtain the approximate period of teleme-
try data series X;

• Subset data construction: obtain the complete time series
data subset in one period;

• Polynomial fitting: utilize n-order (n = 4) polynomial
fitting method to fit the subset data, obtain the coeffi-
cients pi, i = 1, 2, · · · , 5

• Satellite generates the curve fit parameters on-board and
transmits them to ground station, in which the total
number is 9 and the total volume is 36 bytes:

1) Period: 4 bytes, unsigned positive integer
2) Coefficient p1: 4 bytes, single-precision float

FIGURE 13. Optimization procedure of mission data.

3) Coefficient p2: 4 bytes, single-precision float
4) Coefficient p3: 4 bytes, single-precision float
5) Coefficient p4: 4 bytes, single-precision float
6) Coefficient p5: 4 bytes, single-precision float
7) Minimum Xmin: 4 bytes, single-precision float
8) Mean Xmean: 4 bytes, single-precision float
9) Maximum Xmax: 4 bytes, single-precision float

• Ground station utilizes the curve fit parameters Period
and coefficients pi, i = 1, 2, · · · , 5 to build the one
period fitting time series subset, then repeat the data
subset in subsequent cycles to achieve the fitting of the
satellite telemetry data Xfit .

• The minimum value Xmin and maximum value Xmax are
optional, if you want to get the original physical time
series Xoriginal , it could be calculated by Xoriginal =
Xfit × (Xmax − Xmin)+ Xmean.

Figure 14 gives the data recovery results of ‘Temperature
of solar array +X’ with the root mean square error (RMSE)
as 0.0519 and crosscorrelation coefficient as 0.9883, that is,
the statistical mean recovery biases is limited within 5.19%
and the curve fitting data perfroms well on the cross-
correlation property with the original telemetry. For the
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TABLE 5. The optimization procedure of MEMS Gyroscopic X data.

TABLE 6. The optimization procedure of Temperature of solar array +X
data.

data compression, the total volume generated on board in
one day is equal to 19574 parameters ×2bytes/parameters =
39148 bytes, so that our algorithm could compress the

FIGURE 14. Data recovery results of Temperature of solar array +X.

‘Temperature of solar array +X’ telemetry volume into less
than 0.1%.

Through the cyclic trend data recovery method described
above, we could utilize only 9 fit parameters to accomplish
high accuracy data recovery in which the data compression
rate performs better over time. Compared with the fixed
length telemetry compression algorithm ‘POCKET+’ [23]
whose best compression rate is no less than 5%, our algo-
rithm could compress the all-day telemetry data into less than
0.1%, which performs 50 times better than ‘POCKET+’.
In addition, our algorithm could also be used in flexible length
telemetry, which is more suitable for the future space mission
requirements.

V. CONCLUSION
In this paper, the proposed CP-WS algorithm achieves a
high accuracy for telemetry classification based on self-
learning, which is suitable for time-dependent space envi-
ronment and massive data transmission. Based on the time
series feature analysis, four base classes including stationary,
linear, cyclic and general non-linear are introduced firstly
in order to describe and distinguish the telemetry behaviors
over time. Next, the information entropy analysis provides the
entropy rate characteristics of different base classes, as well
as the available entropy calculation method for telemetry
time series. Finally, a new on-board lightweight self-learning
algorithm CP-WS (Classification Probability calculation ĺC
Window Step optimization) is proposed to obtain the class
features and make the decision of each single parameter from
the discrete telemetry time series, with high classification
accuracy as 100% and adaptive computational complexity
ranging from O(L2) to O(L). In our opinion, the new algo-
rithm enriches the research point of telemetry data transmis-
sion, which extracts feature of different telemetry types from
classification in order to compress the telemetry parameters
according to their specific behavior features respectively, and
improves the transmission efficiency with high accuracy.

It is worthwhile pointing out that, our algorithm is ori-
ented to single telemetry parameter classification at present,
the computational complexity of all the satellite teleme-
try parameters is simply the mathematical addition of each
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telemetry parameter ranging from O(n · L2) to O(n · L),
in which n indicates the number of telemetry parameters.
In following studies, we would pay attention to the train-
ing parameters shared among different telemetry parameters,
in order to further decrease the computational complexity.
Meanwhile, the data recovery methods of different base
classes would be further studied to improve the compression
performance of the whole satellite.

APPENDIXES
APPENDIX A
PROVE ON STATIONARY FEATURE FOR THE FIRST-ORDER
DIFFERENCE OF HOMOGENEOUS
POISSON PROCESS
Based on the features of homogeneous Poisson process Y (t)
with 0 ≤ t0 < t1 < . . . < tn, it could be equivalent to
n independent incremental processes Y (t1) − Y (t0),Y (t2) −
Y (t1), . . . ,Y (tn)−Y (tn−1), with identical distribution. Define
the first-order difference as 1Yn = Y (tn)− Y (tn−1), then we
have:

1) Mean: E(1Yn) = λ · tn − λ · tn−1 = λ.
2) Variance: Var(1Yn) = λ
Detailed analysis is described as follows:
E(Yt ) = λ · t ,
Var(Yt ) = λ · t = E(Y 2

t )− (EYt )2 = E(Y 2
t )− λ

2
· t2

⇒ E(Y 2
t ) = λ · t + λ

2
· t2

E(1Yt ) = λ · t − λ · (t − 1) = λ
then, we have:

Var(1Yt ) = E(1Y 2
t )− (E1Yt )2

= E[Y 2
t + Y

2
t−1 − 2 · Yt · Yt−1]− λ2

= E(Y 2
t )+ E(Y

2
t−1)− 2 · E[Yt · Yt−1]− λ2

According to the autocorrelation characteristics as E[Yt ·
Yt−1] = λ2 · t · (t−1)+λ ·min(t, t−1), we have Var(1Yt ) =
λt+λ2 t2+λ(t−1)+λ2(t−1)2−2[λ2t(t−1)+λ(t−1)]−λ2 =
λ.
3) Auto-covariance function:Cov(1Yn,1Ym) = E(1Yn ·

1Ym)− E(1Yn) · E(1Ym) = 0.
To summarize, all three Eigen statistics of the first-order

difference of homogeneous Poisson process are time-
independent, so that such time series could be classified to
random data with stationary feature. (QED)

APPENDIX B
PROVE ON ENTROPY RATE FOR THE GENERAL
NON-LINEAR TREND
In this paper, we use the general stable source model to derive
the information entropy rate changes of the general non-linear
function.

Theorem: For discrete stable source, if H1(U ) < +∞,
then the entropy rate lim

N→∞
HN (U ) exists.

Proof: Based on the stable feature of the source
and the fact that unconditional entropy is not less
than conditional entropy, H (UN−1|U1U2 . . .UN−2) =

H (UN |U2U3 . . .UN−1) ≥ H (UN |U1U2 . . .UN−1), which

means that conditional entropy H (UN |U1U2 . . .UN−1)
decreases with the larger N , then we have:

H (U1U2 . . .UN )

= N · HN (U )

= H (U1)+ H (U2|U1)+ . . .+ H (UN |U1 . . .UN−1)

= H (UN )+ H (UN |UN−1)+ . . .+ H (UN |U1 . . .UN−1)

≥ N · H (UN |U1 . . .UN−1)

In additional, we have:

H (U1U2 . . .UN )

= N · HN (U )

= H (UN |U1 . . .UN−1)+ H (U1U2 . . .UN−1)

= H (UN |U1 . . .UN−1)+ (N − 1) · HN−1(U )

From above formulas, we can deduce that HN−1(U ) ≥
HN (U ). Therefore, for general non-linear function, we have:
+∞ > H1(U ) ≥ . . . ≥ . . .HN−1(U ) ≥ HN (U ) ≥ 0.
With the extreme value of entropy, H1(U ) ≤ log2 K , then we
could get the information entropy rate HN (U ) for the general
non-linear trend data as 0 ≤ H∞(U ) ≤ . . . ≤ HN (U ) ≤
. . . ≤ H1(U ) ≤ log2 K , with the lower bound 0 and the upper
bound log2 K . (QED)

APPENDIX C
THE COMPUTATIONAL COMPLEXITY
OF THE WS OPTIMIZATION
The computational complexity of the WS optimization
diverses in different optimization iterations according to time
dependant telemetry data stream. Given the maximum win-
dow size of current data subset as L, we could analyze the
computational complexity as follows.

1) The complexity in each CP classification iteration
In each iteration, the window size W is given as the priori

parameter, which is deemed as the length of the data subset
with dimension as 1. As described above, the Classification
Probability (CP) classification includes three serial test with
respective computational complexity as follows:
• Stationary test: the computational complexity of Aug-
mented Dickey-Fuller test is O(W ).

• Linear test: the computational complexity of linear fit
method is equivalent to classical least square method,
which is also O(W ).

• Cyclic test: the computational complexity of ensemble
empirical mode decomposition (EEMD) method isO(2 ·
k · W ), where k means the number of intrinsic mode
fuctions (IMF). In our simulation, k is determined by
the termination condition with the maximum value as
constant 7. Therefore, the computational complexity of
EEMD is equivalent to O(W ).

To sum up, the complexity in each CP classification itera-
tion is the combination of all these three serial test, which is
equivalent to O(W ).

2) The complexity of WS optimization embedded with
the CP classification
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The computational complexity ofWS optimization embed-
ded with the CP classification could be described by the
equation O(W ) · N , where N means the numbers of the
window sliding from the beginning to the end of current data
subset, defined as N =

⌈
(L-W)

/
S
⌉
. Then, the lower bound

and upper bound of such computational complexity could be
calculated as follows:

• Upper bound: the upper bound of computational com-
plexity exists on the condition of maximum O(W ) · N ,
that is, max (O (W ) · N ) = max (O (W · N )) =
O (max (W · N )). The maximum value of W · N =
W ·(L−W )

/
S is L2/4 on the conditionW = L/2, S = 1.

Therefore, the upper bound is equivalent to O(L2).
• Lower bound: the lower bound of computational com-
plexity exists on the condition of minimum O(W ) ·
N , that is, min (O (W ) · N ) = min (O (W · N )) =
O (min (W · N )). The minimum value of W · N = W ·
(L − W )

/
S is L on the condition W = L, S = 0.

Therefore, the lower bound is equivalent to O(L).

To sum up, the computational complexity of the WS opti-
mization is adpative according to different data subset, rang-
ing from O(L2) to O(L). (QED)
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