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ABSTRACT Clustering is one of the essential tools for data mining since it reveals the natural structures
of the unlabeled data. Many clustering algorithms have been proposed in the last decades. However, few of
them are designed to adapt prior knowledge that is available in many real applications, such as the sizes
of clusters. In this paper, we propose a novel iterative clustering algorithm that can impose the constraints
on the sizes of clusters. Given an unordered set of cluster size constraints, the proposed method minimizes
the mean squared error (MSE) while simultaneously considers the size constraints. Each iteration of the
proposed method consists of two steps, namely an assignment step and an update step. In the assignment
step, the observations are assigned into clusters under the size constraints. The assignment task is modeled
as an integer linear programming (ILP) problem. We prove that part of the constraint matrix of this ILP
problem is total unimodular. Therefore, the integer constraints on most of the variables can be omitted
so that the problem would become a mixed integer programming (MILP) problem which is much easier
to solve. In the update step, new cluster centroids will be updated as the centers of the observations in
the corresponding clusters. Experiments on UCI data sets indicate that (1) imposing the size constraints as
proposed could improve the clustering performance; (2) compared with the state-of-the-art size constrained
clustering methods, the proposed method could efficiently derive better clustering results.

INDEX TERMS Clustering, mean squared error, size constraints, linear program.

I. INTRODUCTION
Clustering is one of the most fundamental unsupervised
learning methods that has been employed in many disci-
plines [1]–[4]. Many clustering algorithms have been pro-
posed [5], such as k-means [6], spectral clustering [7],
hierarchical clustering [8], fuzzy c-means [9], cluster-
ing ensemble methods [10]–[12], etc. The algorithms are
intended to partition observations into k homogeneous and
well-separated clusters so that observations in a cluster are
similar to one another, yet dissimilar to observations in other
clusters. Although traditional clustering algorithms have
achieved decent performance in wide applications, the solu-
tion naturally found from a set of data by using a fully
unsupervised clustering algorithm may not always be close
to the one that users seek.

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdullah Iliyasu .

Fortunately, in many real applications such as gene clus-
tering [13], [14], face clustering in videos [15], facility
location problem [16], automatic lane detection prob-
lem [17] and customer segmentation problem [18], there
exists some background knowledge about the data which
can be obtained beforehand. Such background knowledge
usually reflects itself as the user specified constraints which
can be classified into two types [19], namely cluster-
level constraints [16], [18], specifying requirements on the
clusters, and instance-level constraints [13]–[15], [17], spec-
ifying requirements on pairs of observations. In the last
decades, many studies have been done in the field of con-
strained clustering [20]. However, most of them focus on
the instance-level constraints. Little attention is drawn to
the cluster-level constraints. In this paper, our focus is
on the cluster-level constraints, specifically, cluster size
constraints.

One of the motivations for introducing the size constraints
into clustering is to improve the clustering results. As shown
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in [21]–[24], introducing the size constraints could prevent
the formation of tiny or even empty clusters. Moreover,
the studies in [25]–[27] indicate that imposing the actual sizes
of the clusters as constraints could improve the clustering
performance. The size constraints driven by the needs of
improving results are mostly soft, i.e., the size constraints
do not have to be strictly satisfied. Another motivation for
the research of size constrained clustering is the application
requirements. For example, [28] proposes to impose upper
bounds on the sizes of clusters so as to maximize the life-
time of the wireless sensor network. In the article clustering
problem [29], the articles are clustered under the equality
constraints that there are a specific number of articles in
each session. The authors in [27] believe that the size con-
strained clustering in equality form could be applied to job
scheduling, where the jobs are assigned to machines with
different capacities. [30] claims that the task of resource
allocation can be modeled as the size constrained clustering
problem, where the sizes of clusters equal the fixed resource
capacities. More examples can be found in image search-
ing [31], customer segmentation [18], where the balanced
size constraints are imposed on the clustering tasks. The
size constraints driven by the application requirements are
mostly hard, i.e., the size constraints have to be strictly
met.

A common strategy in the field of clustering is to choose
k centroids and then minimize the averaged squared distance
between the observations and the corresponding cluster cen-
troids. There is a proportional choice to measure the distance
aforementioned, i.e., the mean squared error (MSE) [32],
which is one of the most popular cost functions used in
clustering [24], [33]–[35]. By optimizing the MSE, similar
observations are put into the same cluster, yet dissimilar
observations are arranged in different clusters. Furthermore,
the MSE can be optimized by a mature iterative solution
(k-means) that converges rapidly. In this paper, we adopt a
similar iterative strategy in our size constrained clustering
method. The high efficiency of the iterative strategy makes
it possible for us to evaluate the proposed method on large
data sets.

In this paper, we propose a novel clustering algorithm
that optimizes the MSE under the hard size constraints.
Given an unordered set of cluster size constraints as prior
knowledge, the proposed method minimizes the MSE while
simultaneously ensures that each cluster chooses the opti-
mum size. The proposed algorithm runs in an iterative
manner. There are two steps in each iteration, namely an
assignment step and an update step. In the assignment step,
the assignments between the observations and the clusters are
established. The assignment task is formulated as an integer
linear programming (ILP) problem [36]. There are two types
of variables in the constraints of this ILP problem, which
we define as the observation partition decision variables
(OPDVs) and the cluster size decision variables (CSDVs).
We prove that the integer constraints on the OPDVs can

be directly removed. The ILP problem is then simplified as
a mixed integer linear programming (MILP) problem [37].
In the update step, the observations in each cluster are aver-
aged to derive the corresponding cluster center. We have
conducted experiments to evaluate the proposed method.
The data sets involved in our experiments are taken from
the UCI machine learning repository [38]. Various external
validity indices including the Entropy (ENT) [39], Accuracy
(ACC) [40], Fowlkes and Mallows Index (FMI) [41] and Jac-
card Index (JCI) [42] are explored. Besides, we evaluate the
methods regarding objective function values and efficiency.
The results indicate that the proposed method could effi-
ciently leverage the size constraints to improve the clustering
performance.

The rest of this paper is organized as follows. The literature
review is provided in Section II. Section III covers the details
about our proposed size constrained clustering algorithm.
In Section IV, the experimental settings and results are given.
The discussion is presented in Section V. Finally, Section VI
concludes the paper and presents possible directions for fur-
ther investigation.

II. RELATED WORK
In this section, we briefly review some of the methods
that are proposed for clustering with size constraints. Typi-
cally, the size constraints can be roughly separated into two
categories [43], namely soft size constraints and hard size
constraints. Soft size constraints are usually added to the
objective functions as regulation terms, so they may not be
strictly satisfied. On the other hand, hard size constraints are
the conditions that must be met.

A. SOFT SIZE CONSTRAINED CLUSTERING
The soft size constrained clustering methods are more often
used to improve the clustering results. For example, the ratio
cut [22] and normalized cut [21] introduces direct and indi-
rect equipartition constraints to the objective function of
min-cut [44] to prevent the formation of tiny or even empty
clusters. [31], [45] present frequency sensitive competitive
learning (FSCL) with the multiplicative or additive bias to
penalize large clusters so that large clusters are less likely
to win observations. [46] proposes a scalable framework to
keep the balance of clusters, which applies to a wide range of
clustering algorithms. The method first performs clustering
on the downsampled data set and then populates the clusters
with the remaining data. It is reported that the method is
very efficient in practice (O(kn log(n))). In [47], an extension
of k-means algorithm was presented. It introduces the size
constraints by adding three punishment terms, which includes
the overall size divergence cost, oversize cost, and undersize
cost. Although this approach achieves certain improvement,
it has too many parameters that need to be set, and there is
no guidance for the setting of these parameters. [25] presents
a size regularized cut (SRcut) by exploring the sizes of the
clusters as prior knowledge to guide the clustering process.
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As a result, the method improves the clustering performance
over traditional methods. [26] proposes to regularize the
size constraints with submodular functions. An algorithm
based on submodular optimization techniques is presented
to solve the size constrained clustering problem. In [23],
the authors exploit the exclusive lasso to exert the balanced
size constraints, and they apply the idea into the min-cut
and k-means algorithm. Their experiments indicate improved
results. Although there has been significant progress in the
soft size constrained clustering algorithms, theymay not cater
to a large number of real applications since they only treat
constraints as guidance rather than requirements that must be
met. In this paper, we mainly focus on clustering with hard
size constraints.

B. HARD SIZE CONSTRAINED CLUSTERING
Despite the great application requirements, few studies have
been done in the field of hard size constrained clustering. [33]
proposes an iterative method for clustering with hard bal-
anced size constraints. The method transforms the k-means
assignment step into a balanced assignment problem that can
be solved by the Hungarian algorithm [48]. It works fine
when the number of observations n is divisible by the number
of clusters k . However, when n is not divisible by k , it has
trouble in deciding the optimal size for each cluster. [49]
imposes size constraints to an adapted neural gas algorithm.
The method ensures that the constraints on the cluster sizes
are satisfied. However, the greedy strategy cannot guarantee
the optimality of the clustering algorithm. A variant of fuzzy
c-means (FCM) clustering algorithm is proposed in [30]. The
size constraints are integrated into the objective function via
Lagrange multipliers. The experimental results show that it
outperforms traditional clustering algorithms. The authors
in [50] propose a deterministic clustering approach based on
the deterministic annealing (DA) algorithm to address the
capacitated resource allocation problem with several forms
of size constraints. [27] proposed a method for clustering
with hard size constraints. A clustering algorithm without
considering any size constraints is applied to get the ini-
tial partition, and the final result is derived by finding a
constraint-satisfying partition that maximizes its agreement
with the initial partition. The method is very efficient in
practice. However, it fails to consider the similarity between
the observations during the reassigning process. [29] pre-
sented a hard size constrained clustering methods based
on ILP. The method works if we assume that the corre-
spondences between the initial centers and the cluster sizes
are known. Nevertheless, the assumption is rarely practi-
cal in real applications. There are also studies which put
hard lower bounds [24], [51] and upper bounds [52] on the
sizes of clusters. In Section V, we show that the proposed
method could also be adapted to facilitate the inequality
constraints.

TABLE 1. Meanings of the notations.

III. SIZE CONSTRAINED CLUSTERING
A. NOTATIONS
The key notations involved in our method are shown
in Table 1.

B. PROBLEM FOMULATION
In this paper, our objective is to minimize the MSE under
the given size constraints of clusters. Given a data set o =
{o1, o2, ..., on}, where oi denotes the i-th observation, and a
set of cluster size constraints s = {s1, s2, ..., sk},

∑k
j=1 sj = n,

where sj denotes the j-th size constraint and it is integral.
Our purpose is to partition the n observations into k clusters
f1, f2, ..., fk (c1, c2, ..., ck are the cluster centers), such that the
set of cluster sizes {|f1| , |f2| , ..., |fk |} equals the set of size
constraints s.

Minimize E = (1/n)
k∑
j=1

∑
oi∈fj

∥∥oi − cj∥∥2
s.t. {|f1| , |f2| , ..., |fk |} = s (1)

where
∥∥oi − cj∥∥2 denotes the squared Euclidean distance

between the i-th observation and the j-th cluster center.
Notice that the size of the j-th cluster

∣∣fj∣∣ does not have to
be the j-th size constraint sj. Because at the beginning of the
clustering process, the correspondences between the cluster
sizes and the size constraints are unclear. We can not specify
which cluster is the j-th cluster fj to have sj observations. The
number of possible correspondences between the cluster sizes
and the size constraints is k!, and we want the algorithm to
automatically choose the optimum one from the k! possible
correspondences.

Let p be the partition matrix of size n× k , where each row
of p represents an observation, and each column represents
a cluster. pi,j = 1 indicates that observation xi belongs to
cluster j, while pi,j = 0 means otherwise. It is clear that
summing each row of p equals 1 because each observation
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can only be assigned to one cluster, i.e.,
∑k

j=1 pi,j = 1, i =
1, 2, ..., n. On the other hand, summing each column of p
equals the size of the corresponding cluster

∣∣fj∣∣. Thus we
reformulate the problem as:

Minimize E(c, p) = (1/n)
k∑
j=1

n∑
i=1

pi,j
∥∥oi − cj∥∥2

s.t.
n∑
i=1

pi,j =
∣∣fj∣∣ , j = 1, 2, ..., k

k∑
j=1

pi,j = 1, i = 1, 2, ..., n

{|f1| , |f2| , ..., |fk |} = s

pi,j ∈ {0, 1}, i = 1, 2, ..., n, j = 1, 2, ..., k (2)

Let q be an auxiliary matrix of size k × k , where qj,l = 1
indicates that j-th cluster chooses l-th size constraint, qj,l = 0
means otherwise. It is obvious that summing each row or col-
umn of q equals 1 as the correspondences between cluster
sizes and size constraints are one-to-one. The problem can be
further reformulated as:

Minimize E(c, p) = (1/n)
k∑
j=1

n∑
i=1

pi,j
∥∥oi − cj∥∥2

s.t.
n∑
i=1

pi,j =
k∑
l=1

qj,lsl, j = 1, 2, ..., k

k∑
j=1

pi,j = 1, i = 1, 2, ..., n

k∑
j=1

qj,l = 1, l = 1, 2, ..., k

k∑
l=1

qj,l = 1, j = 1, 2, ..., k

pi,j ∈ {0, 1}, i = 1, 2, ..., n, j = 1, 2, ..., k

qj,l ∈ {0, 1}, j = 1, 2, ..., k, l = 1, 2, ..., k (3)

To simplify the description in Section III-D, we define
three kinds of variables for the above problem, the cluster
centers c, the variables in the partition matrix pwhich we call
observation partition decision variables (OPDVs), and the
variables in the auxiliary matrix q which we call cluster size
decision variables (CSDVs). The OPDVs are used to indicate
the relations between the observations and the clusters. The
CSDVs have no explicit impact on the objective function E .
They are used to indicate the correspondences between the
cluster sizes and the size constraints.

It should be noted that once the sizes of the k−1 clusters are
set, the sizes of all k clusters can be determined, so one of the
cluster size constraints in Equation (3) is redundant. However,
we have found that the redundant size constraint has no
significant impacts on the results. For ease of description and

comprehension, we intend to keep the redundant constraint
for the rest of this paper.

C. PROPOSED SOLUTION
1) ASSIGNMENT STEP
In the assignment step, we try to solve Equation (3) with
respect to p while holding c fixed, i.e., we try to assign the
observations to the cluster centers so as to optimize the MSE
under the given set of size constraints. The problem here is
an ILP problem and the integer constraints on the decision
variables make it difficult to solve. A typical solution to
the ILP problem is to repeatedly solve the LP relaxations
with the simplex algorithm in a branch-and-bound way [53].
In the worst case, the simplex algorithm needs to be executed
exponential times which is computationally expensive.

If the constraint matrix of the ILP is totally unimodular,
then the integer constraints can be removed [54]. In our
case, the constraint matrix on all the decision variables is not
totally unimodular. However, as indicated by Theorem 1 in
Section III-D, the constraint matrix on the OPDVs is totally
unimodular, somost of the integer constraints can be removed
from our ILP problem. Specifically, the integer constraints on
the n × k OPDVs can be removed, which leaves us only the
integer constraints on the k × k CSDVs. The ILP problem
would then become an MILP problem that can be solved in
much less running time.

2) UPDATE STEP
In the update step, we try to solve Equation (3) with respect
to cwhile holding p fixed. Actually, once the observations are
assigned, new centroids should be updated so that the MSE is
minimized. Since p is fixed, Equation (3) can then be relaxed
to an unconstrained optimization problem as shown below.

Minimize E(c, p)= (1/n)
k∑
j=1

n∑
i=1

pi,j
∥∥oi − cj∥∥2

= (1/n)
k∑
j=1

n∑
i=1

pi,j(oi − cj)(oi − cj)T (4)

Obviously, the optimal E can be achieved when

∂(E(c, p))/∂(cj) = 0 ⇒
n∑
i=1

pi,jcj −
n∑
i=1

pi,joi = 0

⇒ cj = (1/
n∑
i=1

pi,j)
n∑
i=1

pi,joi (5)

With the description above, the proposed size constrained
clustering can be detailed as Algorithm 1.

The proposed algorithm is guaranteed to converge, but
not always to the global optimum due to the non-convexity
of the objective function. In each iteration, the value of the
objective function monotonically decreases. Assuming that
p(t) and c(t) are the OPDVs and centroids at the end of the t-th
iteration respectively. In the assignment step of the (t + 1)-th
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TABLE 2. A brief summary of experimental data sets.

Algorithm 1 Clustering With Size Constraints
Input: Data set o = {o1, o2, ..., on};

Size constraints s = {s1, s2, ..., sk};
Output:

OPDVs p; CSDVs q;
Cluster centers c = {c1, c2, ..., ck};

1: Initialize centroids c(0) = {c(0)1 , c
(0)
2 , ..., c

(0)
k } with k-

means++ algorithm [55];
2: Initialize i = 0;
3: repeat
4: i = i+ 1;
5: Assignment step:

solve theMILP problem stated in Section III-C.1 for
p(i) and q(i);

6: Update step:
update the centroids as c(i) according to Equa-

tion (5);

7: until The centroids no longer change
8: return p(i), q(i), c(i);

iteration, we optimize Equation (3) with respect to p while
holding c fixed, thus we have E(c(t), p(t+1)) ≤ E(c(t), p(t)).
In the update step, we optimize Equation (3) with respect to c
while holding p fixed, thus, there must be E(c(t+1), p(t+1)) ≤
E(c(t), p(t+1)).

D. EFFICIENCY ANALYSIS
Typically, the ILP problem in standard form can be formu-
lated as follows.

Minimize λxT

s.t. MxT = b

x ≥ 0

x ∈ Zn (6)

FIGURE 1. The convergence process of the proposed algorithm.

An interesting property of the ILP problem is that if the
constraint matrix M is totally unimodular (a matrix is totally
unimodular if and only if the determinant of every square sub-
matrix is 0,1,or −1) and the vector b is integral, the inte-
ger constraints can be removed so that the ILP problem
can be relaxed to an LP problem that still guarantees the
integral solution [56]. Although the constraint matrix in
our case is not totally unimodular, it is special in that
its submatrix on OPDVs is totally unimodular according
to Theorem 1 (the proof can be found below). Therefore,
we could remove the integer constraints on the OPDVs.
It will greatly reduce the complexity during the course of
branch-and-bound.

Before the proof of Theorem 1, we first introduce Lemma 1
and Lemma 2. The two Lemmas can also be found in [54].
Lemma 1: The constraint matrix M remains totally uni-

modular if multiplying a column (row) with −1.
For example, if

M1 =

−1 −1 0
−1 0 −1
0 −1 1
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TABLE 3. The means and standard deviations of the MSE and running time.

is totally unimodular, then we multiply the first row with−1,
we can get

M ′1 =

 1 1 0
−1 0 −1
0 −1 1


According to Lemma 1, the total unimodularity is preserved.
Lemma 2: The constraint matrix M is totally unimodular

if it has at most two non-zero entries being±1 in each column
(row), and, for every column (row) with two non-zero entries,
the sum of the column (row) is 0.

For instance, given a matrix

M2 =

 1 −1 0
0 1 −1
−1 0 1


According to Lemma 2, the matrix is totally unimodular since
it only contains two non-zero entries with±1 in each column,
and the sum of each column equals 0.
Theorem 1: The constraint matrix on the OPDVs in

the ILP problem described in Section III-C.1 is totally
unimodular.
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TABLE 4. Games-Howell test and student’s t-test results on the MSE and running time.

Proof: Putting all the OPDVs in a vector y, we have:

y =
(
p1,1 p1,2 · · · pn,k

)
then the constraint matrix on the OPDVs can be derived as:

A =
(
A1
A2

)
where A1 consists of the coefficients of the first constraint set∑n

i=1 pi,j = b =
∑k

l=1 qj,lsl, j = 1, 2, ..., k and A2 contains
the coefficients of the second constraints set

∑k
j=1 pi,j =

1, i = 1, 2, ..., n.
A concrete form for A1 and A2 can be formulated as

following.

A1 =
(
Ik×k Ik×k · · · Ik×k

)
A2 =


1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0
...
...
. . .

...
...
...
. . .

...
...

...
...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1



where, Ik×k is the identity matrix of size k × k .
According to Lemma 1, we multiply every row in A2 with
−1 to get A′2. If A

′
=

(
A1
A′2

)
is totally unimodular, so does A.

According to Lemma 2, it is clear that A′ is totally unimod-
ular as every column has only two non-zero elements being
±1, and the sum of of each column equals 0.
Therefore, the constraint matrix on the OPDVs is totally

unimodular.
Due to the total unimodularity of the constraint matrix on

the OPDVs in the ILP problem described at the beginning of
Section III-C.1, we only need to keep the integer constraints
on the CSDVs thus leading us to theMILP problem described
in Section III-C.1. Therefore, theMILP problem is equivalent
to the ILP problem. Solving the MILP problem still results in
integral solutions on both OPDVs and CSDVs.

The ILP and MILP problems can be addressed by repeat-
edly solving the LP relaxations with the simplex algorithm
in a branch-and-bound way. In the worst case, it needs
to solve O(2α) LP problems, where α is the number of
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FIGURE 2. The external indexes of the k-means based algorithms.

integer constraints. Accordingly, to address the ILP problem
described at the beginning of Section III-C.1, we need to solve
O(2n×k+k

2
) LP problems, where n is the number of observa-

tions and k is the number of clusters. According to Theorem 1,
we can remove the integer constraints on the n × k OPDVs,
so that we only need to solve O(2k

2
) LP problems. Under

certain circumstances when n� k , the strategy would make
a great contribution to decreasing the total time complexity.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
In this section, we present the experiments conducted on UCI
machine learning data sets to evaluate the performance of the

proposed algorithm. Table 2 shows the details of the data sets
that are used in our experiments.

We integrate the size constraints into the k-means algo-
rithm as described in Section III. We compare the proposed
algorithm with the k-means algorithm and other size con-
strained k-means algorithms which include the algorithm
presented in [27] and the algorithm in [33]. For simplic-
ity, we refer to the k-means algorithm as KM, the algo-
rithm in [27] as SCK1, the algorithm in [33] as SCK2,
and the proposed algorithm as MILP-KM. To further study
the performance of the proposed algorithm, all the k-means
based algorithms mentioned above are adapted to the normal-
ized cut based algorithms as the normalized cut clustering
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TABLE 5. The means and standard deviations of the NCUT and running time.

algorithm can be seen as applying the k-means algorithm
on the data set with reduced dimensions. The normalized
graph Laplacian matrix is implemented as a fully con-
nected graph according to the research in [21]. For sim-
plicity, we refer to the normalized cut algorithm as NC,
the algorithm adapted from [27] as SCN1, the algorithm
adapted from [33] as SCN2, and the proposed algorithm as
MILP-NC.

For the evaluation criterion, we consider four external
indexes, including the Clustering Accuracy (ACC) [40],
Entropy (ENT) [39], Fowlkes and Mallows Index (FMI) [41]
and Jaccard Index (JCI) [42]. Apart from these measures,
the MSE for the algorithms based on the k-means, the NCUT
for the algorithms based on the normalized cut and running
time (measured in seconds) are explored. All these measures
are recorded and averaged over 10 runs. Besides, the statis-
tical tests are applied to further validate the results on the
MSE, NCUT, and running time. For all the data sets except
EMPGA2, we apply the Games-Howell test [57], as there are
more than two methods to compare. For EMPGA2, both

SCK1 and SCK2 can not derive a result within an acceptable
time, which leaves us with only two methods to compare,
so we make use of the Student’s t-test [57].
All the algorithms involved in this paper are imple-

mented in MATLAB, which run on an Intel i7-7700HQ
2.8 GHz processor with 16 GB memory. We explore the
build-in MILP solver of MATLAB with default parameters
except for "RootLPMaxIterations", "LPMaxIterations", and
"MaxTime", which are set as 1000000, 100000, and 18000,
respectively. In addition, all clustering algorithms get the
initial centroids by k-means++ algorithm [55]. They share
the same stopping criterion ||c(t+1) − c(t)||2 < 0.0001,
i.e., the centroids barely change between adjacent itera-
tions. The code and data sets can be downloaded from
https://github.com/IGGIUJS/SizeConstrainedClustering.

Notice that we do not conduct the experiments on
EMPGA1 and EMPGA2 for the normalized cut based algo-
rithms, because these methods need to construct a normalized
graph Laplacian matrix that enormously beyond the memory
capacity of our experimental equipment (16 GB RAM).
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FIGURE 3. The external indexes of the normalized cut based algorithms.

B. CONVERGENCE
The proposed method is guaranteed to converge according to
the analysis in Section III-C.2. The process of convergence
can be found in Fig. 1. Since theMSE varies greatly across the
data sets, we normalized it to the range [0, 1]. We can observe
that for the eight data sets involved, our algorithm converges.
For EMPGA1 and EMPGA2, the proposed algorithm takes
dozens of iterations, while for other data sets, it converges in
less than ten iterations.

C. COMPARISON AMONG K-MEANS BASED ALGORITHMS
In this section, we report the performance comparison among
KM, SCK1, SCK2 andMILP-KM in terms of the ENT, ACC,
FMI, JCI, MSE and running time.

It can be observed from Table 3 that mostly KM achieves
the best MSE and efficiency. It is natural because KM opti-
mizes the MSE without any constraints. As far as the size
constrained k-means algorithms are concerned, MILP-KM
outperforms SCK1 and SCK2 in the resultant MSE. The
statistical test results shown in Table 4 indicate that the

differences on the MSE are mostly significant (p <= 0.05).
In addition, MILP-KM is significantly faster than SCK2 on
most of the data sets. Although MILP-KM takes more time
than SCK1 on small data sets, it outputs results with far better
MSE. Moreover, for large data sets, such as EMPGA1 and
EMPGA2, MILP-KM is even faster than SCK1. Especially
for EMPGA2, SCK1 is no longer able to produce a result
within an acceptable time.

From the external indexes shown in Fig. 2, we can see that
mostly MILP-KM outperforms KM, SCK1, and SCK2. This
indicates that incorporating the size constraints as proposed
could better improve the performance on the external indexes
for the k-means algorithm. Notice that the size constrained
method SCK1 performs even worse than KM, this is because
that SCK1 is a heuristic method with strong randomness
when adjusting the results given by an initial clustering to
adapt the size constraints.

In most cases, MILP-KM outperforms SCK2 on the four
external indexes. However, there are cases when SCK2 per-
forms better, such as the external indexes on Wine Quality
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TABLE 6. Games-Howell test results on the NCUT and running time.

Red shown in Fig. 2. The reason for this is over-fitting, as we
can see in Table 3, the MSE of MILP-KM is lower than that
of SCK2, yet the SCK2 performs better than MILP-KM on
the four external indexes.

D. COMPARISON AMONG NORMALIZED CUT
BASED ALGORITHMS
In this section, we report the performance comparison among
NC, SCN1, SCN2 and MILP-NC in terms of the ENT, ACC,
FMI, JCI, NCUT, and running time.

It can be observed from Table 5 that among the size con-
strained normalized cut algorithms,MILP-NCmostly outputs
results with the optimum NCUT. The Games-Howell test
results shown in Table 6 indicate that the differences on the
NCUT are significant (p <= 0.05). In addition, MILP-NC
runs significantly faster than SCN2 on all the data sets.
Despite that the MILP-NC is less efficient than SCN1, it is
signifcantly more accurate.

From the result shown in Fig. 3, we can see that MILP-NC
outperforms SCN1, SCN2, and NC on the four external
indexes. Thus, the proposed method could adapt the size
constraints to better improve the clustering performance on
the external indexes for the normalized cut algorithm.

V. DISCUSSION
This paper tackles the problem of incorporating equality
constraints in the clustering task, i.e., the sizes of the clusters

equal a set of constraints. The proposed method could be
extended to a general framework that adapts to any kinds
of size constraints. The generalized framework requires the
user-specified lower bounds s′ = {s′1, s

′

2, ..., s
′
k} and upper

bounds s′′ = {s′′1, s
′′

2, ..., s
′′
k } on the sizes of the clusters.

If 0 < s′j 6 n, s′′j ≥ n, then there is only a lower bound
constraint on the size of the j-th cluster (the upper bound
constraint does not affect the results). If s′j 6 0, 0 6 s′′j < n,
then there is only a upper bound constraint. If s′j 6 0, s′′j ≥ n,
then there is no constraint on the size of the j-th cluster.
If 0 < s′j < s′′j < n, then there are both lower and upper
bounds. If 0 6 s′j = s′′j 6 n, then there is an equality
constraint.

The framework works in a similar way as the proposed
method, i.e., iterating between the assignment step and the
update step. The update step is the same as the one in the pro-
posed method. To solve the problem in the assignment step,
firstly, we transform the lower bound constraints into upper
bound constraints by placing negative signs on both sides of
the inequations. Then, we change the inequality constraints
into equality constraints by adding slack variables. Finally,
we have an ILP problemwith a set of equality constraints. The
constraint matrix on the OPDVs and slack variables is totally
unimodular so that we can remove the integer constraints on
these variables. The original ILP problem would become an
MILP problem that can be efficiently solved. Our trials show
that the solution of the framework converges as fast as the
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proposed method. We intend to skip the proof of the total
unimodularity here, as it is beyond the scope of this paper.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel iterative approach to address
the issue of size constrained clustering, which consists of an
assignment step and an update step. In the assignment step,
the prior knowledge about the size constraints specified by
users are modeled into an ILP problem. We show that the
integer constraints on the OPDVs can be removed due to the
total unimodularity. Thus, the ILP problem is equivalent to an
MILP problem, which can be much more efficiently solved.
In the update step, new centers are updated as the centroids
of the clusters. We have conducted extensive experiments
on common data sets to evaluate the performance of the
proposed method in terms of recognized benchmarks. The
experimental results show that the clustering performance
could be better improved by leveraging the cluster size con-
straints as proposed.

Several issues remain to be investigated in the future work.
For example, we can explore more real applications where the
sizes of clusters need to be restricted, such as the capacitated
resource allocation problem. In addition, it is a challenging
work to introduce other types of constraints into clustering,
such as instance-level constraints. Last but not least, it is
interesting to adapt the size constraints into other types of
clustering algorithms.
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