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ABSTRACT In the multimedia communication system, users are often exposed to fraud information from
malicious applications (such as providing fake bids and false content), which can easily cause privacy
leakage. And multimedia information pluralism make it more difficult to protect users’ privacy. To solve
these problems, this article proposed an anti-fraud scheme based on improved Bayesian game model.
First, we designed a Bargain-bayesian game model for modeling the interaction between applications and
regular users. We used the Two-round bargain method to establish payoff matrix for two players and adjust
it through regular user’s detection rate dynamically. Then we obtained the application’s best bid in the
first round of bargain by backward induction to prevent malicious applications from sending fake bids.
Second, we customized a group of test users and developed another interaction model between applications
and users (i.e., regular and test) as the Two-side Bayesian game model based on sliding adaptive logistic
regression method, then we put three influencing factors into the payoff matrix: test user’s ratio, malicious
application’s ratio, and regular user’s ratio. Through Bayesian Nash Equilibria analysis, we obtained values
of three influencing factors when malicious applications provide true content, and thus solved the problem of
malicious applications providing false content. Finally, experiment results proved that the new scheme had
effectively raised expected payoffs for both players and their transaction achievement rate, and lowered the
probability of users being deceived by malicious applications, which successfully solved the issue of users’
privacy disclosure.

INDEX TERMS Multimedia communication system, privacy protection, Bayesian game, logistic regression.

I. INTRODUCTION
Quick development of technology such as mobile communi-
cation and intelligence terminal accelerated the information
dissemination process, which managed to satisfy users’ need
for fast and convenient access to multimedia information.
By the end of 2018, the unit number that is connected to the
Global Mobile Internet surpassed 22 billion. And due to its
openness, dynamic, and sharing features, multimedia infor-
mation is prone to be attacked by eavesdropping, interception,
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and tampering, which has increasingly become a serious
issue. Mobile terminal equipment is widely used nowadays,
and intelligence terminal applications have been increasing
rapidly. But related security policy and the formulation and
execution of law falls behind, which causes a massive out-
break ofmalicious applications, seriously threatening internet
users’ privacy and data safety. For example, privacy incidents
occurred for many times on Facebook. Google tried to adjust
its strategy of analysis on sensitive data to prevent users’
information disclosure.

Currently, in the multimedia communication system,
researches on privacy protection mainly focused on
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multimedia copyright protection, recognition of malicious
information, tamper-proof and anti-theft of privacy, etc. Mul-
timedia information copyright protection primarily relies on
information hiding, digital watermarking, splicing detection,
and perceptual hash, etc. In [1], [2], two kinds of coverless
information hiding methods were introduced. In [3], [4],
researchers first analyzed the design theory of spread spec-
trum watermark, and then proposed a watermarking algo-
rithm based on the transform domain. In [5], [6], the method
of detecting scale and the trace of re-sampling were intro-
duced to protect the copyright of multimedia information.
In [7], [8], researchers first introduced a privacy protocol
for perceptual image hashing, and then proposed a image
perceptual hashing schemes. However, the above proposals
could not protect copyright effectively. The cognition of
malicious information mainly depends on designing a model
of cognition in the multimedia information system. In [9],
the Distance-Based Discrimination Detector was proposed to
distinguish malicious information. In [10], researchers iden-
tified the malicious edge device by using the Markov model,
Intrusion Detection System, and Virtual Honeypot Device in
the fog computing environment. In [11], a small target detec-
tion scheme based on the weighted local difference measure
was proposed for the detection of small targets. Moreover,
a new attack-defense game model base on the repeated game
approachwas proposed for detectingmalicious nodes in [12],.
However, the model of cognition is too complicated and
errors can easily occur in the above methods. The tamper-
proof and anti-theft for multimedia information mainly rely
on tamper detection or adjusting attackers and defenders’
payoff. In [13], researchers summarized the typical image
tamper types, published image tamper data sets, and recent
tamper detection methods. In [14], the location privacy pro-
tection scheme based on the routing protocol was proposed to
prevent information leakage. In [15], researchers proposed an
oblivious watermarking technique to detect the tampering of
digital images. In [16], a novel tamper detection, localization,
and recovery scheme were proposed based on DWT and CS.
In [17], a passive blind video similar tamper detection algo-
rithm based on multi-scale normalized mutual information
is proposed, which realizes video frame replication, frame
insertion and frame deletion tamper detection. Meanwhile,
some researchers apply game theory to prevent information
from being tampered or theft in [18]–[20]. In [21], the inter-
action between attacker and defender was model as a non-
cooperative security game, players adjust their strategy by
analyzing and predicting the opponent’s strategy. In [22],
researchers first studied a mixed strategy game of subjective
storage defense, and then proposed a APT defense scheme
based on Q-learning. In [23], the optimal transmission strat-
egy and interference strategy of the legal transmission and
eavesdropping were determined by analyzing the equilibrium
of Stackelberg game.Moreover, there are also some emerging
security technologies to protect users’ privacy. For example,
the privacy preservation framework of CPSSs [24], sensitive
information protection based on differential privacy [25],

and Hiding participants’ abnormal behaviors [26]. However,
errors could occur easily during the tampered area detection
process, and the attacking and defending participants have a
lower payoff in the above proposals.

How to solve the issue of malicious applications providing
fake bids and false content to deceive users which caused
the problem of internet users’ privacy leakage problem is the
biggest challenge we are facing nowadays. Though most of
the researchers mentioned about users’ privacy protection,
they did not analyze from the perspective of preventing mali-
cious applications from deceiving users. Therefore, this arti-
cle proposed an Anti-fraud privacy protection scheme based
on an improved Bayesian game model. Our main contribu-
tions are as follows:

(1) To address the issue of malicious applications send-
ing fake bids, we first proposed the Bargain-bayesian game
model, i.e., BB, for modeling the interaction between appli-
cations and regular users. Second, we used Two-round bar-
gain method to establish the payoff matrix for both players
and then formed dynamic regulation of this payoff matrix
through regular user’s detection rate. Third, we obtained
the application’s best bid in the first round of bargain by
backward induction, thus prevented malicious applications
from sending fake bids. Moreover, through Bargain-bayesian
Nash Equilibria analysis, we found out that by raising reg-
ular user’s detection rate, we can solve the problem of
malicious applications providing false content to a certain
degree.

(2) To address the issue ofmalicious applications providing
false content, we first customized a group of test users and
developed the Two-side Bayesian game model based on slid-
ing adaptive logistic regression method, i.e., TB, to model the
interaction between applications (i.e., normal and malicious)
and users (i.e., regular and test). Second, we constructed a
sliding adaptive logistic regression method to calculate the
probability of malicious applications providing false con-
tent and then put this probability as malicious application’s
ratio. Third, we adjusted the payoff matrix by the follow-
ing three influencing factors dynamically: test user’s ratio,
malicious application’s ratio, and regular user’s detection
rate. Through Two-side Bayesian Nash Equilibria analysis,
we obtained the value range of three influencing factors when
malicious applications chose to provide true content as its best
strategy.

(3) The experiment used seven contrast vectors, including
the expected payoff of malicious applications and regular
users, the transaction achievement rate and so on, to compare
and analyze the our new scheme and other schemes. The
experiment results proved that in the BB model, the appli-
cation’s best bid price in the first round of bargain could
raise payoffs for both players effectively. It also encouraged
malicious applications to send real bids, which successfully
solved the problem of malicious applications providing
fake bids. In the TB model, by setting a smaller ratio
of test users, the ratio of malicious applications provid-
ing true content increased remarkably, which managed
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TABLE 1. Two-round bargain method.

to prevent malicious applications from providing false
content.

II. BARGAIN-BAYESIAN GAME MODEL (BB)
We build an interaction model between applications (mali-
cious and normal) and regular users as Bargain-bayesian
game model to solve the problem of malicious applications
providing fake bids.

A. TWO-ROUND BARGAIN METHOD
To prevent malicious applications from providing fake bids,
we use the Two-round bargain to determine the transaction
price for two players and define σ as the discount coefficient
of each bargain. Thus, themore rounds of the bargain between
two players, the more the loss of payoff. The detailed bargain
process can be described as follows:

In the first round, the application imakes its first bid of P0a,
meanwhile, the payoff of the application i and the user j are
P0a−Ca andP

a
u−P

0
a, whereP

i
a, i = 0, 1, 2, 3 is the bid of each

round bargain, Ca is the application i’s the cost of providing
content, Pau is the user’s payoff of reaching agreement in the
bargain. If the user j accepts it, and then the bargain ends with
making a deal; otherwise, the user j makes its first bid of
P1a, and then the payoff of two players are σ (P1a − Ca) and
σ (Pau − P

1
a). The bargain ends if the application i accepts P

1
a;

otherwise, it enters the second round.
In the second round, the user j makes its second bid of P2a,

the payoff of two players are σ 2(P2a − Ca) and σ
2(Pau − P

2
a).

If the application i accepts P2a, the bargain ends; otherwise,
the user j makes its second bid price of P3a, the application
i must accept it, and then the bargain ends. The Two-round
bargain method is shown in Table 1.

We set Pau > Ca,
Ca
Pau
< σ < 1− Ca

Pau
, and use the backward

induction to deduce the application i’s optimal bid in the first
round of bargain.

In the second round, since the application i must accept
the user j’s second bid of P3a, the user j must send the bid
of 0, e.i., P3a= 0 in its second bid. we define P3a as the user i’s
general bid and P3a 6= 0. Actually, two players are reluctant to
send the second bid due to the decay of payoff. So, the user j
accepts the bid as long as the application i’s second bid makes
the user j’s payoff is not less than its payoff in the second bid,
that is, the application i’s second bid should be satisfying (1):

σ 2(Pau − P
2
a) ≥ σ

3(Pau − P
3
a) (1)

Themaximum of P2a satisfying (1) is P
2
a= (1−σ )Pau+σP

3
a.

Then, the payoff of the application i and users j are:

σ 2(P2a − Ca) = σ
2((1− σ )Pau + σP

3
a − Ca) (2)

σ 2(Pau − P
2
a) = σ

3(Pau − P
3
a) (3)

From (2), at this time, the application i’s payoff is higher
than that in the user j’s second bid. From (3), the user j’s
payoff is equal to that in its second bid. Therefore, the bargain
ends if P2a= (1−σ )Pau+σP

3
a in the application i’s second bid.

So similarly, we get the bid of the application i and the user
j in the first round. The minimum of first bid P1a for user j is
P1a= (σ−σ 2)Pau+σ

2P3a+(1−σ )Ca, meanwhile, the payoff of
the application i and user j are σ (P1a−Ca) = σ ((σ −σ

2)Pau+
σ 2P3a − σCa) and σ (P

a
u − P1a) = σ (Pau − (σ − σ 2)Pau −

σ 2P3a − (1 − σ )Ca). The maximum of first bid P0a for the
application i is P0a= (1+σ 2

−σ 3
−σ )Pau+σ

3P3a+(σ−σ
2)Ca,

meanwhile, the payoff of the application i and user j are
P0a−Ca= (1+σ 2

−σ 3
−σ )Pau+σ

3P3a+(σ −σ
2
− 1)Ca and

Pau−P
0
a = Pau− (1+σ 2

− σ 3
− σ )Pau− σ

3P3a− (σ − σ 2)Ca.
Therefore, we obtain the application’s best bid in the first
round of bargain, and thus solve the problem of malicious
applications sending fake bids.

B. BARGAIN-BAYESIAN GAME ANALYSIS
In actual operations, there are two types of applications,
i.e., malicious applications and normal applications, and one
type of users, i.e., regular users. Malicious application has
two strategies: False strategy, i.e., F, means that malicious
applications are providing false content to users; True strat-
egy, i.e., T, means that malicious applications are providing
true content to users. Normal applications only have one true
strategy, i.e., T. Regular users have two strategies: Accept
strategy, i.e., A, which refers to regular users accepting the
content provided by the application; Refuse strategy, i.e., R
which refers to regular users not accepting content provided
by applications. Regular users can make their judgments
based on their experience to decide whether the content is
true or not. We define notations in the payoff matrix are as
follows:
Cm
a : the malicious application’s cost of playing F;

Cn
a : the malicious application’s cost of playing T;

P0a: the application’s payoff after the successful bar-
gain, it also refers to the user’s transaction cost, i.e.,
P0a= (1+σ 2

− σ 3
− σ )Pau + σ

3P3a+(σ − σ
2)Ca;

Pau: the regular user’s payoff after the successful bargain
Pe: the malicious application’s abnormal payoff by

deceiving users. We assume Pe > Cm
a > Cn

a ; otherwise,
the malicious application does not have sufficient motivation
to provide false content to deveive the user, and the regular
user does not have sufficient motivation to distinguish the
authenticity of the content;
α: the probability of the regular user identifying false

content, where α ∈ [0, 1].
The payoff matrix of malicious applications and regular

users when they play different strategies, as shown in Table 2.
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TABLE 2. The payoff matrix of malicious applications and regular users.

TABLE 3. The payoff matrix of normal applications and regular users.

FIGURE 1. The extensive form of bargain-bayesian game.

When malicious applications play T, and regular users play A
only when making the right decision. The malicious applica-
tion with the probability of α gets normal payoff P0a at the
cost of Cn

a ; meanwhile, the regular user with the probability
of α obtains the normal payoff Pau at the cost P0a. When the
malicious application plays F, and the regular user plays A
when they misjudge the situation. The malicious application
can successfully deceie users with the probability of (1− α),
gets payoff P0a and Pe at the cost of Cm

a for providing false
content. Meanwhile, the regular user with the probability of
(1 − α) pays extra losses Pe at the cost P0a. This theory also
applies to the payoff of regular users play R and malicious
application play T and F. The payoff matrix of normal appli-
cations and regular users, as shown in Table 3, which follows
the same theory as Table 2.

C. BARGAIN-BAYESIAN NASH EQUILIBRIUM ANALYSIS
Based on the type of application i and strategies of two
players, we can derive an extensive form of Bargain-bayesian
game, as shown in Fig. 1. On top of the tree, the root node N
represents ‘‘Nature’’. p is the probability that the application’s
type selected by ‘‘Nature’’ is malicious, where p ∈ [0, 1].
The first layer shows the application’s type, the second layer
describes two types of application’s strategy, the third layer
represents the regular user’s strategy, and the tuple of each
branch terminal refers to payoffs of both players.

The application i is to play F if it is malicious, the appli-
cation i is to play T if it is normal. From Fig.1, the expected

payoff of the regular user j playing R and playing A are:

EµRu = pαPe

EµAu = p(α − 1)(P0a + Pe)+(1− p)α(P
a
u − P

0
a) (4)

From (4), We can derive that if 0 < α < 1
2 , P

0
a >

Pe+αPau
2α−1

and α(P0a−P
a
u)

(2α−1)P0a−Pe−αPau
< p < 1; or, 1

2 < α < 1, P0a <

Pe+αPau
2α−1 , and α(P0a−P

a
u)

(2α−1)P0a−Pe−αPau
< p < 1, that is, EµRu > EµAu ,

which means the regular user j’s optimal strategy is to play R.
Meanwhile, the expected payoff of the malicious application
i playing F and playing T are:

EµFa = −α(C
m
a + Pe)

EµTa = (α − 1)Cn
a (5)

From (5), we can derive that if 0 < α <
Cna

Cna+Cma +Pe
,

then, EµFa > EµTa which means the malicious application

j’s optimal strategy is to play F. And since Cna
Cna+Cma +Pe

< 1
2 ,

the strategy profile ((Malicious application F, Normal appli-
cation T), R, p) is a Bargain-bayesian Nash Equilibrium if
0 < α <

Cna
Cna+Cma +Pe

, P0a >
Pe+αPau
2α−1 , and α(P0a−P

a
u)

(2α−1)P0a−Pe−αPau
<

p < 1. However, if Cna
Cna+Cma +Pe

< α < 1, the malicious
application j’s optimal strategy is to play T, it will shift his
strategy is to play T, therefore, the strategy profile ((Malicious
application F, Normal application T), R, p) is not a Bargain-
bayesian Nash Equilibrium.

So similar, we can derive that if the strategy profile ((Mali-
cious application F, Normal application T), A, p) is a Bargain-
bayesian Nash Equilibrium, there are three cases: i) 12 <

α <
P0a+Pe−C

m
a

2P0a+Pe−Cma −Cna
, P0a <

Pe+αPau
2α−1 , and 0 < p <

α(P0a−P
a
u)

(2α−1)P0a−Pe−αPau
; ii) 1

2 < α <
P0a+Pe−C

m
a

2P0a+Pe−Cma −Cna
, P0a >

Pe+αPau
2α−1 ,

and 0 < p < 1; iii) 0 < α < 1
2 , P

0
a >

Pe+αPau
2α−1 and

0 < p < α(P0a−P
a
u)

(2α−1)P0a−Pe−αPau
. The malicious application i is to

play T if it is malicious, the normal application i is to play T
if it is normal, the strategy profile ((Malicious application T,
Normal application T), A, p) is a Bargain-bayesian Nash
Equilibrium if P0a+Pe−C

m
a

2P0a+Pe−Cma −Cna
< α < 1 and 0 < p < 1.

To sum up, it is possible to prevent malicious applications
from sending fake bids by using Two-round bargain, and
encourage malicious applications to play T by setting the
regular user’s detection rate α ∈ ( P0a+Pe−C

m
a

2P0a+Pe−Cma −Cna
, 1]. How-

ever, in actual operations, the regular user’s detection rate is
usually bellowed P0a+Pe−C

m
a

2P0a+Pe−Cma −Cna
, and the regular user only

distinguishes the authenticity of the content that provided
by the malicious application based on historical experience,
which is not accurate enough. Thus, we customize a group
of test users to solve the problem of malicious applications
providing false content.

III. TWO-SIDE BAYESIAN GAME MODEL (TB)
We build an interaction model between applications (i.e.,
malicious and normal) and users (i.e., test and regular) as
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TABLE 4. The payoff matrix of malicious applications and test users.

TABLE 5. The payoff matrix of normal applications and test users.

Two-side Bayesian game model based on sliding adaptive
logistic regression method to solve the problem of malicious
applications providing false content.

A. TWO-SIDE BAYESIAN GAME ANALYSIS
Since we customize a group of test users, there are two
types of applications and users in the game. The definition of
applications and regular users are the same as in Section II,
the test user is only to play A and it can simultaneously
send the same content request to multiple applications and
compare the receivedmultiple pieces of content to distinguish
the authenticity of the content. Thus, test users have higher
accuracy in distinguishing the authenticity of the content.

The payoff matrix of the malicious application and the
regular user, as well as the normal application and the reg-
ular user, as shown in Table 2 and Table 3. Table 4 and
Table 5 show the payoff matrix of applications (i.e., malicious
and normal) and test uses. We define new notations are as
follows:
u: the probability that the user is test, that is, the test user’s

ratio in total users, where u ∈ [0, 1];
Cu: the test user’s cost of distinguishing the authenticity of

the content;
Peu: the test user’s payoff when it identifies a malicious

application, we assume Peu ≥ Cu; otherwise, the regular user
does not have sufficient motivation to shift to test user for
distinguishing the authenticity of the content.

Since the test user has only one strategy (i.e., A), we need
only to analyze the payoff of the test user plays A, as shown
in Table 4. If the malicious application plays F and the test
user plays A. The malicious application gets the payoff P0a at
the cost Cm

a and Peu; the test user gains the payoff Peu at the
cost Cu and P0a. If the malicious application plays T and the
test user plays A. The malicious application obtains payoff
P0a at the cost C

n
a ; the test user gains the payoff P

a
u at the cost

Cu and P0a. The payoff analysis of the normal application and
the test user follow the same theory as Table 4.

B. PREDICTING THE RATIO OF MALICIOUS APPLICATIONS
It is necessary to determine the malicious application’s
ratio in the system before analyzing the Two-side Bayesian
Nash Equilibrium. However, which is extremely difficult in
real operations. For this, we define the probability that the

malicious application plays F as the malicious application’s
ratio, and the probability calculation belongs to the binary
classification problem which is suitable for solving by a
logical regression method. In this article, we use the previous
two payoff of malicious applications in iterations to construct
a sliding adaptive logistic regression method for predicting
the probability that malicious application playing F. To the
best of our knowledge, the larger size of training data set,
the higher accuracy of the prediction, which means that the
data set needs to cover large-scale historical data of all the
time series. To solve this problem, Algorithm 1 gives the spe-
cific implementation method of the adaptive prediction
window.

Algorithm 1 Sliding Window Size
function WindowSize()
WindowSize=1000
F1=2*precision*recall/(precision+recall)
if F1>0.9 then
WindowSize=WindowSize-50
else if F1<0.8 then
WindowSize=WindowSize+50
else
WindowSize=WindowSize
end if
return WindowSize
end function

If the accuracy of the method is high, decreasing the size
of the prediction window; otherwise, increasing the size of
the prediction window. For the data set length t in iterations,
if t ≤ Windowsize, the new data goes directly to the sliding
window; otherwise, we remove the leftmost unit data of the
sliding window, and the new data enters the sliding window
to form a new sliding window data set.

C. TWO-SIDE BAYESIAN GAME MODEL BASED ON
SLIDING ADAPTIVE LOGISTIC REGRESSION METHOD
NASH EQUILIBRIUM ANALYSIS
Based on the type and strategy of applications and users,
we derive an extensive form of Two-side Bayesian game
model based on sliding adaptive logistic regression method,
as shown in Fig. 2.

The application i is to play F if it is malicious, the applica-
tion i is to play T if it is normal, the user j is to play A if it is
test. From Fig. 2, the expected payoff of regular users playing
R and playing A are:

EµRu = pαPe

EµAu = p(α − 1)(P0a + Pe)+ (1− p)α(Pau − P
0
a) (6)

If EµRu > EµAu , the expected payoff of the malicious applica-
tion i playing F and playing T are:

EµFa = u(P0a − C
m
a − P

e
u)− (1− u)α(Cm

a + Pe)

EµTa = u(P0a − C
n
a )+ (1− u)(α − 1)Cn

a (7)
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FIGURE 2. The extensive form of two-side Bayesian game model based
on sliding adaptive logistic regression method.

From (7), If Cma +P
e
u

Cma +Pe+Cna
< α < 1, and

αPe+αCna+αC
m
a −C

n
a

(α−1)Cma +αPe−Peu+αCna
< u < 1, then, EµFa > EµTa . which

means the malicious application’s optimal strategy is to play
F. From Section II, if αPe+αCna+αC

m
a −C

n
a

(α−1)Cma +αPe−Peu+αCna
< u < 1,

the strategy profile ((Malicious application F, Normal appli-
cation T),(Regular user R, Test user A), p, u) is a Two-side
Bayesian Nash equilibrium when the regular user j’s optimal
strategy is to play R. However, if Cma +P

e
u

Cma +Pe+Cna
< α < 1 and

0 < u <
αPe+αCna+αC

m
a −C

n
a

(α−1)Cma +αPe−Peu+αCna
; or, 0 < α <

Cma +P
e
u

Cma +Pe+Cna
and 0 < u < 1, that is, EµFa < EµTa which means
the malicious application i’s optimal strategy is to play T,
the malicious application i will shift his strategy to play
T, therefore, the strategy profile ((Malicious application F,
Normal application T),(Regular user R, Test user A), p, u)
can not be a Two-side Bayesian Nash equilibrium.

So similar, we can derive that if 0 < α <
P0a+Pe−C

m
a

2P0a+Pe−Cma −Cna

and 0 < u < (2α−1)P0a+(α−1)Pe+(1−α)C
m
a −αC

n
a

(2α−1)P0a+(α−1)Pe+(1−α)Cna−αCma −Peu
, the strat-

egy profile ((Malicious application F, Normal applica-
tion T),(Regular user A, Test user A), p, u) is a Two-side
Bayesian Nash equilibrium when the regular user i’s opti-
mal strategy is to play A. The malicious application i is
to play T if it is malicious, the normal application i is to
play T if it is normal, the user j is to play A if it is test.
We can derive that if 0 < α <

P0a+Pe−C
m
a

2P0a+Pe−Cma −Cna
, 0 <

p < 1 and (2α−1)P0a+(α−1)Pe+(1−α)C
m
a −αC

n
a

(2α−1)P0a+(α−1)Pe+(1−α)Cna−αCma −Peu
< u < 1;

or, P0a+Pe−C
m
a

2P0a+Pe−Cma −Cna
< α < 1, 0 < p < 1 and 0 <

u < 1. the strategy profile ((Malicious application T, Normal
application T),(Regular user R, Test user A), p, u) is the Two-
side Bayesian Nash equilibrium.

To sum up, we can set the test user’s ratio
u ∈ [ (2α−1)P0a+(α−1)Pe+(1−α)C

m
a −αC

n
a

(2α−1)P0a+(α−1)Pe+(1−α)Cna−αCma −Peu
, 1] if 0 < α <

P0a+Pe−C
m
a

2P0a+Pe−Cma −Cna
; or set the test user’s ratio u ∈ [0, 1] if

P0a+Pe−C
m
a

2P0a+Pe−Cma −Cna
< α < 1 to encourage the malicious

application to play T.

IV. SIMULATION RESULTS
A. EXPERIMENT SETTING
This article used an integrated development tool ‘‘anaconda’’
to do the simulation verification for our proposed scheme.
The process can be divided into two stages:

TABLE 6. Experimental parameters.

TABLE 7. Comparison of the payoff in the two-round bargain method and
the application’s best bid.

First, we compared and analyzed payoff difference value
of applications and users in the Two-round bargain method
and the application’s best bid which deduced by backward
induction, the expected payoff of malicious applications and
regular users under the circumstances of different contrast
vectors, such as malicious application’s ratio, the regular
user’s detection rate, the transaction achievement rate in three
schemes, namely, BB, NB and TS.

Next, we checked the effectiveness of the Two-side
Bayesian game model based on sliding adaptive logistic
regression method’s capability in solving the problem of
malicious applications deceiving users. We compared and
analyzed values of prediction by using sliding adaptive logis-
tic regression method and logistic regression method, three
influencing factors’ influence on the expected payoff of mali-
cious applications and regular users, namely, the malicious
application’s ratio, the test user’s ratio, and the regular user’s
detection ratio, the probability of malicious applications play-
ing T in the following four schemes, TB, PD, HZD [27]
and HIS [28]. Experimental parameters setting were shown
in Table 6.

B. VERIFICATION OF FAKE BID SOLUTION
1) PAYOFF COMPARISON OF TWO-ROUND BARGAIN AND
APPLICATION’S BEST BID

In Table 7, we separately calculated payoffs of applica-
tions and users under the condition of the Two-round bargain
method and the application’s best bid.

From the payoff of the application’s best bid in Table 7,
we can see that as σ increases, payoffs of applications
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FIGURE 3. Changing trend of transaction achievement rate.

decreases, and payoffs of users increases. From the pay-
off difference of the Two-round bargain and application’s
best bid, we can see that payoffs of both players in the
application’s best bid are higher than that in the Two-round
bargain method. And the increase in applications’ payoff is
more noticeable. Therefore, we can encourage applications
to adopt the best bid strategy in the first round of bargain.
By using this scheme, we can successfully solve the issue of
malicious applications providing fake bids.

2) COMPARISON OF THE TRANSACTION
ACHIEVEMENT RATE

Fig. 3 describes the malicious application’s ratio influence
on the transaction achievement rate between applications and
users. BB scheme and TS scheme stay relatively stable when
themalicious application’s ratio increases, but theBB scheme
is more stable than the TS scheme. The lowest value of
BB’s transaction achievement rate is 0.76, and its value floats
between 0.76 to 0.8. But the TS scheme has a wider floating
range, and the lowest value of the transaction achievement
rate is 0.72. The reason is that this articled used the method
of the Two-round bargain and the application’s best bid in
the first round of bargain to determine the transaction price.
Therefore, even if the malicious application’s ratio increases,
the transaction achievement rate would not change to a large
degree. Comparing the NB scheme with the BB scheme and
the TS scheme, the NB scheme does not prevent malicious
applications from giving fake bids and thus causes the failure
of transaction and low transaction achievement rate. By using
our proposed scheme, the issue of malicious applications
sending fake bids can be successfully solved.

3) THE PAYOFF ANALYSIS OF BARGAIN-BAYESIAN GAME
Fig. 4(a)-4(d) describe the trend of expected payoff of

malicious applications and regular users when the regular
user’s detection rate α equals to 0.3 and 0.5.
In Fig. 4(a), when themalicious application’s ratio p equals

to 0.3, 0.5, and 0.8, the payoff of malicious applications
increases first, it then goes stable, which is because before
the game gets stable, themalicious application and the regular
user adjust their strategies to increase their payoffs. And the
regular user’s adjusting strategy produces a favorable effect
on malicious applications’ expected payoff. After adjusting
strategies for several times, the game goes stable. When p
equals to 0.7, the malicious application’s payoff drops from
0.2 to -0.24 in the second interaction, which is because of the

FIGURE 4. The expected payoff comparison.

regular user adjusted strategy in the second round of inter-
action causes the payoff of malicious applications dropping
rapidly. However, in Fig. 4(b), although regular users adjusted
its strategy, its payoff did not change, which is because the
regular user’s way of adjusting strategy is: if adjusting strat-
egy does not lower its payoff, then it will adjust its strategy.
Otherwise, it will continue to use the strategy that is used
in the last round of interaction. When p equals to 0.5 and
0.8, the regular user’s payoff decreases rapidly. The reasons
for malicious applications and regular users’ expected payoff
changing in Fig. 4(c)-Fig. 4(d), Fig. 5(a)-Fig. 5(d) are the
same as the above theory.

When the game is stable, by comparing Fig. 4(a)-4(b),
we can see that when the regular user’s detection ratio α
is fixed, as p increases, the expected payoff of malicious
applications increases, and the expected payoff of regular
users decreases. Comparing Fig. 4(a) and Fig. 4(c), when
the malicious application’s ratio p is fixed, as α increases,
the expected payoff of malicious applications and users
increase, and the payoff of regular users increases more
rapidly. To verify this rule, this article assume that p = 0.3
and p = 0.5, as shown in Fig. 5(a)-5(d).

Comparing Fig. 5(a) and 5(c), Fig. 5(b) and 5(d), when
the game goes stable, as p increases, the payoff of malicious
applications and users increase to a certain degree. As α
increases, payoffs of both players increase and the regular
user’s payoff rise more rapidly. Therefore, if regular users
want to increase payoff, they should increase their detection
rates to prohibit the malicious application’s ratio from grow-
ing. Besides, if regular users have a higher detection rate,
the issue ofmalicious applications providing false content can
be solved more effectively.

C. VERIFICATION OF FALSE CONTENT SOLUTION
1) SLIDING ADAPTIVE LOGISTIC REGRESSION METHOD
Table 8 describes the predicted probability of malicious appli-
cations playing F (i.e., the malicious application provides
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FIGURE 5. The expected payoff comparison.

false content to users) in two different logistic regression
methods. Comparing the predicted probability of twomodels,
the accuracy of predicting malicious applications to play F
in our sliding adaptive logistic regression model is more
high. For example, if f = 0.14508, s = 0.15632, and
malicious applications play F, the predicted probability of
sliding adaptive logistic regression method is 0.9912, and the
predicted probability of logistic regression is 0.9873. When
f = 0.17502, s = 0.14655, and malicious applications play
T (i.e., the malicious application provides true content to
users), the predicted probability of sliding adaptive logistic
regression method is 0.1068, and the predicted probability
of logistic regression is 0.1460. Comparing with the logis-
tic regression method, when malicious application plays F,
the predicted probability in this article is higher, and when
malicious application plays T, the predicted probability in
this article is lower. To sum up, the sliding adaptive logistic
regressionmethod in this article is better than the othermodel,
and the predicted probability of malicious applications play-
ing F is more accurate.

2) THE PAYOFF ANALYSIS OF TWO-SIDE BAYESIAN GAME
Fig. 6-Fig. 8 separately described three factors’ relations: the
regular user’s detection rate α, the test user’s ratio p, and the
malicious application’s ratio u. When two factors’ value are
fixed, how will the third factor affect the expected payoff of
malicious applications and regular users.

From Fig. 6(a)-6(b), we can see that expected payoffs
of malicious applications and regular users both increase
at the beginning and then go stable. In the first sev-
eral rounds of interactions, expected payoffs of malicious
applications and regular users keep growing because their
adjusting strategies produce positive effects on two play-
ers’ payoffs. After their adjusting strategies several times,
the game goes stable and their payoff do not change from
then. Comparing Fig. 6(a)-6(b), as u increases, payoffs of two

TABLE 8. Comparison of the predicted probability.

FIGURE 6. The changing trend of expected payoff when α = 0.3, p = 0.3.

players increased. Therefore, when the values of α and p are
fixed, by adjusting u we can successfully achieve the goal of
increasing their payoffs.

In Fig. 7(a), if α equals to 0.3 and 0.5, the trend of expected
payoff of malicious applications is the same. If α equals
to 0.7 and 0.8, the trend of expected payoff of malicious
applications is basically the same as well. In Fig. 7(b), before
the game goes stable, the expected payoff of regular users
have been increasing and in the second round of interaction,
four expected payoff curves cross at the same point. This is
because adjusting regular users’ detection rate α does not
effectively influence both players’ payoff matrix, but only
slightly changes its own expected payoff. After the game goes
stable, by comparing Fig. 7(a)-7(b), when the values of p
and u are fixed, only by adjusting the value of α can change
regular users’ expected payoffs.
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FIGURE 7. The changing trend of expected payoff when α = 0.3, p = 0.3.

FIGURE 8. The changing trend of expected payoff when p = 0.3, u = 0.3.

In Fig. 8(a), when p = 0.7, the expected payoff of
malicious applications drops rapidly in the second round of
interactions. In Fig. 8(b), the payoff of regular users increases.
This is because regular users adjust their own strategy, which
helps to increase their own payoff and lowers the payoff of
malicious applications. By comparing Fig. 8(a)-8(b), after the
game goes stable, when the value of α and u are fixed, as p
increases, payoffs of malicious applications increases and
regular users’ payoffs decreases. Therefore, if users want to
increase their own payoff, they should prevent the malicious
application’s ratio from growing.

3) PROBABILITY COMPARISON OF MALICIOUS
APPLICATIONS PLAYING T
Fig. 9 analyzes the probability of malicious applications
playing T in two game models, i.e., Bargain-bayesian game
model and Two-side Bayesian game based on sliding adaptive
logistic regression model.

Fig. 9(a) describes the relation between regular user’s
detection rate α, the malicious application’s ratio p and the
probability of malicious applications playing T in the BB
model. When α = 0.2, malicious applications start to play
T, and the probability of playing T increases as increases α.
When α ∈ [0.4, 0.7], under the influence of p, the probability
of malicious applications playing T floats around 0.5. When
α = 0.8, the probability of malicious applications playing
T increases again until the probability of playing T reaches
0.9. Therefore, we conclude that by adjusting regular users’
detection rates, we can prevent malicious applications from
providing false content to deceive users to a certain degree.

Fig. 9(b) describes the influence of the malicious applica-
tion’s ratio p and the test users’ ratio u on malicious applica-
tions playing T in the TB model. When p < 0.2, even if the
test user’s ratio is 0, the probability of malicious applications
playing T can reach 0.9, much better than its performance

FIGURE 9. Comparison probability of malicious applications playing T.

FIGURE 10. The probability comparison of playing T.

when α < 0.8 in Fig. 9(a). However, when p ∈ [0.2, 0.5),
the probability of malicious applications playing T is not
stable, this is because by adjusting ratios of test users
and malicious applications, the payoff matrix changes as
well as the malicious applications’ best strategy. And when
p ∈ [0.5, 1), the probability of malicious applications playing
T increases as u increases. Comparing with α ∈ (0.8, 1]’s
effects in Fig. 9(a), this model has weaker effects than the
BB model when u < 0.6 and p > 0.5. But in real operation,
α rarely reaches 0.8 and the minimum probability of the
malicious application playing T is 0.4 in the TB model.
As u increases, the TB model proves to be more effective.
Therefore, we conclude that TB model is better than the BB
model for encouraging malicious applications playing T.

Fig. 10 shows the changing trend of probability that the
malicious application plays T in four different schemes, e.g.,
PD, HSI , HZD, and TB, when u = 0.6. As the PD scheme
does not play any method in the inhibition of the malicious
application playing F, the probability that the malicious appli-
cation plays T is less than 0.5. In theHSI scheme, the proba-
bility that the malicious application plays T keeps increasing
in the first 13 iterations and then drops down after reaching
the peak value. Its probability that the malicious application
plays T is a bit lower than that of the HZD scheme and TB
scheme. In HZD scheme, the probability that the malicious
application plays T fluctuates between 0.85-0.96. Comparing
the HSI scheme and the HZD scheme, the probability that
the malicious application plays T is more stable and keeps at
a high level in TB scheme. Though the effect of TB scheme
is lower than theHZD scheme within the first 8 iterations, its
probability keeps growing after the 10th iterations and stays
stable, and its value is always greater than 0.9 in each iter-
ation. In conclusion, TB model can increase the probability
that the malicious application plays T, and to further solve
the problem of the malicious application providing the false
content problem.
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V. CONCLUSION
In the multimedia communication system, to solve the prob-
lem of user privacy leakage caused by malicious applications
deceiving users is inevitable to promote efficient applications.
We proposed an Anti-fraud scheme based on an improved
Bayesian game model to solve this problem effectively. The
Bargain-bayesian game model can improve the transaction
achievement rate and payoffs of both players to address the
problem of malicious applications sending fake bids. The
Two-side Bayesian game model based on a sliding adaptive
logistic regress method can adjust the test user’s ratio to
inhibit the malicious application to provide false content for
deceiving users. Detailed simulation experiments verify the
effectiveness of proposed proposals.

In future research, we wish to improve our scheme by
designing new machine learning model to predict the mali-
cious application’s ratio. And we will continue to focus on
the study of multimedia information security issues and apply
game theory to solve more privacy protection problems.
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