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ABSTRACT An Event, containing a sequence of subevents, describes a typical thing that happens at a
specific time and place. Predicting next probable subevents based on knowledge acquired from large-scale
news documents are very important for many real-world applications, such as disaster warning etc. In this
paper, we present a novel hierarchical attention based end-to-end model for future (unknown) subevent
prediction using large-scale historical events. Our model automatically produces a short text which describes
a possible future subevent after consuming the texts describing previous subevents. To boost the model’s
understanding towards subevent sequence, we design a hierarchical LSTMmodel to compress the knowledge
in both the word sequence for a subevent and the subevent sequence for an event. In addition, topic
information has been exploited to make context-aware prediction for future subevents. To further consider
which subevents and words play a critical role in prediction, we propose a hierarchical attention mechanism
to stress on the important previous subevents as well as the the critical words within them. Experimental
results on a real-world dataset demonstrate the superiority of our model for future subevent prediction over
state-of-the-art methods.

INDEX TERMS Future subevent prediction, hierarchical attentions, subevent sequence.

I. INTRODUCTION
An Event, which describes a specific thing happened at a
specific time and place, always consists of a sequence of
subevents recording how things developed in detail. Over
years, news portals have collected tens of thousands of news
articles, and organized them as events. Thus, rich historical
data are readily available for us to study various events. The
past events do not repeat, but often rhyme. A variety of events
typically have similar sequential progressing pattern.

In this paper, we argue that we can learn some common
sequential subevent patterns from large-scale historical data.
In particular, given a sequence of a few subevents, we aim
to automatically predict the future subevent by capturing
the sequential transition patterns within an event. The large-
scale historical events of various topics help us to learn the
sequential transition patterns. As illustrated in Figure 1, tak-
ing the event ‘‘Egyptian revolution of 2011’’ as an example,
given its sequential subevents described by the headlines
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FIGURE 1. An example of future subevent prediction. Our model takes
the subevents described by news headlines (after removing stopwords)
as input and generates a word sequence which describes the next
potential subevent as output.

of news documents,1 ‘‘Conflict occurred again in Egypt on
22nd, and people plan to hold a million-people march’’, and
‘‘Egypt’s military will deliver a speech to respond to the
conflict between demonstrators and police’’, our model gen-
erates ‘‘protests’’, ‘‘burst’’, ‘‘chaos’’, ‘‘cause’’, ‘‘deaths’’,
‘‘injuries’’ word by word, which constitutes a possible future
subevent. It matches well with a later news report ‘‘The
Egyptian protest has caused 32 people dead and more than

1Note that the headlines and model outputs are translated from Chinese
into English.
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2000 people injured’’. Thus, our model is able to predict a
future subevent which has not yet happened.

Obviously, it is quite pivotal for governments, companies
and news agencies to predict future subevents in advance.
Governments can take proactive policy to avoid damages and
deaths with the help of predicted subevents. For instance,
after an earthquake happens, forecast of chaos could guide
the governments to take proactive measures such as arranging
more policemen, rather than other reactive actions. In the
same way, companies can make strategic decision to better
control financial crisis if they know the potential upcoming
outcomes beforehand. In addition, news agencies can closely
follow those imminent topics of public concern. Thus, future
subevent prediction has attracted considerable attention over
the past decades.

However, future subevent prediction suffers from the fol-
lowing drawbacks. First, how can we represent an event?
Existing works require domain knowledge to extract hand-
crafted features for event representation, which is not able to
be generalized to other tasks. Events typically consist of dual-
level sequential structures: i) word sequence which describes
a specific subevent, and ii) subevent sequence illustrating the
progress of an event. Therefore, it is a challenging taksk to
capture the two-level dependencies in event representation.
Second, the latent topic of a future subevent is supposed to
be closely related to the topics of previous subevents. Thus
topic information is supposed to contribute to next subevent
prediction. How can we jointly model both the semantic
meanings and topic information i.e. context-aware features
within an event? Last, different subevents and words may
have different importance for future subevent prediction, how
can we pay attention to the previous subevents and words
which play a key role in predicting the future subevent?

Although a variety of works have been done on event detec-
tion and burst event detection based on social media [27],
[34], [36] and search engines [9], only a few works focused
on predicting future events. These existing works aimed at
target (known) event prediction [25], differently, we work
on unknown non-targeted event prediction. Along this line
of research, Radinsky et al. [24] extracted the causality rela-
tions between two events and generalize them by ontology
for predicting events. Recently, with the wide success of
neural networks, Granroth-Wilding and Clark [10] extracted
event chains [3] from texts and developed a compositional
neural network for learning the coherence score of two
events. Some works learned a probabilistic language model
of event sequences for prediction [18]. Pichotta and Mooney
[23] developed a statistical script learning model based on
Long Short-Term Memory (LSTM). All the work require
hand-crafted features for event representation. Besides, they
can only predict future events from given candidate events
(choosing from the training set). Hu et al. [15] proposed a
generative method to automatically predict the next subevent
of an event. In this paper, we propose a hierarchical attention
based generative hierarchical LSTM model to predict future
subevents.

Given previous subevents represented by news headlines,
our model automatically outputs a short text which describes
the potential future subevent. The model first reads the words
describing a subevent one by one and thus converts a subevent
into an embedding. Then, it encodes the subevent sequence
by taking the vector representations of subevents as input.
To enhance the semantic information for prediction, we also
incorporate contextual topic features of subevents. Addition-
ally, we observe that different previous subevents have quite
different influence or impact for future subevent prediction.
For example, as the case shown in Fig. 1, the first subevent
‘‘Conflict occurred again in Egypt on 22nd, and people plan
to hold a million-people march’’ is critical in predicting the
future subevent ‘‘The Egyptian protest has caused 32 people
dead and more than 2000 people injured’’, while the second
subevent ‘‘Egypt’s military will deliver a speech to respond to
the conflict between demonstrators and police’’ is less impor-
tant. If we can pay more attention to the first subevent and the
words such as ‘‘conflict’’, ‘‘million-people’’, and ‘‘march’’,
we are likely to get more accurate prediction. In this work,
to consider which part of the input is most responsible for
the current subevent decoding state, we present a hierarchical
attention basedmodel CH-LSTM-Att by incorporating a hier-
archical attention mechanism. The model links the current
decoding state with all the input subevents and words.

Consequently, our main contributions in this paper can be
summarized as follows.
1) We propose to predict future potential subevent by auto-

matically generating a short text which describes it.
2) We present a hierarchical attention based neural model

CH-LSTM-Att, which not only captures the two-level
sequential structures of subevent sequences, but also
considers different importance of previous subevents
and words within the subevents for future subevent pre-
diction.

3) Experimental results on a real world dataset demonstrate
that the model achieves substantial improvements com-
pared with the state-of-the-art methods in the task of
future subevent prediction.

The remainder of this paper is organized as follows.
In Section II, we formulate the future subevent pre-
diction problem. Section III details our proposed meth-
ods. Section IV evaluates the performance of our model.
In Section V, we review the related work. At last, conclusion
and future work are presented in Section VI.

II. PROBLEM DEFINITION
In this section, we define some concepts and the problem of
future subevent prediction.

A. EVENT
An event is a particular thing which happened at a spe-
cific time and place. It is typically described by a sequence
of news articles. Formally, we consider an event E =

{d1, . . . , dM } as a sequence of M documents, where each
document dm describes a subevent sm of the event. Therefore,
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we can also consider an event as a sequence of subevents
E = {s1, . . . , sM }.
For instance, ‘‘2010 Chile earthquake’’ is an event,

which consists of a sequence of news documents describing
subevents such as aftershocks, damages and casualties, chaos
and disorder, food scarcity, and tsunami.

B. SUBEVENT
Each subevent sm is denoted by its description text (e.g.,
a news document or the title of a news document). The
description text contains a sequence of words, i.e. sm =
(wm,1, . . . ,wm,Nm ), where wm,n ∈ V denotes the n-th word
in the subevent sm, and V denotes the vocabulary.
For example, the news document titled ‘‘Tsunami After

Major Earthquake Hits Chile’’ describes a subevent (the
happening of tsunami) of the event ‘‘2010 Chile earthquake’’.
For simplicity, we can use only the title of the document as
the text description of the subevent as it summarizes the key
content and main idea of the document.

So far tens of thousands of events have happened and the
corresponding reported news documents have been recorded
as the events progress. Events of the same (or similar) topic
have common sequential transition patterns. For example,
in both earthquake events and flood events, there are sequen-
tial topics rescue effort, food scarcity, chaos and so on. With
the large scale historical data, we can automatically predict
the future subevent given a sequence of observed subevents,
which is accomplished by capturing the sequential transition
patterns underlying the large-scale historical events. For-
mally, we define the problem of future subevent prediction
as follows.

C. FUTURE SUBEVENT PREDICTION
Given historical events E , whereE = {d1, . . . , dM }, each
news document dm can be considered as a text description
of a subevent sm, we aim to discover the underlying sequen-
tial transition pattern among subevents. Specifically, given a
sequence of observed subevents s1, . . . , sm−1 described by
texts, we predict the next subevent sm. To achieve the goal,
we learn a probability distribution over all text descriptions
describing the next potential subevent sm. Formally, it can be
defined as a language model:

P(sm|s1:m−1) = 5
Nm
n=1P(wm,n|wm,1:n−1, s1:m−1). (1)

We propose an end-to-end neural model which takes the
previous subevents s1, s2, . . . sm−1 described by texts as input
and generates a word sequence sm which describes a possible
future subevent. Obviously, a naive method is to concatenate
the previous subevents as a whole word sequence, and then
apply n-grams models to compute conditional probability
tables for each word. However, it suffers from the problem of
high dimension and thus is intractable for realistic vocabulary
size [28]. RNNs (Recurrent Neural Networks) have been
proposed to model long n-gram contexts [19], while they
suffer from the problem of vanishing gradient. To alleviate
the problem, LSTM [11] and Gated Recurrent Unit [5] were

proposed to improve the RNN models [13]. In the light of
this, we build our model based on LSTM.

III. OUR PROPOSED METHODOLOGY
We detail our proposed methodology for the problem of
future subevent prediction in this section. The following sub-
section describes the proposed CH-LSTM-Att model for our
future subevent prediction task in turn. Our CH-LSTM-Att
captures the content information of a subevent sequence at
two levels (i.e. a word sequence for each subevent and a
subevent sequence) and the context features by incorporat-
ing the topics of the subevents. To improve the prediction
performance, our CH-LSTM-Att model adds a hierarchical
attention mechanism to consider which part of the words and
subevents are most responsible for the current decoding state.
Furthermore, the proposed model can learn the representa-
tions of subevents automatically, which is generic and can be
applied to other tasks.

A. CH-LSTM-Att
As illustrated in Figure 2, the CH-LSTM-Att model is
composed of two LSTM encoders for respectively encod-
ing word sequence and subevent sequence, and an LSTM
decoder for predicting next subevent. Given a sequence of
subevent, (s1, s2, . . . , sM ), the subevent-level LSTM encoder
first encodes word sequence ((wm,1, . . . ,wm,Nm )) into dense
vector for each subevent sm. The event-level LSTM encoder
then processes each subevent vector iteratively. The last hid-
den state of the event-level LSTM represents a summary of
the event up to the last subevent. Afterwards, a decoder LSTM
is used to generate the text description of the next subevent
word by word. We detail the overall process as follows.

FIGURE 2. Illustration of CH-LSTM-Att model. It consists of three parts,
including a subevent-level LSTM encoder, an event-level LSTM encoder
and a LSTM decoder. The subevent-level LSTM encoder generates hidden
state for each subevent. And, the hidden vector of a specific subevent is
concatenated with its corresponding topic embedding to get
representation for the subevent. The event-level LSTM encoder takes
subevent representations one at a time and update its internal states
iteratively to output vectors accounting for subevent sequences. Finally,
a LSTM decoder is utilized to decode the text description of the next
subevent. During decoding, we consider which subevents and which
words within the subevents are most responsible for current-step word
generation.
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1) SUBEVENT-LEVEL ENCODING
The subevent-level LSTM encoder sequentially consumes the
words of a subevent sm = (wm,1, . . . ,wm,Nm ), and updates the
hidden vector:

hwm,n = LSTMw
enc(h

w
m,n−1,wm,n), n = 1, . . . ,Nm, (2)

where hwm,n ∈ RD denotes the recurrent state. Initially, we set
hwm,0 = {0}. The function LSTMw

enc denotes the LSTM
function for encoding a word sequence. The last recurrent
state hwm,Nm can represent the subevent sm, i.e., sm = hwm,Nm .
Overall, the subevent LSTM encoder projects a subevent into
an embedding vector without any hand-crafted features.

2) EVENT-LEVEL ENCODING
After learning the representations of subevents, we learn the
representations of events which consists of a sequence of
subevents. The event-level LSTM encoder takes the subevent
embeddings (s1, s2, . . . sm) obtained from the subevent-level
encoder as input and calculates the event-level recurrent
states:

hsm = LSTMs
enc(h

s
m−1, sm), m = 1, . . . ,M , (3)

where hsm ∈ RD denotes the event-level recurrent state.
Initially, we set hs0 = {0}. The function LSTM

s
enc denotes the

LSTM function. The event-level recurrent state hsm contains
the information of the subevents (s1, s2, . . . , sm) that have
been observed so far.

We further consolidate contextual features, the topics of
the subevents by utilizing Latent Dirichlet Allocation (LDA)
to learn better representations of subevents. The topics
of subevents within a subevent sequence may be partic-
ularly related, thus consolidating topic information into
subevent representations can leverage the semantic associa-
tion among the subevents. Via LDA, we can get topic dis-
tributions {θm}m=1:M of the subevents over K topics, where
θm = {θm,k}k=1:K is a K -dimensional vector. The topic
zm = argmaxk θm,k with the largest probability is taken as the
topic of the subevent sm. To incorporate the topic information,
we represent a subevent as a concatenation of the hidden
vectors of words and its topic, namely, sm = 〈hwm,Nm ,h

z
m〉.

3) NEXT-SUBEVENT PREDICTION
After getting the representation of a subevent sequence s1:m−1
through the above hierarchical LSTM architecture, we design
a LSTM decoder to generate the text description of the next
potential subevent sm. Formally, we aim to estimate the prob-
ability P(sm|s1, . . . , sm−1) using Eqn.(1).
The desired condition on previous subevents is obtained by

using the event-level encoding to initialize the recurrent state
of the LSTM decoder, i.e., h′m,0 = hsm−1, where h′m,0 is the
initial recurrent state of the decoder. Formally,

h′m,n = LSTMdec(h′m,n−1,wm,n), n = 1, . . . ,Nm, (4)

where h′m,n−1 is the recurrent hidden state of the LSTM
decoder. The function LSTMdec is the LSTM function for

decoding a word sequence which describes the next potential
subevent. In the LSTM decoder, we compute the probability
of the next word wm,n based on the recurrent state h′m,n−1
using a softmax layer. The LSTMdecoder will terminate until
〈end〉 is predicted. Then the predicted sm is returned as the
final prediction result.

B. HIERARCHICAL ATTENTIONS
We observe in future subevent prediction, the previous
subevents and words within the subevents may have different
importance. Attention models adopt a look-back strategy by
linking the current decoding state with input subevents in an
attempt to consider which part of the input is most responsible
for the current decoding state. To address the issue, we pro-
pose to incorporate a hierarchical attention mechanism.

1) SUBEVENT-LEVEL ATTENTION
In the subevent-level encoding, let Hw

m = {hwm,1, . . . ,h
w
m,Nm}

be the collection of hidden vectors for words in the m-th
subevent. We take a weighted sum of all the hidden vectors
for the words instead of the hidden vector for the last word in
the subevent as the representation of the subevent. Formally,

sm =
∑

i∈[1,Nm]

awi h
w
m,i (5)

where awi is the weight of the i-th word in the subevent. The
weight is determined by both the hidden vector hwm,i for the
word wm,i and the hidden vector for last-step decoding state.
Suppose that h′n−1 denotes the hidden vector for last-step
decoding state, the subevent-level attention model would link
the current-step decoding information, i.e., h′n−1 with each
of the input words in a previous subevent hwm,1, . . . ,h

w
m,Nm},

characterized by a strength indicator vwi , i ∈ [1,Nm]:

vwi = UT f (W1h′n−1 +W2hwm,i) (6)

We get the weight awi by normalizing vwi :

awi =
exp(vwi )∑
i′ exp(v

w
i′ )

(7)

The weights can tell which words in the subevent are more
important. The subevent is then represented by averaging
weights over all the words within the event.

2) EVENT-LEVEL ATTENTION
Similarly, in the event-level encoding, let H s

= {hs1,
hs2, . . . ,h

s
m−1} be the collection of hidden vectors for each

subevent. Each element in H s contains information about
input subevents with a strong focus on the parts surrounding
each specific subevent (time-step). During decoding, suppose
that h′n−1 denotes the hidden vector outputted from LSTMdec
at previous time step n − 1, the event-level attention model
would link the current-step decoding information, i.e., h′n−1
with each of the input subevents hs1,h

s
2, . . . ,h

s
m−1}, charac-

terized by a strength indicator vsi , i ∈ [1,m− 1]:

vsi = U′T f (W′1h′n−1 +W′2hsi ) (8)
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vsi is then normalized:

asi =
exp(vsi )∑
i′ exp(v

s
i′ )

(9)

The vector asi stores the weights of all input subevents,
which can tell which subevents are more important and which
subevents are less important for future subevent prediction.
The event-level attention vector is then created by averaging
weights over all input subevents:

mn =
∑

i∈[1,m−1]

asih
s
i (10)

The hidden vectors of CH-LSTM-Att for current step is
then achieved by combining mn,wn (the current-step input
word) and h′(n− 1):

in = σ (Wiwwn +Wihh′n−1 +Wimmn + bi),

fn = σ (Wfwwn +Wfhh′n−1 +Wfmmn + bf ),

on = σ (Wowwn +Wohh′n−1 +Wommn + bo),

gn = tanh(Wgwwn +Wghh′n−1 +Wgmmn + bg),

cn = fn � cn−1 + in � gn,

hn = on � tanh(cn), (11)

where W∗w and W∗h denote the transformation matrix from
the input to hidden states and the recurrent transformation
matrix between the recurrent states hn respectively. b∗ rep-
resents the bias vector.

Once 〈end〉 is predicted, the decoder terminates and the
predicted sm is returned as the final prediction result.

C. TRAINING AND TESTING
By maximizing the log-likelihood of subevents {sm}m∈{2:M}
given previous ones s1:m−1, we learn the model
parameters W :

L =
Etrain∑
e=1

M∑
m=2

logP(sem|s
e
1:m−1)

=

Etrain∑
e=1

M∑
m=2

N e
m∑

n=1

P(wem,n|w
e
m,1:n−1, s

e
1:m−1), (12)

where sem denotes the m-th subevent of the e-th event and
wem,n is the n-th word in the subevent sem. Etrain denotes the
number of events in the training set. Batch gradient descent
was adopted for optimization.

During test time, we use a beam-search (size=1) [31]
for forward prediction until 〈end〉 is predicted in the decod-
ing process. Beam search selects the word with the largest
conditional probability as a new predicted word, which is
subsequently combined with preceding output words for next
word prediction using the decoder LSTM.

IV. EXPERIMENTS
In this section, we performed comprehensive experiments to
evaluate our model for future subevent prediction.

A. DATASET
Following [15], we tested on a Chinese news event dataset
from Sina News2 covering various news series from 1999 to
2016. This dataset contains 15,254 news series, each com-
posed of a sequence of news articles in chronological order
reporting on the same event. In average, the number of articles
within a news series is 50. For each news article, we only
use its headline sine it summarizes the core idea of the news
article in a concise way. We further segment each news series
with a window of size 5 and get non-overlapping events
(partitions). Each news article within an event are viewed as
a subevent. We set the size of the window to 5, as we observe
from the data that there is little dependency beyondmore than
5 continuous subevents. Afterwards, we get 155,358 events
overall. We performed tokenization with the existing tool
ICTCLAS.3 Besides, we filtered out stopwords and the words
with frequency less than 100 documents. Finally, we get a
vocabulary of 4,515 unique words including a special end
symbol 〈end〉. Each subevent contains about five words on
average. We randomly splited the events into 80%, 10% and
10% for training, validation and test, respectively. We show
the statistics of the dataset in Table 1.

TABLE 1. Statistics of our dataset.

1) EXPERIMENTAL SETTING AND EVALUATION METRICS
The hyper-parameters in the models are determined through
experiments. We tried different parameter settings and eval-
uated them on the validation set. Then we selected the best
hyper-parameters for evaluation in the independent test set.
The optimal parameter settings are as follows.
1) LSTM parameters and word embedding were initialized

with a uniform distribution between [−0.08, 0.08];
2) The batch size is set as 32;
3) The learning rate is set as 0.1;
4) The dropout rate is set as 0.2;
5) The dimension of hidden vector D is set as 400, and the

dimension of word embeddings and topic embeddings is
set as 100;

6) The number of hidden layers of LSTM is set as 2;
7) The topic number = 1,000.
Evaluation Metrics: We select two metrics for evaluating

the effectiveness of our proposed models, named perplexity
and word error-rate. Perplexity [29] is closely related with
cross entropy loss between the model and test data, which
can be viewed as exponential of average per-word entropy of
the test data. In this task, it shows how well our model fits the
data. Lower perplexity is better. We define per-word perplex-
ity under two different cases. In the first case, we consider

2http://news.sina.com.cn/zt/
3http://ictclas.nlpir.org/
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the subevents from 2 to M in a test event (consisting of M
subevents) and compute the perplexity as follows:

Perp = exp(−
1
Nw

|Etest |∑
e=1

M∑
m=2

logP(sem|s
e
1:m−1)) , (13)

whereNw denotes the number ofwords in the test cases, |Etest |
represents the number of events in the test set, sem is the m-th
subevent in the e-th event. The perplexity is computed based
on all the subevents of all the events in the test data.

In the second case, we consider only the last (M -th)
subevent in a test event and thus we can get:

Perp@last = exp(−
1
Nw

|Etest |∑
e=1

logP(seM |s
e
1:M−1)) , (14)

Perp@last is computed based on the last subevents of all the
events in the test data.

Following [28], we also adopted the word classification
error (i.e., word error-rate) for evaluation. It directly mea-
sures the quality of the predicted subevents by counting
the number of mismatching words between the predicted
events and the ground-truth.4 Like the definition of perplex-
ity, we also consider two cases. In the first case, we consider
the subevents from 2 to M in a test event.

Error_Rate =
1
Nw

|Etest |∑
e=1

M∑
m=2

N e
m∑

n=1

I (w
′e
m,n 6= wem,n), (15)

where I () represnets an indicator function. When a predicted
word is not the true word, i.e., w

′e
m,n 6= wem,n, it equals to

1; otherwise 0. w
′e
m,n denotes the predicted word and wem,n

is the true word. N e
m denotes the number of words in the

subevent sem.
In the second case, we consider only the last subevents of

the events in the test data.

Error_Rate@last =
1
Nw

|Etest |∑
e=1

N e
M∑

n=1

I (w
′e
M ,n 6= weM ,n), (16)

A model with lower word classification error is preferred.

B. EXPERIMENTAL RESULTS
To demonstrate the advance of our proposed models, we
compared them with both state-of-the-art language mod-
els and neural network baselines. Three well-established
n-gram language models, namely Backoff n-gram, Modi-
fied Kneser-Ney andWitten-Bell Discounting n-grammodel,
were implemented with SRILM [32]. Specifically, we set
n = 5 for these n-gram language models. In addition,
we also compared the proposed models with the basic LSTM
model, HLSTMmodel (i.e., considering hierarchical sequen-
tial structure of an event) and CH-LSTM (incorporating con-
textual information to HLSTM).

4For a correct predicted word, its position should also be correct.

1) OVERALL RESULTS
We report our results in terms of Perp, Error_Rate, Perp@last
and Error_Rate@last as shown in Table 2. As can be seen
from the table, all neural models outperform state-of-the-art
n-gram models with respect to all evaluation metrics.
The n-gram models get high word error rate on the predic-

tion of the last subevent (Error_Rate@last), which demon-
strates that they are not proper for the task of future subevent
prediction. The n-gram models consider only previous n− 1
words and thus cannot exploit the overall information within
previous subevents. The good performance of HLSTM,
CH-LSTM and CH-LSTM-Att proves that considering hier-
archical sequential structures of events improves the perfor-
mance in terms of all measures. From Table 2, we can see
it improves by around 70 perplexity points and 5 percentage
points of word error-rate compared to the LSTM prediction
model, showing the advance of the proposed models. We also
observe that CH-LSTM model further outperforms HLSTM,
which demonstrates the importance of topics for subevent
prediction. Furthermore, we can see that CH-LSTM-Att
model with a hierarchical attention mechanism improves
the CH-LSTM model, which implies that the hierarchical
attention mechanism considering different influences of the
previous subevents and words within the subevents is impor-
tant for future subevent prediction.

2) COMPLEXITY ANALYSIS
With the trained neural models, the complexity of the decod-
ing is largely dominated by the computation of the output
probabilities, giving O(nD|V|), where n is the generated text
length of the subevents, D is the dimensionality of output
word embedding.

3) QUALITATIVE ANALYSIS
Given the previous subevents s1:M−1, we adopted beam-
search to approximate the most possible next subevents sM .
In Fig. 3, we presented a case study about travel issues
on China’s National day. There are hundreds of millions of
people traveling during the holiday. We listed four predicted
next subevents which are generated by four neural models
plus the ground truth subevents. In this case, we can see that
the result of LSTM prediction model is entirely not relevant.
Although HLSTM model achieves better results, it is still
slightly different from the truth. The resutls of our proposed
CH-LSTM and CH-LSTM-Att are almost the same with the
ground truth.

4) VISUALIZATION OF ATTENTION
We implement attention visualization graph based on a case
chosen from the test dataset, as shown in Fig. 4. This fig-
ure illustrates how the proposed attention mechanism puts
emphasis on valued information during each step in the
decoding stage. When generating the word ‘‘China and South
Korea’’, the model stresses subevents s1, s2, s4. Meanwhile,
the word tokens ‘‘Chinese Team’’, ‘‘China and South Korea’’,
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TABLE 2. The average test perplexity and word error-rate of five runs.

FIGURE 3. An example of model outputs. We show the observed previous subevents in the left and show
the ground truth and model outputs in the right.

FIGURE 4. Visualization of attention. Previous subevents s1:4 and our
model’s output is placed in the left. The right bar denotes for the
attention weight. The stressed subevents and word tokens have been
labeled in blue.

‘‘Dual Match’’ and ‘‘Report’’ are emphasised by the attention
mechanism. This visualization graph shows that the proposed
attention mechanism is capable of capturing important infor-
mation from both word-level and subevent-level to enhance
the next subevent decoding.

a: NEXT SUBEVENT RANKING
We further evaluate our model on the next subevent ranking
task, which aims to find out the most likely next subevent of
a sequence of existing subevents from candidate subevents.
As shown in Fig. 5, the problem can be formalized as: given
a model with parameter2 and a sequence ofm−1 subevents
s1, . . . , sm−1 (with the topics z1, . . . , zm−1), find out the most
possible next subevent sm from candidates S:

sm = argmax
s∈S

logP(s|s1:m−1, z1:m−1,2), (17)

We generated the dataset from our test set. Specifically,
we randomly separated the test set into non-overlapping
subsets with size 50. After processing the test set with
15,535 events, we obtain 312 non-overlapping subsets among

TABLE 3. Performance of different models on next subevent ranking.

which 311 subsets contain 50 events and one subset contains
35 events (i.e., 15,535= 311*50+ 35). Our goal is to choose
the most likely last subevent of an event given its previous
subevents. The candidates are the last subevents of all the
events in its corresponding subset. We use the metric hits@n
which represents the proportion of correct subevents in the
top ranked n candidates for evaluation. The results are shown
in Table 3.

As shown in Table 3, all the models achieve better results
than the random method. The proposed HLSTM model and
CH-LSTM model futher improves the performance, which
demonstrates the effectiveness of considering the hierarchical
event structure and topic information. Finally, we can observe
that the proposed CH-LSTM-Att model incorporating a hier-
archical attention mechanism significantly outperforms all
the models.

V. RELATED WORK
Our related work include event prediction and neural lan-
guage models.

A. EVENT PREDICTION
The task of event prediction is to predict the occurrence
of a future event. The work can be divided into two cate-
gories. On one hand, some work learn the causal relations
of two events [1], [4], [16] for prediction [24]. For instance,
Radinsky et al. [24] extracted generalized causality relations
of two events (i.e., ‘‘x causes y’’) from past news and applied
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FIGURE 5. Next subevent ranking example.

them to predict the next possible event given a current event.
Granroth-Wilding et al. [10] extracted typical sequences of
events from texts [3] and used a compositional neural network
to learn the coherence score of two events. They aim to predict
the next event by learning the strength of association between
two event.

On the other hand, some work focus on modeling event
sequences for prediction. For example, Radinsky et al. [25]
extracted event chains from news documents for predicting
the happening of target events. In this work, we focus on non-
targeted event prediction. Along this line,Manshadi et al. [18]
learned a n-gram language model of event sequences from
InternetWeb log stories. Pichotta andMooney [23] developed
a LSTM based model for learning scripts which represents
knowledge of prototypical event sequences. They represented
an event as a predicate with several arguments and are limited
to predict the events from candidates.

In this work, we propose a novel end-to-end generative
model which automatically predicts the next event by gen-
erating the words describing it.

B. NEURAL LANGUAGE MODELS
Neural networks have been widely applied in a variety of
tasks, ranging from information retrieval [12], [30], language
modeling [17], [19], [22] to machine translation [6], [33].
Neural language models have different network architec-
tures including feed-forward [2] and RNN [19]. To address
the vanishing gradient problem of RNN, variants such as
LSTM [11], [26] and Gated Recurrent Unit (GRU) [5] were
proposed. Recent research efforts on RNN models further
exploited hierarchical structures [14] in many applications
such as query suggestion [31], movie dialogue modeling [28]
and video representation [21]. Some other efforts improved
the RNNmodels using attention [7], [14], [35] and additional
contextual features [8], [20].

Different from the existing work, we propose a novel hier-
archical attention based hierarchical LSTM network combin-
ing topic information for prediction.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a hierarchical attention based gen-
erative hierarchical LSTM model which automatically gen-
erates a short text description of a potential future subevent

given the texts describing previous subevents. Our proposed
model can capture hierarchical sequential structures of a
event with a hierarchical LSTM. In addition, it incorporates
the topic information for improving the prediction of future
subevents. Furthermore, it can pay attention to critical pre-
vious subevents for future subevent prediction with a hier-
archical attention mechanism. The experimental results on a
real-world dataset demonstrate the superiority of our model
for future subevent prediction over several state-of-the-art
models.

In future work, we will explore to extend our model to
predict not only the content of next subevent but also the exact
time and place of the subevent.
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‘‘Recurrent neural network based language model,’’ in Proc. Int. Conf.
Spoken Lang. Process., vol. 2, 2010, p. 3.

[20] T. Mikolov and G. Zweig, ‘‘Context dependent recurrent neural net-
work language model,’’ in Proc. 4th IEEE Workshop Spoken Lang. Tech-
nol. (SLT), Dec. 2012, pp. 234–239.

[21] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang, ‘‘Hierarchical recur-
rent neural encoder for video representation with application to caption-
ing,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016,
pp. 1029–1038.

[22] R. Pascanu, T. Mikolov, and Y. Bengio, ‘‘On the difficulty of training
recurrent neural networks,’’ in Proc. ICML, vol. 28, 2013, pp. 1310–1318.

[23] K. Pichotta and J. R. Mooney, ‘‘Learning statistical scripts with LSTM
recurrent neural networks,’’ in Proc. AAAI 30th Conf. Artif. Intell., 2016,
pp. 2800–2806.

[24] K. Radinsky, S. Davidovich, and S. Markovitch, ‘‘Learning causality for
news events prediction,’’ in Proc. 21st Int. Conf. World Wide Web, 2012,
pp. 909–918.

[25] K. Radinsky and E. Horvitz, ‘‘Mining the Web to predict future events,’’ in
Proc. 6th ACM Int. Conf. Web Search Data Mining, 2013, pp. 255–264.

[26] H. Sak, A.W. Senior, and F. Beaufays, ‘‘Long short-termmemory recurrent
neural network architectures for large scale acoustic modeling,’’ in Proc.
INTERSPEECH, 2014, pp. 338–342.

[27] T. Sakaki, M. Okazaki, and Y. Matsuo, ‘‘Earthquake shakes Twitter users:
Real-time event detection by social sensors,’’ in Proc. 19th Int. Conf. World
Wide Web, 2010, pp. 851–860.

[28] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, ‘‘Building
end-to-end dialogue systems using generative hierarchical neural network
models,’’ in Proc. AAAI 30th Conf. Artif. Intell., 2016.

[29] C. E. Shannon, ‘‘A mathematical theory of communication,’’ ACM SIG-
MOBILE Mobile Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55, 2001.

[30] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, ‘‘A latent semantic model
with convolutional-pooling structure for information retrieval,’’ in Proc.
23rd ACM Int. Conf. Inf. Knowl. Manage., 2014, pp. 101–110.

[31] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. G. Simonsen, and
J.-Y. Nie, ‘‘A hierarchical recurrent encoder-decoder for generative
context-aware query suggestion,’’ in Proc. 24th Conf. Inf. Knowl. Manage.,
2015, pp. 553–562.

[32] A. Stolcke, ‘‘SRILM-an extensible language modeling toolkit,’’ in Proc.
INTERSPEECH, 2002, p. 2002.

[33] I. Sutskever, O. Vinyals, and V. Q. Le, ‘‘Sequence to sequence learning
with neural networks,’’ inProc. Adv. Neural Inf. Process. Syst. Annu. Conf.,
2014, pp. 3104–3112.

[34] S. V. Canneyt, S. Schockaert, and B. Dhoedt, ‘‘Categorizing events
using spatio-temporal and user features from Flickr,’’ Inf. Sci., vol. 328,
pp. 76–96, Jun. 2016.

[35] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, ‘‘Show, attend and tell: Neural image caption generation
with visual attention,’’ in Proc. 32nd Int. Conf. Mach. Learn. JMLR Work-
shop Conf., 2015, pp. 2048–2057.

[36] Z. Xu, Y. Liu, N. Yen, L. Mei, X. Luo, X.Wei, and C. Hu, ‘‘Crowdsourcing
based description of urban emergency events using social media big data,’’
IEEE Trans. Cloud Comput., to be published.

LINMEI HU was born in Jiangxi, China, in July,
1992. She received the Ph.D. degree in computer
science and technology from Tsinghua University
in January, 2018.

She currently works as an Assistant Profes-
sor with the Beijing University of Posts and
Telecommunications, China. She has published
many articles in top conferences such as AAAI,
ACL, EMNLP, and KDD. Her research inter-
ests include natural language processing and
knowledge graphs.

3114 VOLUME 8, 2020


	INTRODUCTION
	PROBLEM DEFINITION
	EVENT
	SUBEVENT
	FUTURE SUBEVENT PREDICTION

	OUR PROPOSED METHODOLOGY
	CH-LSTM-Att
	SUBEVENT-LEVEL ENCODING
	EVENT-LEVEL ENCODING
	NEXT-SUBEVENT PREDICTION

	HIERARCHICAL ATTENTIONS
	SUBEVENT-LEVEL ATTENTION
	EVENT-LEVEL ATTENTION

	TRAINING AND TESTING

	EXPERIMENTS
	DATASET
	EXPERIMENTAL SETTING AND EVALUATION METRICS

	EXPERIMENTAL RESULTS
	OVERALL RESULTS
	COMPLEXITY ANALYSIS
	QUALITATIVE ANALYSIS
	VISUALIZATION OF ATTENTION


	RELATED WORK
	EVENT PREDICTION
	NEURAL LANGUAGE MODELS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	LINMEI HU


