SPECIAL SECTION ON DATA MINING FOR INTERNET OF THINGS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 10, 2019, accepted December 21, 2019, date of publication December 24, 2019,

date of current version January 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2961971

Benchmarking Dynamic Searchable Symmetric
Encryption Scheme for Cloud-Internet

of Things Applications

YEN-WU TI*!, CHIA-FENG WU "2, CHIA-MU YU “3, AND SY-YEN KUO "2

ICollege of Artificial Intelligence, Yango University, Hangzhou 310058, China
2Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan

3Department of Computer Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan

Corresponding author: Chia-Mu Yu (chiamuyu@gmail.com)

ABSTRACT Recently, the rapid development of Internet of things (IoT) has resulted in the generation of
a considerable amount of data, which should be stored. Therefore, it is necessary to develop methods that
can easily capture, save, and modify these data. The data generated using IoT contain private information;
therefore sufficient security features should be incorporated to ensure that potential attackers cannot access
the data. Researchers from various fields are attempting to achieve data security. One of the major challenges
is that IoT is a paradigm of how each device in the Internet infrastructure is interconnected to a globally
dynamic network. When searching in dynamic cloud-stored data, sensitive data can be easily leaked. IoT data
storage and retrieval from untrusted cloud servers should be secure. Searchable symmetric encryption (SSE)
is a vital technology in the field of cloud storage. SSE allows users to use keywords to search for data in
an untrusted cloud server but the keywords and the data content are concealed from the server. However,
an SSE database is seldom used by cloud operators because the data stored on the cloud server is often
modified. The server cannot update the data without decryption because the data are encrypted by the
user. Therefore, dynamic SSE (DSSE) has been developed in recent years to support the aforementioned
requirements. Instead of decrypting the data stored by customers, DSSE adds or deletes encrypted data on
the server. A number of DSSE systems based on linked list structures or blind storage (a new primitive)
have been proposed. From the perspective of functionality, extensibility, and efficiency, these DSSE systems
each have their own advantages and drawbacks. The most crucial aspect of a system that is used in the
cloud industry is the trade-off between performance and security. Therefore, we compared the efficiency
and security of multiple DSSE systems and identified their shortcomings to develop an improved system.

INDEX TERMS Searchable encryption, dynamic searchable encryption.

I. INTRODUCTION

The rapid development of Internet of things (IoT) and cloud
computing has resulted in a high demand for cloud storage
environments. In these systems, to protect privacy, users
query some information multiple times and receive the con-
tent of the query, but their identity or the content of the
stored message is not revealed. Over the years, several studies
have focused on protecting databases from malicious users.
An attacker can recreate a valuable message by querying
the database. Even if the database has some protective fea-
tures, the attacker can still succeed in obtaining information.

The associate editor coordinating the review of this manuscript and
approving it for publication was Patrick Hung.

VOLUME 8, 2020

Thus, if a user wants to protect their privacy, the safest
method is to download the complete encrypted file stored in
the database. The user then decrypts the file and performs
the required processing. However, this approach results in
a large and unaffordable communication traffic. This is not
a viable option. Therefore, we require a method that pro-
tects user privacy and does not burden networks and servers.
One of the most common solutions to search encrypted
data is searchable symmetric encryption (SSE). Searchable
encryption (SE) was first introduced in [1], and allows data
protection by encryption but can retrieve desired informa-
tion efficiently using keyword searching. Thus, if we store
encrypted documents on cloud storage, the server need not
know the data content, and we can still search for files on

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 1715

https://orcid.org/0000-0002-9834-0075
https://orcid.org/0000-0003-3073-0074
https://orcid.org/0000-0002-1677-2131
https://orcid.org/0000-0002-3021-8321

IEEE Access

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

the server and extract them [2]. The server is not expected
to know about the keywords and only a trivial message
about keywords and files extracted is sent to the server. The
conditions appear to be contradictory but it is possible to
construct such a system. However, SSE has some drawbacks.
In general, the data stored in the database is dynamic, that is,
it changes constantly because users often edit the files stored
in the server through the network. Therefore, it is necessary to
increase the functionality of SSE to enable users to update and
delete the contents of encrypted documents. This is known as
dynamic searchable symmetric encryption (DSSE).

In the past, a number of different DSSE schemes have been
developed, which, in addition to meeting the basic needs of
adding and deleting data, have unique characteristics. The
DSSE scheme [3] can complete the search in sublinear time
and is resistant to adaptive chosen-keyword attacks. The
first DSSE that was used on large databases was proposed
by Cash et al. in 2014 [4]. To the best of our knowledge,
the DSSE scheme proposed by Stefanov et al. in 2014 pro-
vides the highest security [5]. In addition, some schemes cater
to special requirements in practice. For example, the DSSE
scheme in [6] limits the cloud server to be a pure storage
system, without allowing the client to perform computing
tasks on the cloud serve; some schemes can operate without
the client storage capacity [7].

In order to prevent malicious attackers from reading
untrusted memory and getting data to cause users to leak
sensitive information while storing and reading data, obliv-
ious random access machines (ORAM) scheme is a common
solution. The ORAM approach is to separate the operation
of the memory access from other system operations, so that
the malicious attacker does not know which file the CPU
is using. It is even hard to know that the CPU is using
the same file repeatedly. So its most important application
is to avoid access patterns being detected by third parties.
The new ORAM solution has been able to keep the client’s
storage down to a constant level. However, since most ORAM
schemes use Homomorphic Encryption, their traffic may
reach the logarithmic scale, and multiple repeated communi-
cations are required, which still leads to expensive overhead.
Especially for large databases, the high cost of ORAM and
Homomorphic Encryption is hard to ignore [3]-[7].

A. RESEARCH MOTIVATION

Most schemes claim to be efficient, but no experimental com-
parison has been conducted on the performances of various
schemes. Therefore, in this study, a number of representative
DSSE schemes were implemented and their performances
were compared. The same standard was used to investigate
the advantages and disadvantages of various DSSE schemes
in a DSSE system. The notation of security definitions and
present SSE concepts are presented in Section 2.

B. RESEARCH INTENTION
We discuss the trade-off between efficiency and security for
a specific SE scheme that allows a single client to store

1716

encrypted data with a private key on a remote server, and
the client can send a single keyword query to the server. The
server returns the search result to the client without decrypt-
ing the data. The client can also add or delete file queries to
the server, causing the server to add the new file or delete an
existing file while only learning trivial information about the
files (i.e., we focus on DSSE systems).

This paper was published in part in Proc. International
Conference on Intelligent Computing and Its Emerging
Applications (ICEA) [2], 2019.

Il. BACKGROUND
This section provides background introduces DSSE, index,
privacy issues, and security definitions.

A. DYNAMIC SEARCHABLE SYMMETRIC ENCRYPTION
The IoT industry and cloud service providers rely on remote
computing and storage resources to serve customers. These
services are often used to backup data or reduce local opera-
tional costs. However, the remote server cannot ensure abso-
lute data security. The data can be accessed by the server
administrator or hackers with root permissions. Therefore,
if sensitive data are to be stored in an untrusted server,
the data should be encrypted to ensure attackers and adminis-
trators cannot access plaintext data without appropriate keys.
Although this method increases security and reduces privacy
risks, a simple search is not possible. Before 2000, only
two solutions were available to search encrypted data: either
the user downloaded the whole database from the server,
then decrypted and searched or allowed the server to decrypt
the data, search the plaintext data, and return the result to
the user. The first method is impractical and requires high
overheads (local storage space, communication, and compu-
tation); the second method renders the encryption meaning-
less because the server can access the information from the
plaintext data. However, in 2000, Song ef al. [1] proposed
the SE technique for searching encrypted data, in which the
server can support the search function without decrypting the
data, with a small information loss.

Although SE schemes were originally based on the
client-server model, we can still classify them under user
scenarios or key primitives. For user scenarios, we classify
them by the number of clients. If we only have one client in
an SE scheme, then only a single user can write encrypted
data to the server and send a search query to read the data
from the server. This is the single writer/single reader (S/S)
scenario. Similarly, we have three other user scenarios: multi-
writer/single reader (M/S), single writer/multi-reader (S/M),
and multi-writer/multi-reader (M/M). Two key primitives are
available, namely symmetric and asymmetric. Symmetric key
primitives use a private key to encrypt and decrypt data,
which can be used to devise S/S SE schemes. Asymmetric
key primitives use a public key to encrypt, and a private key
to decrypt, which allows M/S SE schemes.

However, SE schemes are not sufficiently practical for real
use. Generally, the data are dynamic, that is, edited often even

VOLUME 8, 2020

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

IEEE Access

when on the remote server. To satisfy this usage scenario,
SE was extended to dynamic SE (DSE), which provided the
server ability to add, update, and delete encrypted data with-
out decryption. A DSE scheme with symmetric key primitives
is called DSSE.

SE research involves three parameters, namely efficiency,
security, and query expression. We can measure efficiency
using complex computations and communications, imple-
ment an SE scheme and test run time directly. For DSE,
the efficiency of adding or deleting files should be mea-
sured. Security of an SE scheme can be defined formally
and discussed under various security models. The security
definition must be modified for DSE. The query expression
for an SE scheme defines what search queries can be used,
for example, a single keyword search or conjunctive keyword
search, among others. A DSE scheme cannot simultaneously
achieve high efficiency, security, and complex query expres-
sion; some trade-off should be considered. We focus on the
trade-off between DSSE security and efficiency in this paper.

1) GENERAL MODEL FOR A DSSE SCHEME

General Model for a DSSE Scheme: A DSSE scheme allows a
user to store encrypted data on a remote server. The server can
search the encrypted data without learning information about
the plaintext data. The user can also add or delete files on the
remote server, with the server only knowing the amount of
information, rather than any details. Generally, this capability
is achieved by the user by generating an encrypted search
index, and storing this index with the encrypted data on the
remote server.

Figure 1 shows the general model for an index based DSSE
scheme. Suppose we afile set F = (f1, f>, . . ., f) with n files
and a corresponding index W = (wy, wa, ..., wy,) with m
distinct keywords, where W is extracted from fi, f>, ..., fn.
This file set is to be stored to a remote server using a DSSE
scheme. First, the client generates a searchable encrypted
index, I, of F using the BuildIndex algorithm with key K.
Then, the client uses the Enc algorithm to encrypt each file in
F with key K’ and outputs a ciphertext, C. Finally, the client
uploads I and C to an untrusted (honest-but-curious [8])
server that complies with our protocol, but attempts to learn
information about the encrypted data. The encrypted data
stored on the server has the form

I = BuildIndexyg (F, W) and C = Encg/(f1,f2, - .-, fn)

To search a keyword w € W, the client generates token T
using the SrchToken algorithm, and sends 7 to the server. The
server uses T as the input to the Search algorithm, searches
I to find files that include w, and returns the appropri-
ate (encrypted) file set, F,,, to the client, where each file
fi € F,, includes w. The client receives the encrypted file
set F,,, and uses the Dec algorithm with key K’ to recover
the plaintext.

In DSSE schemes, the client can also add or delete files
on the remote server. If the client wants to add a new file,
Juew such as ¢ F, f,0, € W, then the client generates an add

VOLUME 8, 2020

token, T, using the AddToken algorithm, and upload T, and
Cy = Encg/(frew) to the server. The server adds the new file
using the Add algorithm, and the Search algorithm covers the
new file.

Deleting a file is a similar operation. The client generates
a delete token, Ty, using the DelToken algorithm for deleting
an existing file f,;; € F, and the server deletes the file using
the Del algorithm.

B. EFFICIENCY AND INDEX

To reduce the search response time, that is, improve effi-
ciency, the useful and common technique index in database
system is used. Each DSSE scheme discussed in this paper
(with the exception of [1]) uses index to speed up the search
or build process. Forward and invert indexes can be obtained
from the plaintext data, as illustrated in Figure 2 for unen-
crypted data. We use this simple example to illustrate the
various DSSE schemes discussed here.

1) FORWARD INDEX

A forward index records the keywords contained within a file,
that is, one index per file. Forward index can reduce search
times to the number of files. If we have n files, then search
complexity is O(n) because the server searches each index for
a given keyword.

2) INVERT INDEX

In contrast to the forward index, an invert index records file
IDs that include the given keyword. Thus, if we have m
keywords, search complexity is O(m). Hash trees can be used
here, which provides further speed up.

C. PRIVACY PROBLEM (LEAKAGE)

DSSE schemes leak information (leakages) during search or
update (add, delete) operations. The following five privacy
issues occur:

1) INDEX INFORMATION

Index Information: Index information is leaked from the
encrypted index or ciphertext. This includes the number of
keywords or files, file sizes, file IDs, among others.

2) SEARCH PATTERN

Search pattern information allows the server to derive
whether two search queries use the same keyword. If the
DSSE scheme uses a deterministic algorithm to generate a
search token, then the search pattern is also leaked, because
for the same keyword the user generates the same search
token. However, we proposed a simple method to hide the
search pattern in section 4.

3) ACCESS PATTERN

Access pattern information can be obtained from the
search result by the server (e.g. file ID or memory access
location).

1717

IEEE Access

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

Client

I = Buildindexy(F, W)

Search |T = SrchTookeny (w)

Add |T, = AddTookeng(frew)

Delete |Ty = DelTookeny(fo1qa=1)

Server

HEncy (fi, . fin)

= € = Encgr (fiy i fin)

id,, = Search(l,T)

TullCa = Encio (frew) Add(Ty, Cq, 1, C)

TUTGIIC" = Encyr(fy, s fins friew)

Del(T4, IUT,, €
IUTy — Tyl|Encyr (fa, oo fins frew)

FIGURE 1. General model for an index-based DSSE scheme.

File id Keywords Keywords File id
I 1wy 1wy 1,2,3
2 wWry, Wp, W wy 2
3 Wy, Wy 1wy 2,3

(a) Forward index.

(b) Invert index.

FIGURE 2. A small example of an unencrypted forward and invert index.

4) FORWARD PRIVACY

Forward privacy denotes that if we searched a keyword, w,
previously, then the server cannot know that whether a new
file, added subsequent to the search, contains w.

5) BACKWARD PRIVACY

Backward privacy denotes that we cannot execute queries
over deleted files. No current DSSE scheme achieves back-
ward privacy.

D. SECURITY DEFINITION

We review SE development and security definition, and pro-
vide simplified explanations.

1) IND-CPA

In 2000, Song et al. proposed the first SE scheme, SWP [1],
formal security definitions were not introduced for the SE,
although the authors showed that their scheme was a secure
pseudo-random generator. Subsequently, Kamara et al. [3]
revealed that SWP was indistinguishable against chosen
plaintext attacks (IND-CPA). If an encryption scheme was
IND-CPA, an adaptively adversary, A cannot distinguish two
arbitrary ciphertexts selected by itself (i.e., can query the
encryption oracle). That is, the ciphertexts do not leak infor-
mation about the plaintext. The main leakage does not occur
from the ciphertext, but rather the token, and IND-CPA secu-
rity does not address this concern. Therefore, IND-CPA secu-
rity is not an appropriate security definition for SE schemes.

2) IND1/2-CKA

The first security notation for SE was introduced by Goh [9],
who defined semantic security for secure indexes. This is
indistinguishable against adaptive chosen-keyword attacks

1718

(IND1-CKA). IND1-CKA guarantees that A cannot learn
plaintext information from the index and ciphertext, with the
exception of the number of files and their length. Thus, if two
encrypted file sets exist with the same size and an encrypted
index, adversary A cannot know which index was built from
which file set. Chang and Mitzenmacher [10] proposed a
superior simulation-based IND-CKA security definition to
protect the file size. Goh proposed IND2-CKA to protect the
file size. These studies guarantee that A cannot differentiate
indexes from two encrypted file sets, even if they have differ-
ent sizes. However, neither IND1-CKA nor IND2-CKA secu-
rity definitions provide security for the token. IND1-CKA
nor IND2-CKA do not guarantee that the server is unable
to recover the plaintext from the token, and so they are
considered weak for SE schemes.

3) IND-CKA1/2

Because the previous security definitions were inadequate for
SSE schemes, and index security is associated with token
security, Curtmola et al. [11] proposed two new adversar-
ial models for SSE schemes: nonadaptive (IND-CKA1) and
adaptive (IND-CKA?2) security. The two definitions define
that nothing should be leaked from ciphertext, and both pro-
tect token security. Thus, A cannot learn information about
keywords from a search token unless it learns from the
search or access pattern. However, IND-CKAT1 only guaran-
tees security if all queries are generated at once by the user.
Thus, IND-CKAZ2 has been widely used and is considered a
strong security definition for SSE schemes.

4) OTHER MODELS
Other security definitions for SSE scheme in different mod-
els include universal composability (UC) [12] and full

VOLUME 8, 2020

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

IEEE Access

security (FS) [13]. In UC, a general model protocol was
proposed that can remain secure even if composed. The FS
only allows access patterns to be leaked.

5) DYNAMIC IND-CKA2

For DSSE schemes, Kamara and Papamanthou [14] defined
dynamic IND-CKA?2 security, an extension of IND-CKA?2 for
update operation, which was stronger than the original
IND-CKA2. Dynamic IND-CKA?2 guarantees no leakage
during an update operation (before any search operation is
performed). Stefanov et al. [5] proposed forward and back-
ward privacy (although no current DSSE schemes can achieve
them), as discussed in Section 2(C).

6) DETERMINISTIC ENCRYPTION

If we use deterministic encryption to generate the ciphertext,
then the ciphertext is the same every time for a given key
and plaintext. To solve this problem, we can incorporate
randomness to provide probabilistic encryption. For exam-
ple, some SE schemes generate ciphertext with a random
number. Although probabilistic encryption is more secure
than deterministic encryption, deterministic encryption usu-
ally has higher efficiency.

E. MODEL
We describe the server and cryptography models for testing
security.

1) UNTRUSTED SERVER MODE

The (untrusted) server model is honest-but-curious. It does
not have any malicious action, but attempts to learn informa-
tion about the plaintext.

2) RANDOM ORACLE AND STANDARD MODELS

SE schemes can be tested in random oracle (ROM) or stan-
dard (STM) models. STM assumes only computational com-
plexity is required to provide security, because the adversary
has limited resources, whereas ROM replaces cryptographic
primitives by ideal versions, for example random oracle.
Although DSSEs tested under ROM are often more efficient
than under STM, it requires additional assumptions for the
ideal cryptographic primitives.

Ill. RELATED WORKS
Here, we discuss the research results of safe searching, edit-
ing, and transmitting data in the application field of [oT. With
the rapid development and growth of the IoT and cloud com-
puting, a higher number of operators are outsourcing their [oT
data to cloud servers to save costs or facilitate collaboration.
Ma et al. designed an IoT public key encryption scheme that
supports multiple keywords. This scheme supports database
search, which does not require a secure network channel and
is certificateless. [15].

Today, a large amount of data is outsourced from the IoT
industry to the computing and storage resources of the cloud
server. Because the devices provided by the cloud operators

VOLUME 8, 2020

and their users are often not in the same trust domain, users
cannot trust the security of the cloud server. Gao et al. pro-
posed an M-SSE scheme based on multi-cloud scenario to
achieve forward and backward security [16].

To deploy the SE protocol in the IoT environment, two
aspects should be considered. 1. Security requirements: It is
necessary to design methods to defend against common
inside keyword guessing attacks and file injection attacks.
2. Computational overheads: The amount of data generated
by IoT devices in some applications can be large. Efficient
methods should be designed to address this. Wu et al. pro-
posed an SE protocol that combines efficiency and secu-
rity. The technology they used is a trapdoor replacement
function [17].

The private information retrieval (PIR) protocol has been
in existence for more than two decades. The main goal
of PIR is to allow users to retrieve files from the server
that owns the database but does not allow the cloud stor-
age provider to know which file is being used. Riad et al.
proposed an encrypted PIR scheme, which stores data on
multiple different servers, each server does not store the entire
database. It allows users to retrieve data without revealing
user identity. [18].

In the previous paragraphs, a number of storage and search
technologies based on the IoT application environment were
introduced. These technologies are not resource-constrained
for users. However, how to provide data storage and shar-
ing services for mobile devices with limited resources is
also crucial. Several studies have been conducted to per-
form simultaneous search queries on mobile devices and
fine-grained access control for encrypted files in the database.
For this topic, Miao et al. used a 0-encoding and 1-encoding
technique to design a multi-keyword search scheme that can
support comparable attributes [19].

The development of cloud computing and the Internet has
resulted in increased popularity of the IoT industry, which
has a considerable effect on the healthcare industry, leading
to the transformation of the entire healthcare industry, allow-
ing patients to participate more in the medical process and
reducing the cost of the healthcare industry. IoT reduces the
risk in the healthcare industry and reduces medical risks. This
shift has ushered benefits and new opportunities to medical
institutions at all levels, but it has also resulted in many
security and privacy issues. Therefore, in the IoT applica-
tion of the health care industry, searching and editing in the
database of storing encrypted data through SSE technology is
also a noteworthy trend. But for e-health applications, static
SSE solutions that do not allow users to constantly update
data are not recommended. Even if a user wants to use the
existing DSSE solution, most of these DSSE solutions require
processing for the first time in a large static data set, and
then storing the data in the cloud device. This approach does
not update the data frequently, which is completely different
from the needs of the IoT-based e-health industry. The data
of the patient may be required to be updated frequently.
For example, constantly monitoring blood pressure data and

1719

IEEE Access

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

periodically creating and uploading it to the cloud database
at a fixed frequency.

Therefore, Yang et al. proposed a reliable solution for the
cloud-assisted body area network, which can search for data
in the encrypted database without leaking sensitive data. This
solution is a new DSSE system that, in addition to pro-
tecting privacy, also satisfies delegate verifiability, enabling
patients and healthcare professionals to securely search and
update encrypted data stored in the cloud and verify retrieved
results [20].

Ocansey et al. proposed a DSSE scheme with forward pri-
vacy. This scheme requires that the server’s database have an
increasing counter, and must have a Bloom filter. The user
must store state information on their own device. Then, using
cryptographic primitives and an aggregated message authen-
tication code, the scheme can implement forward privacy and
allow multiple users to access files at the same time. This
scheme generates tokens for use in search operations on the
server, and is secure against malicious attack [21].

Next, we discuss studies on various DSSE schemes that
were used. We explain the main concepts of each scheme
and analyze and compare them according to five parameters:
efficacy, security, client requirements, advantages, and draw-
backs.

A. KPR DSSE SCHEME

The KPR DSSE scheme is proposed by Kamara et al. [3].
It is an extension to CGK-1 [22], based on invert
indexes. The authors require any practical DSSE scheme to
have the following properties: (1) sub-linear search time,
(2) IND-CKAZ2 security, (3) compact index and add or delete
files efficiently. KPR is the first DSSE scheme that satisfied
all of these properties.

The main concept is to use two arrays to store the indexes.
One is the invert index, called the search array, Ag; and the
other is the forward index for deleting files, called the deletion
array, Ay. Each invert index for a keyword (with encrypted
file ID) is processed into a link-list and stored as A; with
random order. Each forward index for a file (with encrypted
keyword) is similarly processed and stored as A4, along with
other encryption information, including the link-list relation
in A;. Thus, we can delete the encryption index in Ay, but not
break the link-list because we can get the link information
from A;. We use two hash tables to point to the first entry in
each array: Search table, T, points to the first entry for each
keyword in A and deletion table, Ty, points to the first entry
for each file ID in A,.

However, this reveals the encrypted keywords contained
in the file during the update process. For efficiency, the two
tables and arrays need to be constructed in an interleaved
mode, using pseudo-random random functions (PRF) to
encrypt the tables and XOR to encrypt the arrays. Then
we can use the reflexive relation for XOR ((A & B) &
B = A & 0 = A) update the arrays.

« Efficiency: KPR achieves optimal search time, and can

update efficiently. It uses a hash table to search the

1720

first array entry and highly efficient XOR operation to
encrypt and update array nodes. Keyed hash functions
and PRFs are used to build the encrypted index.

o Security: KPR satisfies general IND-CKA?2 security but
leaks some information during the update process. KPR
achieves security under ROM.

o Client requirement: client can prepare forward and invert
index for building search and deletion arrays.

« Advantages: KPR uses invert index, achieving optimal
search time, and the reflexive relation for XOR to update
encrypted data efficiently. Drawbacks: XOR encryp-
tion leaks additional information during file updates
and the data structure must be built in interleaved
mode.

o Drawbacks: XOR encryption will leak additional infor-
mation during file updates and the data structure must
be built in interleaved mode.

Figure 3 shows the KPR scheme data structure and
Figure 4 provides more details of the KPR scheme. Symbols
k1l and k2 are keys for F and G. Note that A, is used to
record the linked relation in Ay, but this is not shown in
the figure for simplification. Random numbers are used to
increase randomness for encryption.

B. SPS SCHEME

The SPS scheme is proposed by Stefanov et al. [5]. It pro-
vides practical DSSE with a small leakage, and currently is
the most secure DSSE scheme, leaking the least information
to the server. And the server can access any element in
constant time. SPS achieves not only IND-CKA?2 security
but also forward privacy through the hierarchical structure
and special access method. SPS update protocol is interactive
between the user and the server. When the user wants to
add a new keyword-file pair (opcode can be add or del),
the server returns the empty level and all encrypted data below
the empty level. Then the usert decrypts the data from the
server and re-encrypts with a different level key, i.e., the key
of the empty level. The user then uploads the re-encrypted
data and new encrypted keyword pair to the server. Thus, SPS
achieves forward privacy since each element is re-encrypted
with a fresh key and moved to a higher level. How-
ever, SPS has high computation and communication over-
heads, which is the first DSSE scheme to support dynamic
keywords.

o Efficiency: SPS has sublinear search time in the
worst case. However, N keyword-file pairs require 2N
space. Encryption uses PRF, keyed hash function (ran-
dom oracle), randomized symmetric encryption scheme
(e.g. AES), standard hash function (e.g. SHA256), and
XOR operations.

o Security: SPS achieves IND-CKA?2 security and forward
privacy. Leakages contain only the search, access, and
file (the number of the keyword-file pairs) patterns. SPS
achieves security under ROM.

« Client requirement: SPS only requires the forward index
to build the encrypted index.

VOLUME 8, 2020

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

IEEE Access

I I T
L 1L 1

o N

—r

T N | A
TN
A
&:\ P
N e
g

FIGURE 3. The sketchy data structure of KPR scheme.

Search array Am

)

hdex | 0 | 1 1 2 [3 4 5 7 8
Fileld | f3 f1 f2 f2 f2 £3
| Random] rl r2 r3 rd S (1] 7
Deletion array Ad _ N
Thdex | 0 | 1 1 2 1 [2 1 5 [6 1 7
E,Q:;ﬁ;‘f: Fuatwl) | Fu(w3) | Fa(wl) | Fawd) | Fawl) | Fa(wd) |

[Random | ' | ' | 2 3 r4' 5’ 6 7'

Ts[Fiy(wil)] = (1, 4)BGy,(wl) Td[F,(f1)]=4
Ts(Fu(w2)] = (4, 7)8G,,(w2) Td[F,,(f2)] =6
Ts[Fa(w3)] = (2, 3)8G,,(w3) Td[F,(f3)) =2

Ts[FREE] = (5, -1)

FIGURE 4. More detail about KPR scheme, where F and G are PRFs.

o Advantages: Leakages are currently the least, and
the method can achieve forward privacy and support
dynamic keywords.

« Drawbacks: SPS requires 2N space for N keyword-file
pairs. For a single keyword search, the user generates
more than one token, that is, one token per level. This
has high overhead for update operations because every
node is re-encrypted when moved to a higher level.

C. NPG SCHEME
The NPG DSSE scheme is proposed by Naveed et al. [6].
It uses the blind storage (BS) approach. The server is only
required to provide storage, computation is executed by the
user. Thus, the server is not required to perform any decryp-
tion, and thus achieves IND
« Efficiency: NPG has sublinear search time because it
uses an invert index. However, updating overhead is high
because to update an index file for a keyword, the whole

VOLUME 8, 2020

index file should be retrieved. NPG cryptographic tools
are block cipher, collision resistant hash function, and
XOR operations. Although the server is not required to
provide computation, server storage and communication
costs are high.

« Security: Because the servers do not execute any decryp-
tion, NPG achieves IND-CKA?2 security, and does not
reveal the number of files or the size of each file until
the files are accessed. However, it still leaks location
information during a search query, because the user
always accesses the same location for the same keyword.
NPG achieves security under STM.

« Client requirement: NPG treats the invert index as a file
set and uploads it to the server.

« Advantages: The server only provides cloud space, and
hence can be built on many cloud services, such as
Dropbox and Google drive. The BS scheme hides the
actual operation (write, read, delete, and update). Search
index files do not need a special format.

o Drawbacks: The user is required to download and
decrypt superfluous blocks for an index file in BS
for checking. Thus, NPG has high communication and

update overheads.
We have not shown the BS structure in a figure, because it

is just an array data structure.

D. HK SCHEME

The HK scheme is proposed by Hahn and Kerschbaum [7].
It provides SE with secure and efficient updates using a
special construction. HK is based on the concept of learn-
ing the index from the access pattern to speed up search
query for keywords searched often. The server maintains
the (encrypted) forward index and the invert index simulta-
neously and the user maintains the search history. When the

1721

IEEE Access

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

user wants to add a new file, they generate a random number
and a token for each keyword included in the file. Then,
they generate ciphertext by a keyed hash function, using the
random number as input and the token as key. Finally, the user
sends the ciphertext and random number to the server as a
forward index (indexed by the file ID directly).

HK is the first DSSE scheme with information leakage is
than the access pattern, and keywords not yet searched do not
reveal information.

« Efficiency: HK has sublinear search time by maintaining
two indexes. It uses PRF, pseudo-random number gen-
erator, and keyed hash function (random oracle). It only
requires two hash values for a keyword in a file.

o Security: HK satisfies IND-CKA?2 security under ROM.
Updation leakage is less than the access pattern.

« Client requirement: HK scheme clients prepare the for-
ward index and maintain the search history.

o Advantages: Common keywords can be searched
swiftly. Drawbacks: file deletion requires looking
through the whole invert index.

« Drawbacks: File deletion requires looking through the
whole invert index.

E. CJJ] SCHEME
The CJIJ scheme is proposed by Cash [4]. It provides DSSE
for large databases. CJJJ uses a simple method to improve
efficiency that allows large data sets. It combines several file
identifiers and packs them into one ciphertext, and also has a
two-level data structure. This structure reduces disk access
and encryption times when building and searching. Thus,
efficiency is high.
« Efficiency: CJJJ has high efficiency even if the dataset
is large.
o Security: CJJJ satisfies IND-CKA2 security under
ROM.
« Client requirement: CJJJ clients use the invert index to
build and forward index to add.
« Advantages: High efficiency.
o Drawbacks: To classify the scale for each keyword,
the client is required to compute the number of files that
contain this keyword.

IV. METHODOLOGY

By weighing security and efficiency, we mix the various
DSSEs and proposed a solution that hides the search pattern
of the user. If forwarding privacy is to be implemented, then
it will cause high overhead. Therefore, we allow the server
to maintain both forward and invert index without using a
hierarchy. The insignificant keyword method and the BS were
used to store the inverted index to prevent the attacker from
detecting the search pattern of the user.

A. SEARCH PATTERN HIDING

The search pattern is information that can allow the server
to derive whether two search queries use the same keyword.
We can use a non-deterministic algorithm to generate tokens

1722

and hide the search pattern, but it is difficult to design a DSSE
scheme with non-deterministic search tokens.

A distributed searchable symmetric encryption scheme has
been proposed recently [23], which can hide the search pat-
tern. We treat the server as two parts: storage provider (SP)
and query proxy (QP). The user and query proxies maintain
independent search dictionaries. To search, the user generates
two search tokens, Tsp and Tgp, for SP and QP, respec-
tively. Then, SP re-encrypts and permutes the index according
to Tsp, and QP can compute the new index location from Tgp.
Thus, the user can generate different search tokens for a
given keyword and hide the search pattern. However, this is
only valid with the particular assumption that QP and SP do
not collude, which seems unreasonable under the honest-but-
curious server model. If the SP and QP collude, they are still
honest-but-curious, because they do not break the protocol.

The search pattern will only be leaked when the keyword
is searched more than once. Therefore, if we only allow
the keyword to be searched once, we can hide the search
pattern. Take achieve this, we propose a very simple con-
cept to hide the search pattern. On receiving a search query,
the server searches the encrypted index, returns the result to
the user, and deletes the current encrypted index. When the
user receives the search result, they update the index using
an insignificant keyword. The insignificant keyword can be
treat as an encrypted keyword or gibberish, but may also be
plaintext, generated by XOR operation. The user needs to
maintain the search history with search times, and records the
new key generated to encrypt the keyword using XOR. The
server supports dynamic keywords because the new keyword
will be generated after search operation.

This is a new DSSE solution based on distributed comput-
ing. This solution is efficient because it only uses efficient
primitives. In addition, in order to reduce the complexity of
the database search, the inverted index technique, which may
be vulnerable to attacks illegally accessing the search pattern,
is also used. However, many previous studies have developed
techniques dealing with oblivious RAM. In conjunction with
the technique for dealing with private information retrieval
problems, Bosch et al. proposed techniques for continually
rearranging indexes while accessing them to avoid leaking
the search pattern.

Since this technique uses the inverted index, it is nec-
essary to create different indexes for each of the different
keywords in order to search the encrypted database. The index
is arranged according to each keyword of each document, and
each bit maps to one of the above keywords.

Let the number of documents in the database be n. For
each keyword w, make its plaintext index a string called i,,,
and [i,,] = n. i,,[j] will only correspond to a unique docu-
ment, if the jth documents contain the keyword w, and then
iw[j1 = 1, otherwise i,,[j] = 0. For the sake of confidentiality,
iw will use XOR and some pseudo-random functions for
encryption. The keys used for encryption are k., which is only
known by the user, and kg, which is known to both the user
and the database. In general, k. contains k;. In the scheme

VOLUME 8, 2020

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

IEEE Access

L] s =

(ASCII).

with ASCII code.-

e Check the length of target string s 1s shorter than the maximum length of a
keyword, where we let the maximum length is 4 bytes..

e Generate a keyword key K, with the maximum size..

. K, =01101100011110101001110010101010 with binary expression..

01110000011000010111001101110011

e S@K, = 00011100000110111110111111011001..

e The above binary string 1s an insignificance keyword because it cannot be read

with binary expression

FIGURE 5. An example to generate an insignificance keyword.

proposed by Bosch et al., the key used by the query proxy is
empty. The encryption of the file is performed by the user
using the symmetric encryption algorithm, and they do not
use k. as the key.

1) INSIGNIFICANT KEYWORD
Consider a string s = “pass”’, we transform s to an insignifi-
cant keyword following the steps in Figure 5.

To generate an insignificant keyword, a binary string
containing any bytes that cannot be read in ASCII should
be generated. The probability of successfully generating an
insignificant keyword is related to the maximum length.

However, as the dictionary is fixed during the DSSE
initialization, the current DSSE does not support the key-
word updates; i.e., DSSE cannot search for the keywords
not included in the dictionary, and cannot make searchable
keywords unsearchable, which could be of practical interest
to many applications. This study therefore proposes a DSSE
with keyword updates. The rationale behind the proposed
DSSE is the combined use of the existing DSSE and a variant
of secure indexes. While the former offers functionality of the
main DSSE, the latter is useful to the server in keeping track
of undocumented and removed keywords.

In particular, with DSSE, the server receiving the search
trapdoor from the user with a private key can perform a
keyword search of encrypted documents without learning
any part of the document content. Moreover, the server
receiving the add-doc trapdoor (del-doc trapdoor) will accept
new documents and corresponding keywords (remove the
documents).

A dictionary consisting of all possible keywords is fixed
during the DSSE initialization. While they support document

VOLUME 8, 2020

updates, no current DSSEs support keyword updates. Here,
keyword updates can be two operations. The first is to enable
the data owner to search for a keyword currently not in the
dictionary, while the second is to make a keyword no longer
searchable by the data owner. Both of these operations can be
achieved by either expanding or shrinking the dictionary.

An application scenario where the DSSE with keyword
updates would be useful is shown in Figure 6. In the scenario,
the management authority of an organization outsources
encrypted documents to the server. To allow staff members
to selectively retrieve documents, a key proxy with a DSSE
key is deployed. If a staff member wants to search for a
keyword, the keyword is sent to the key proxy via Intranet.
The key proxy then transforms the keyword in plaintext into
the keyword in DSSE format, and sends it to the server. Here,
only the management authority with keyword-update key k¢
can perform keyword updates, whereas the key proxy with
only the DSSE key cannot. In this way, the authority is able
to control which keywords can or cannot be searched by staff
members. Unfortunately, though this application would be
very useful, no current DSSEs support keyword update.

This paragraph describes the DSSE with keyword updates
in this study. The idea behind the proposed DSSE can be
thought of as a combined use of the existing DSSE [3] and a
secure index variant [24]. More precisely, the existing DSSE
is used for the regular DSSE operations, but in addition to the
DSSE index, for each document the data owner constructs
a secure index that includes all the single words that are in
the document but are not in the current dictionary. Note that
since DSSE [3] and secure index [24] both construct indexes,
the indexes in [3] and in [24] are called the DSSE index
and the secure index, respectively. In essence, the secure

1723

IEEE Access

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

authority

1

1

1

1

1

1

1

1

i

: DSSE keys
s KO
i' taff | Search

i uest

1

i key proxy
11 staff

2

1

1

1

E staff

I 3

1 .

! one of offices

management

; untrusted
search cloud server
response
(ciphertext)

FIGURE 6. A conceptual use case of DSSE with keyword updates.

B,

FIGURE 7. A DSSE index.

index for each document contains all keywords not in the
current dictionary. Once index construction is complete,
the DSSE and secure indexes are sent to the server. To process
the add-keyword trapdoor, the server for each secure index
checks whether the new keyword appears, and then modifies
the DSSE index accordingly. To process the del-keyword
trapdoor, the server modifies the DSSE index first, and then
inserts the deleted keyword into the proper secure indexes.
An illustrative example of how the proposed DSSE works is
given in Figures 7, 8 and 9. More specifically, consider three
documents fi, f> and f3, and a dictionary consisting of key-
words wi, wp and w3. Document f; contains two words, one
(w1) is in the dictionary, and the other (u) is not. This study
constructs a DSSE index in Figure 7 according to the method
in [3]. The rationale behind the DSSE index in Figure 7 is
to construct obscured linked lists based on keywords (blue
arrows) (called keyword-based linked lists hereafter), and to
construct obscured linked lists based on documents (black
dash arrows) (called document-based linked lists hereafter).
With these two categories of linked lists, the server can

1724

i — K
{ o i
/ S y
j y
s f> 4
P b
LR R
e — i —
i T, .
\ N
| -

FIGURE 8. A DSSE index after add-keyword processing.

perform document updates. In addition, a secure index Bi
is constructed for each document f;. The secure index Bi is
initialized as an empty counting Bloom filter [9]. All of the
words in fi but not in the dictionary are added to B;, for
all 1 < i < n, where n denotes the number of searchable
documents.

B. HYBRID DSSE WITH SEARCH PATTERN HIDING

To design a practical DSSE scheme with search pattern hid-
ing, we modified the models in [5] and [6] and combined them
to propose a new hybrid DSSE (HDSSE) [7]. And limit the
maximum keyword length cannot exceed the keyword key to
produce negligible keywords. The high-level structure of the
HDSSE scheme we propose is present in Figure 10.

This study divides the area used to store the index in the
server into two parts, and uses the blind storage structure in
the part containing the inverted index.

The purpose of using a blind storage scheme is to allow the
user to store a set of files on an untrusted remote server, but
the server has no way of knowing how many files are stored,

VOLUME 8, 2020

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

IEEE Access

FIGURE 9. A DSSE index after del-keyword processing.

Server
I A \

BS structure lSPS structure without hierarchy | n:‘::‘:"
\ 4)
Invert index 1, Forward index rp
Upload Download Token communication

|S¢.'m’.'h History | E Keyword Kcy|

FIGURE 10. The high level for our hybrid DSSE scheme.

or the length of any single file. Although the server knows he
file exists when the user retrieves it, and later knows that the
user downloaded the file, the server cannot know the name of
the file, and does not know the contents of the file. The blind
storage scheme proposed by Naveed et al. also has the ability
to add, update or delete files.

The blind storage scheme proposed by Naveed et al. is
called SCATTERSTORE, and is very easy to use. This study
uses the location generated by the pseudo-random function to
store a file, and then treat the file as a set of blocks. The server
only knows the superset of the file’s location, not its exact
location; each file only corresponds to a set of locations, and
does not affect the files corresponding to the locations outside
the set. This scheme requires only simple equipment, and is
highly efficient in practical use.

The structure of the part of the storage containing
the forward index emulates the structure proposed by
Stefanov et al., but without hierarchy levels in the proposed
structure. This allows a user to release a token to search for
keyword w. In this way, the server can decrypt all the data cor-
responding to the token, and can ensure that the sensitive data
is known by the server, because the server cannot obtain any
additional information during this process, and each token
corresponds to a keyword.

VOLUME 8, 2020

In Stefanov et al.’s scheme, if a file needs to be added to the
server, and it is known that the file contains keyword w, it is
necessary to first determine how many files already contain w.
Assuming that there are already i — 1 files containing w,
the hash function is used to encrypt w, x, add and i together.
Similarly, if the user wants to delete the document, the hash
function is used to encrypt w, x, del and 7, and the encrypted
result is stored. When the user wants to search for a document
containing w, a token is generated to retrieve and decrypt the
above stored data.

V. EXPERIMENT AND RESULT

We implemented each DSSE scheme discussed in Section 3 in
C++ using the Crypto++ [25] open source library. We used
AES to generate block ciphers and constructed a pseudo-
random function [26]. The hash function was implemented
using HMAC SHA256 and CMAC AES128. We used the
Enron email dataset [27], as shown in Table 1 and Table 2,
to test each DSSE. We stored each data structure on hard
disk rather than in memory, because there was insufficient
memory available on the test device to store that quantity of
data. However, some DSSE schemes have very low hard drive
efficiency, so we picked about 256 MB data from the Enron
dataset to test build performance for each DSSE scheme.
For add testing, we added two KB sized files; and for delete
testing, we chose two files that were added at build time. For
search testing, we searched ten frequently used words twice.
The build dataset information is shown in Table 3 and Table 4.

TABLE 1. The information of Enron email dataset.

The number of file 517,375
The number of unique keyword 1,806,218
The number of file-keyword pairs 105,808,042

TABLE 2. The size information of Enron email dataset.

Full dataset bytes KB MB
The sizer of file 1,421,103,627 | 1387796.51 1355.27
The size of list 663,832,713 648274.13 633.08
The size of index 1,186,632,993 | 1158821.28 1131.66

TABLE 3. The information of Enron email dataset for building test.

The number of file 79,986
The number of unique keyword 411,758
The number of file-keyword pairs 17,739,458

TABLE 4. The size information of Enron email dataset.

Full dataset bytes KB MB

The sizer of file 267,809,999 261553.20 255.40
The size of list 112,464,559 109828.67 107.25
The size of index 199,431,709 194757.53 190.19

A. EXPERIMENT ENVIRONMENT
We run all programs as a single process on a laptop with
i5-4210U CPU and 8 GB RAM. All data structures were

1725

IEEE Access

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

stored on the local solid state disk. First, we tested each DSSE
scheme with a simple set, as shown in Table 2, and recorded
build, search, add, and delete time. Then we tested each DSSE
scheme with the 256 MB Enron email data subset, as shown
in Error! Reference source not found.Table 3 and Table 4.

B. RESULTS

We measured performance using the number of pairs per sec-
ond. For the search test, we also measured response time,
because this is more intuitional.

1) BUILD TEST

The CJJJ scheme had very high performance due to the
two-level structure and packing technique. When the dataset
is medium, it packs several file identifiers to one ciphertext,
stores them to dictionary, and uses pointers to retrieve these
ciphertexts. The pointers are stored in an array. When the
dataset is very large, the data is stored as in the medium size
case, but the pointers are also packed and stored in an array.
This structure reduces disk access and encryption times when
building and searching, so has high efficiency.

Larger databases may result in tables that are too large,
and the index will likely exceed the RAM capacity. The CJJJ
method is not feasible in this case. Therefore, for each text
column, the CJJJ scheme creates multiple tables. Tables can-
not be too large, leaving enough of a RAM margin for the
computer. The CJJJ scheme also requires that id-word pairs
be evenly distributed across the table, however the same
‘word’ value must be in the same table. In addition, if nec-
essary, the atomic column in the original table can also be
similarly transformed.

As can be seen from the experiment results, the efficiency
of the NPG scheme is also very good. The storage system
designed consists of two main parts: the user, and the storage
server. The function of the server itself is only downloading
and uploading data, and the structure is simple, so it is very
efficient when creating the system. In order to support the
creation of the NPG scheme system, and to perform various
database operations, the system requires several additional
functions. The first is the key generating function. After
inputting parameters, this function can generate keys corre-
sponding to many cryptographic primitives simultaneously.
The system is able to implement the NPG scheme in con-
junction with the above key set and some parameters. These
parameters include the upper bound of the amount of data
stored, the files that the system initially stores, and the IDs
of those files. Finally, the system also needs to establish
the file access function. This function combines the above
established information corresponding to the user’s required
operations, including uploading, downloading, updating and
reading files. These operations should be able to interact cor-
rectly with the server and output the data required by the user.
The contents of the file are placed in an encrypted data col-
lection, and stored in a large array. The location file locations
are provided by a pseudo-random number generator. These
data and their interactions are stored in the server. As can be

1726

seen from the above, the process of establishing the system is
not troublesome, so its efficiency is also good.

The performance of the HK scheme in the build test is
similar to that of the NPG scheme, and it is faster than many
DSSE schemes. The way to achieve this is to obtain the
index from the search token. This saves time during system
construction, and improves efficiency in the build test.

The principle of the HK scheme is to obtain the index in
the access pattern. More specifically, the token and ciphertext
are used to construct a list of stored indexes. However, this
approach may require that the system operates for some time
to achieve the desired search efficiency.

The number of HK scheme indexes has a linear rela-
tionship with the number of keywords. When constructing
the system, the user can choose whether or not to store
search history. This mainly refers to tokens used previously.
This will directly affect the subsequent processing of the
ciphertext to be stored. Saving a historical search record
can improve the efficiency of the encryption in subsequent
operations, but increase the time required to construct the HK
scheme, because the server will create this record regardless
of whether the user has established a history of the search.

SPS, the server data structure is hierarchical, with each
level having a client generated key and 2/ elements to store
encrypted data (keyword-file pairs), where/ =0, 1,2, ..., L
is the level; and L is the maximum levels available in server,
which is depend on the number of keyword-file pairs. The
conceptual data structure includes the keywords, file IDs,
opcode, and a counter for a given keyword and opcode,
where opcode can be add or del, representing adding or
deleting a keyword-file pair in the encrypted index, respec-
tively. To speed access to each element in a level, a hash
table is used to look up the elements, where the hash value
is generated from the level key, keyword hash, opcode, and
counter. This allows the server to access any element in
constant time. We modified the building protocol to increase
speed by computing the level number in advance, rather than
updating every time. Figure 10 shows the main algorithm
of SPS to encrypt data, and Figure 11 shows the conceptual
unencrypted data structure.

token, := Fkl(hash(w))

hkey := Higyen (0ll0p]lcnt)

cl = id@Hlnkcnl(1 ||0P||Cnt)

c2 := Encrypt y(w, id, op, cnt)
op = add or del

FIGURE 11. Main algorithm for SPS scheme to store data to server.

Generally, the index-based SSE techniques use an
encrypted inverted index, but the SPS scheme is different.
The SPS scheme stores document-keyword pairs in a hier-
archical structure, and the level of the hierarchical structure

VOLUME 8, 2020

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

IEEE Access

k2 [n‘, 1d, op, rn(J [u\" Idl, op, ;nl] [w, 1d, op, ;nl] [w, I, op, (‘MJ
"

FIGURE 12. The conceptual unencrypted data structure on server for SPS
scheme, where hkey is used to hash value to access in constant time.

is logarithmic. The SPS scheme uses the following method:
if a document x contains keyword w to be added to the
collection, and x is the ith document containing w, then the
hash table is used to store the encrypted value of the tuple
(w; x; add; 1). Similarly, when a document x is removed
from the collection, the tuple (w; x; del; i) is encrypted and
stored. If a user wants to search for keyword w in the case
of encryption, all the aforementioned hash table keys will be
retrieved (and decrypted).

The proposed HDSSE system is a combination of [5], [6],
and [7] so its performance is between them. The build perfor-
mance of all systems is shown in Figure 13.

2) SEARCH TEST

We searched the same keyword twice to show the perfor-
mance improvement after the first search for HK and the
proposed HDSSE systems. In the HK scheme, the user sends
the search token to the server, and the server uses the token
as the key and the random number stored on forward index as
input for the keyed hash function. If the ciphertext matches
the output of keyed hash function, the server returns the
file ID. The server also generates the invert index (indexed by
the search token directly) and saves the search result. If the
same token is queried by the user again, the server can look up
the invert index directly and does not need to scan the whole
forward index. Figure 14 and Figure 15 show the main idea
for HK scheme.

HDSSE updates after every search to hide the search
pattern, so the performance is lower than the other DSSE
systems. The average response time for each DSSE scheme is
shown in Figure 16 and the average performance of the search
for each DSSE scheme is shown in Figure 17.

To implement the HK scheme, several data structures, such
as lists and hash tables, are required. In order to search in the
case where a file has been encrypted, the operations involved
include the user performing the encryption operation, gener-
ating the token, and searching for the file in the server. How-
ever, it should be noted that the encrypted object is not limited
to the file itself, but also includes encryption of keywords
or other tools used to search for files. The encryption does
not need to be performed by the user’s device, as long as the
storage server does not reveal the plaintext. The search token
is also generated by the user who holds the key. The goal
of this study is to have the server storing the files use this
token to find all the corresponding ciphertexts, instead of just
finding one.

VOLUME 8, 2020

In such a scheme, the primary concern is whether the
operation mode described above can guarantee the security
of the access pattern. In addition, the seriousness of the
damage if the pattern is leaked must be determined. Since
the user can search all the ciphertexts in one round of com-
munication, a third party can obtain the access pattern via
monitoring. Thus, in order to prevent the access pattern being
leaked, some restrictions must be added, which will reduce
performance quality and the practicality of the technique.
Hahn et al. used the access pattern to create a list of indexes
to implement the HK scheme. They encrypted and stored the
keywords of each file. After searching for keywords, they put
the file identifiers of all the files into the inverted index of the
keyword, so that the keyword became the key of the index.
The encrypted keyword then became a token for searching.

Of course, as the file changes, the keyword must be
updated, especially those keywords that have already been
searched. These keywords and the corresponding file iden-
tifiers are placed in the inverted index in the operations
described above. Therefore, if the file is changed, the key-
word must be corrected to the related inverted index, other-
wise, there will be multiple indexes to be searched, resulting
in lower performance. If the user can provide the server with
keywords that have already been searched, the server can
correctly maintain the inverted index, increasing efficiency.

It is safe to say that the performance of the CJJJ scheme
in the search test is second only to that of the HK scheme.
Although in the first search, CJJJ performed much better than
the HK scheme. However, after the second search, the search
results of the HK scheme are about six times that of the CJJJ
scheme. On the other hand, the CJJJ scheme is far better than
the other DSSE schemes.

The CJJJ scheme method is to generate an identifier for the
stored file and the corresponding keyword, and create a dic-
tionary to store these identifiers to assist the search operation.
This method is actually not uncommon. When searching,
the user enters the key and keyword, and the server outputs the
identifier. When the identifier is stored, the server encrypts
it, and the CJJJ scheme uses a specific counter to provide
the corresponding label. The identifier can then be decrypted
and output. In other words, in order to perform the search
operation, in addition to matching the corresponding data,
the server must compute the label for the keyword and decrypt
the identifier stored in the dictionary. Since the file and the
keyword are stored in pairs, the multiple searches for the same
keyword will yield the same result. If a keyword corresponds
to n files, then the CJJJ scheme will perform n searches in the
dictionary to find the label to be provided. In the past, many
DSSE schemes claimed to have good performance. The stan-
dard comparison method was to measure the number of files
found in a specific time, but when the amount of data is very
large, other factors must be considered. If the dictionary has to
be stored in a secondary storage device that reads slower than
the memory, the overall performance will be slowed down by
each lookup in the secondary storage device. This problem
does not only appear in the CJJJ scheme. Many schemes with

1727

IEEE Access

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

Build

(pars/s)

1036 1049

Performance

131997

SUBE (HK) @DSSE (C117) 0 Our HDSSE

FIGURE 13. The performance of the first building for each DSSE scheme.

tokenwi =F (W)
generate a random number s;
¢i = Hroken,, (|15

FIGURE 14. Main algorithm to generate encrypted forward index for HK
scheme.

ny[token,y) e lidtra))| 1y fiate2)) |
id(f2) 2%

id({f1)

Invert index aerver Forward index 1y

FIGURE 15. The two index maintained by the server in HK scheme.

similar practices have their search speed reduced by slow
storage devices. Therefore, when dealing with a large amount
of data, the CJJJ scheme replaces the dictionary with an array,
improving efficiency.

3) ADD TEST

SPS has very low performance due to its level tree structure
and high security. To search for a given keyword, the user
generates search tokens for each level and forwards them
to the server. The server uses the tokens to obtain the hash
values for indexing the elements and finds the corresponding
keyword pairs for both opcodes. The token allows partial
decryption of each element to obtain the file ID containing
the keyword and returns this to the user. Note that in the worst
case (add k pairs and then delete k — 1 pairs), SPS has lower
efficiency because the server will search 2k + 1 times for a
single result. Consequently, an extension keyword-file pair
was proposed to record the corresponding add pair level. This
ensured the search operation took sub-linear time.

1728

In the NPG scheme, each file is divided into many blocks
and stored scattered within an array. The array is encrypted
and uploaded to cloud storage. Because the blocks are stored
in pseudo-random locations within an array, where the pseudo
random set is larger than the number of blocks for a file,
the server cannot know the total number of files or the size of
any file until it is accessed. When the user wants to retrieve
a file from BS, they compute the pseudo-random location(s)
for the file and download the corresponding blocks from the
server, then decrypt them to access the file. The file can
be updated by re-encryption and uploading. There is a very
simple way to build DSSE via BS by treating the invert index
for a keyword as a file and uploading all indexes to BS.
We update the invert index for every keyword, so it also has
low performance when adding new files. The performance of
adding new file for each DSSE scheme is shown in Figure 18.

To implement the HK scheme, several data structures, such
as lists and hash tables, are required. In order to search in the
case where a file has been encrypted, the operations involved
include the user performing the encryption operation, gener-
ating the token, and searching for the file in the server. How-
ever, it should be noted that the encrypted object is not limited
to the file itself, but also includes encryption of keywords
or other tools used to search for files. The encryption does
not need to be performed by the user’s device, as long as the
storage server does not reveal the plaintext. The search token
is also generated by the user who holds the key. The goal
of this study is to have the server storing the files use this
token to find all the corresponding ciphertexts, instead of just
finding one.

In such a scheme, the primary concern is whether the
operation mode described above can guarantee the secu-
rity of the access pattern. In addition, the seriousness of
the damage if the pattern is leaked must be determined.
Since the user can search all the ciphertexts in one round of
communication, a third party can obtain the access pattern

VOLUME 8, 2020

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications I E E EACC@SS

Search Response Time

FIGURE 16. The average response time for each DSSE scheme.

Search Performance

FIGURE 17. The average performance of the search for each DSSE scheme.

Add Performance

20000

18000

16000

14000

12000

(pair/s) 10000
8000

6000

4000

2000 422 9015 2
0 _— ——

18023

4204

ODSSE (KPR)@PDSE with Small Lealags GFS

FIGURE 18. The performance of adding new file for each DSSE scheme.
via monitoring. Thus, in order to prevent the access pat- the technique. Hahn et al. used the access pattern to create a
tern being leaked, some restrictions must be added, which list of indexes to implement the HK scheme. They encrypted

will reduce performance quality and the practicality of and stored the keywords of each file. After searching for

VOLUME 8, 2020 1729

IEEE Access

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

Delete Performance

4500
4000
3500
3000
(pairs/s)

, o] oos

EDE3E (KPR) OPDSE with 8mall Lealzass 3F8

=}

4136

FIGURE 19. The performance of deleting for KPR, SPS, HK, and C}JJ scheme.

keywords, they put the file identifiers of all the files into the
inverted index of the keyword, so that the keyword became
the key of the index. The encrypted keyword then became a
token for searching.

Of course, as the file changes, the keyword must be
updated, especially those keywords that have already been
searched. These keywords and the corresponding file iden-
tifiers are placed in the inverted index in the operations
described above. Therefore, if the file is changed, the key-
word must be corrected to the related inverted index, other-
wise, there will be multiple indexes to be searched, resulting
in lower performance. If the user can provide the server with
keywords that have already been searched, the server can
correctly maintain the inverted index, increasing efficiency.

It is safe to say that the performance of the CJJJ scheme
in the search test is second only to that of the HK scheme.
Although in the first search, CJJJ performed much better than
the HK scheme. However, after the second search, the search
results of the HK scheme are about six times that of the CJJJ
scheme. On the other hand, the CJJJ scheme is far better than
the other DSSE schemes.

The CJJJ scheme method is to generate an identifier for the
stored file and the corresponding keyword, and create a dic-
tionary to store these identifiers to assist the search operation.
This method is actually not uncommon. When searching,
the user enters the key and keyword, and the server outputs the
identifier. When the identifier is stored, the server encrypts
it, and the CJJJ scheme uses a specific counter to provide
the corresponding label. The identifier can then be decrypted
and output. In other words, in order to perform the search
operation, in addition to matching the corresponding data,
the server must compute the label for the keyword and decrypt
the identifier stored in the dictionary. Since the file and the
keyword are stored in pairs, the multiple searches for the same
keyword will yield the same result. If a keyword corresponds
to n files, then the CJJJ scheme will perform n searches in
the dictionary to find the label to be provided. In the past,
many DSSE schemes claimed to have good performance.

1730

The standard comparison method was to measure the number
of files found in a specific time, but when the amount of
data is very large, other factors must be considered. If the
dictionary has to be stored in a secondary storage device
that reads slower than the memory, the overall performance
will be slowed down by each lookup in the secondary stor-
age device. This problem does not only appear in the CJJJ
scheme. Many schemes with similar practices have their
search speed reduced by slow storage devices. Therefore,
when dealing with a large amount of data, the CJJJ scheme
replaces the dictionary with an array, improving efficiency.

4) DELETE TEST

SPS has low performance because the data structure is exactly
equal to the adding operation. We did not test delete perfor-
mance for NPG and the proposed HDSSE systems because
they delete files directly using the file system. The perfor-
mance of deleting for KPR, SPS, HK, and CJJJ scheme is
shown in Figure 19.

In terms of the deletion operation, it can be seen from
Figure 15 that the HK scheme is the most efficient because
when the HK scheme performs the delete operation, the user
simply informs the server of the file identifier. The fewer
steps required, the faster the performance will be. The HK
scheme speed is second only to the CJJJ scheme. The CJJJ
scheme creates a list on the server to help the server find
the data to be deleted. Moreover, compared to other DSSE
schemes, the CJJJ scheme does not reclaim the storage space
immediately after deleting the data. Since the number of dele-
tion operations is relatively small, the CJJJ scheme instead
organizes the data on a regular basis instead of reclaiming the
storage space after deletion. This also reduces the chance of
revealing sensitive information. When a record and its corre-
sponding keyword are deleted from the server, the user simply
gives the server the corresponding revocation identifier. The
process requires little time, as there are few steps involved.

As can be seen from Figure 15, the KPR scheme ranks third
in terms of performance. This is related to the complexity

VOLUME 8, 2020

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

IEEE Access

of the deletion process. In order to protect users’ privacy,
the DSSE scheme often encrypts related lists of various infor-
mation. This makes it cumbersome to make any changes to
the file. It is even difficult to determine to which node in the
list the file being processed corresponds, because the data is
already encrypted. Moreover, the chained list relies on the
link of the pointer to maintain the correctness of the data.
In the case of encryption, it is also difficult to maintain the
correct pointer for each piece of data, and it may be difficult
to identify available positions on the list.

In order to solve these problems, the KPR scheme adds a
data structure that supports the delete operation. This design
is rare in other DSSE schemes, but allows the server to handle
the problem of modifying the list of pointers and finding
the location of the node using a token and this extra data
structure. When the user wants to delete a file, the server
must delete its corresponding index, and then correct the
data corresponding to the file in the keyword list. The server
must use the delete token to find the record in the delete list,
and then update the delete list and the various lists corre-
sponding to the keyword. It should be noted that the token
itself will not have the relevant information of the keyword.
However, the server will know the identifier corresponding to
the keyword in the process of deleting. In the server, each file
has a corresponding node in the delete array and the search
array, and in the two arrays, the nodes of the same file also
correspond to each other. Therefore, when deleting a file, it is
necessary to process the nodes in the two arrays at the same
time. After the identifier receives the relevant information of
the keyword, each time the server corrects the message of the
deleted keyword, the location information of the keyword in
the search array is also known. In this way, the server can
maintain the correctness of the search array. However, these
processes will inevitably have some impact on efficiency.
In addition, the KPR scheme encrypts the pointer stored in
each node in the array, but the server can modify the pointer
without decrypting the node in the array. The encryption
method used is a common XOR operation, so this encrypted
action is still efficient.

VI. CONCLUSION

This paper compared the performance of seven DSSE
schemes, including SPS, NPG, KPR, SPS, HK, CJJJ and
the proposed DSSE scheme combining modified SPS, NPG,
and HK, called HDSSE. From the experiment results, each
scheme has its own advantages and disadvantages. If only
speed is compared, then HK is very good for searching and
adding and deleting files. However, when comparing secu-
rity programs, sometimes other factors must be taken into
account. Some users require a higher level of security to pre-
vent illegal access to sensitive information. This is especially
true in the IoT application environment, because IoT equip-
ment collects extremely detailed information from users, and
there could be a significant risk to user privacy if this informa-
tion is not sufficiently secure. The proposed HDSSE solution
therefore prevents access patterns being leaked. The proposed

VOLUME 8, 2020

scheme thus requires a significant amount of time to search
for data. However, the experiment also shows that although
the proposed HDSE solution does not achieve the fastest
implementation when adding files, it is only slower than HK
and CJJJ. When deleting files, it only relies on the file system,
and so requires little time.

ACKNOWLEDGMENT

The Enron email data used to support the findings of this
study have been deposited in https://www.cs.cmu.edu/ ./
enron/. This article was presented in part at the Institute of
Electrical Engineering, National Taiwan University, 2015.

REFERENCES

[1]1 D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. IEEE Symp. Secur. Privacy, May 2000,
pp. 44-55.

[2] C.FE Wu, Y. W. Ti, S. Y. Kuo, and C. M. Yu, “Benchmarking dynamic
searchable symmetric encryption with search pattern hiding,” in Proc. Int.
Conf. Intell. Comput. Emerg. Appl., 2019.

[3] S. Kamara, C. Papamanthou, and T. Roeder, ‘“‘Dynamic searchable sym-
metric encryption,” in Proc. ACM Conf. Comput. Commun. Secur., 2012,
pp. 965-976.

[4] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, and M. Rosu,
“Dynamic searchable encryption in very-large databases: Data structures
and implementation,” in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS),
2014.

[5] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic search-
able encryption with small leakage,” in Proc. Netw. Distrib. Syst. Secur.
Symp. (NDSS), 2014.

[6] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable
encryption via blind storage,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2014, pp. 639-654.

[7]1 F. Hahn and F. Kerschbaum, “Searchable encryption with secure and
efficient updates,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2014, pp. 310-320.

[8] O. Goldreich, Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[9] E.-J.Goh, “Secure indexes,” Cryptol. ePrint Arch., vol. 2003, p. 216,2003.

[10] Y.-C.Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” in Applied Cryptography and Network Secu-
rity, vol. 3531, J. loannidis, A. Keromytis, and M. Yung, Eds. Berlin,
Germany: Springer, 2005, pp. 442-455.

[11] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ““Searchable sym-
metric encryption: Improved definitions and efficient constructions,”
J. Comput. Secur., vol. 19, no. 5, pp. 895-934, Jan. 2011.

[12] K. Kurosawa and Y. Ohtaki, “UC-secure searchable symmetric encryp-
tion,” in Financial Cryptography and Data Security, vol. 7397,
A. Keromytis, Ed. Berlin, Germany: Springer, 2012, pp. 285-298.

[13] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters, “Fully
secure functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption,” in Advances in Cryptology—EUROCRYPT,
vol. 6110, H. Gilbert, Ed. Berlin, Germany: Springer-Verlag, 2010,
pp. 62-91.

[14] S. Kamara and C. Papamanthou, ‘“‘Parallel and dynamic searchable
symmetric encryption,” in Financial Cryptography and Data Security.
Springer, 2013, pp. 258-274.

[15] M. Ma, D. He, N. Kumar, K.-K. R. Choo, and J. Chen, “Certificateless
searchable public key encryption scheme for industrial Internet of Things,”
IEEE Trans. Ind. Informat., vol. 14, no. 2, pp. 759-767, Feb. 2018.

[16] C.Gao,S.Lv, Y. Wei, Z. Wang, Z. Liu, and X. Cheng, “M-SSE: An effec-
tive searchable symmetric encryption with enhanced security for mobile
devices,” IEEE Access, vol. 6, pp. 38860-38869, 2018.

[17] L. Wu, B. Chen, K.-K. R. Choo, and D. He, “Efficient and secure search-
able encryption protocol for cloud-based Internet of Things,” J. Parallel
Distrib. Comput., vol. 111, pp. 152-161, Jan. 2018.

[18] K. Riad and L. Ke, ““Secure storage and retrieval of IoT data based on pri-
vate information retrieval,” Wireless Commun. Mobile Comput., vol. 2018,
2018, Art. no. 5452463.

1731

IEEE Access

Y.-W. Ti et al.: Benchmarking Dynamic SSE Scheme for Cloud-loT Applications

[19] Y. Miao,J. Ma, X. Liu, X. Li, Z. Liu, and H. Li, “Practical attribute-based
multi-keyword search scheme in mobile crowdsourcing,” IEEE Internet
Things J., vol. 5, no. 4, pp. 3008-3018, Dec. 2017.

[20] L. Yang, Q. Zheng, and X. Fan, “RSPP: A reliable, searchable and privacy-
preserving e-healthcare system for cloud-assisted body area networks,” in
Proc. IEEE Conf. Comput. Commun., May 2017, pp. 1-9.

[21] S. K. Ocansey, W. Ametepe, X. W. Li, and C. Wang, “‘Dynamic searchable
encryption with privacy protection for cloud computing,” Int. J. Commun.
Syst., vol. 31, no. 1, pp. 1-8, 2018.

[22] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable sym-
metric encryption: Improved definitions and efficient constructions,”
presented at the 13th ACM Conf. Comput. Commun. Secur., Alexandria,
VA, USA, 2006.

[23] C.Bosch, A. Peter, B. Leenders, L. Hoon Wei, T. Qiang, and W. Huaxiong,
“Distributed searchable symmetric encryption,” in Proc. 25th Annu. Int.
Conf. Privacy, Secur. Trust (PST), 2014, pp. 330-337.

[24] W. Dai. (Feb. 20, 2013). Crypto++ Library 5.6.2. [Online]. Available:
http:/www.cryptopp.com

[25] L.Fan,P.Cao,]J. Almeida, and A. Z. A. Broder, “Summary cache: Scalable
wide-area Web cache sharing protocol,” IEEE/ACM Trans. Netw., vol. 8,
no. 3, pp. 281-293, Jun. 2000.

[26] J. Song, R. Poovendran, J. Lee, and T. Iwata, The Advanced Encryption
Standard-Cipher-Based Message Authentication Code-Pseudo-Random
Function-128 (AES-CMAC-PRF-128) Algorithm for the Internet Key
Exchange Protocol (IKE), document RFC 4615, Aug. 2006.

[27] W. W. Cohen. (2015). Enron Email Dataset. [Online]. Available:
https://www.cs.cmu.edu/~/enron/

YEN-WU Tl received the B.E. degree in
mathematics from Tam-Kang University and
the ML.E. degree in applied mathematics from
. i National Chiao-Tung University, Hsin-Chu,
. Taiwan, in 1995 and 1997, respectively, and the
St Ph.D. degree in computer science and informa-
\ e / tion engineering from National Taiwan University,
\ He is currently an Associate Professor with the
College of Artificial Intelligence, Yango Univer-

Taipei, Taiwan, in 2009.
sity, China. His research interests include algorithm and computation theory.

CHIA-FENG WU received the M.S. degree from
National Taiwan University, in 2015. His research
interest includes searchable encryption.

1732

CHIA-MU YU received the Ph.D. degree from
National Taiwan University, in 2012.

He was a Postdoctoral Researcher with the IBM
Thomas J. Watson Research Center. He was a
Visiting Scholar with Harvard University, Imperial
College London, Waseda University, University of
Padova, and University of Illinois at Chicago. He is
currently an Assistant Professor with the National
Chung Hsing University, Taiwan. His research
interests include differentially private mechanism
design, cloud storage security, and the IoT security. He received the
K. T. Li Young Researcher Award from ACM/IICM, Observational Research
Scholarship from Pan Wen Yuan Foundation, and the Project for Excellent
Junior Research Investigators from the Ministry of Science and Technology,
Taiwan. He has served as an Associate Editor of IEEE Access and the
Security and Communication Networks.

SY-YEN KUO received the B.S. degree in electri-
cal engineering from National Taiwan University
(NTU), Taipei, Taiwan, in 1979, the M.S. degree
in electrical and computer engineering from the
University of California at Santa Barbara, in 1982,
and the Ph.D. degree in computer science from
the University of Illinois at Urbana-Champaign,
in 1987.

He was a Faculty Member of the Department of
Electrical and Computer Engineering, University
of Arizona, from 1988 to 1991, and an Engineer at Fairchild Semiconductor
and Silvar-Lisco, both in CA, USA, from 1982 to 1984. In 1989, he also
worked as a Summer Faculty Fellow with the Jet Propulsion Laboratory,
California Institute of Technology. He spent his sabbatical years as a Visiting
Professor with The Hong Kong Polytechnic University, from 2011 to 2012,
and with The Chinese University of Hong Kong, from 2004 to 2005, as well
as a Visiting Researcher at AT&T Labs-Research, Middletown, NJ, USA,
from 1999 to 2000, respectively. He was the Dean of the College of Electrical
Engineering and Computer Science, NTU, from 2012 to 2015, and the Chair-
man of the Department of Electrical Engineering, NTU, from 2001 to 2004.
He also took a leave from NTU, and has served as a Chair Professor as well
as the Dean of the College of Electrical Engineering and Computer Science,
National Taiwan University of Science and Technology, from 2006 to 2009.
He is currently the Pegatron Chair Professor with the Department of Elec-
trical Engineering, NTU. His current research interests include dependable
systems and networks, mobile computing, cloud computing, and quantum
computing and communications.

VOLUME 8, 2020

	INTRODUCTION
	RESEARCH MOTIVATION
	RESEARCH INTENTION

	BACKGROUND
	DYNAMIC SEARCHABLE SYMMETRIC ENCRYPTION
	GENERAL MODEL FOR A DSSE SCHEME

	EFFICIENCY AND INDEX
	FORWARD INDEX
	INVERT INDEX

	PRIVACY PROBLEM (LEAKAGE)
	INDEX INFORMATION
	SEARCH PATTERN
	ACCESS PATTERN
	FORWARD PRIVACY
	BACKWARD PRIVACY

	SECURITY DEFINITION
	IND-CPA
	IND1/2-CKA
	IND-CKA1/2
	OTHER MODELS
	DYNAMIC IND-CKA2
	DETERMINISTIC ENCRYPTION

	MODEL
	UNTRUSTED SERVER MODE
	RANDOM ORACLE AND STANDARD MODELS

	RELATED WORKS
	KPR DSSE SCHEME
	SPS SCHEME
	NPG SCHEME
	HK SCHEME
	CJJJ SCHEME

	METHODOLOGY
	SEARCH PATTERN HIDING
	INSIGNIFICANT KEYWORD

	HYBRID DSSE WITH SEARCH PATTERN HIDING

	EXPERIMENT AND RESULT
	EXPERIMENT ENVIRONMENT
	RESULTS
	BUILD TEST
	SEARCH TEST
	ADD TEST
	DELETE TEST

	CONCLUSION
	REFERENCES
	Biographies
	YEN-WU TI
	CHIA-FENG WU
	CHIA-MU YU
	SY-YEN KUO

