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ABSTRACT Cancerlectins are significantly important group of lectins that have an inhibitory effect on
cancer cells with respect to their growth. They have a vital role in various tumor cell interactions like
adhesion, growth, metastasis, differentiation and mainly in cellular infection. The investigations associated
with cancerlectins are applicable to relevant studies in laboratories, diagnostics and therapy in clinical
applications, and drug discoveries in targeting cancers. Prediction of cancerlectins is considered a helpful
task due to the fact that they are specifically useful in dissecting cancers. Although, several Bioinformatics
tools have been developed to predict cancerlectins, however, the need for improvement in the quality of its
prediction model requires enhancements in the annotation and determination process of cancerlectins. In this
study, a new model is proposed that builds on statistical moments based features to distinguish cancerlectins
from non-cancerlectins. The currently proposed model achieved an accuracy of 88.36% using jackknife
test which is better than current state-of-the-art models. These outcomes suggest that the use of statistical
moments could bear more effective and efficient results. For the accessibility of the scientific community,
a user-friendly web server has been developed which will associate the researchers in medical science. Web
server is freely accessible at https://www.biopred.org/canlect.

INDEX TERMS Cancerlectins, Hahn moments, lectins, moment invariants, PRIM.

I. INTRODUCTION

In cellular biology, cells can be agglutinated by a kind of
glycoprotein known as lectin. Diverse sugar structures can be
specifically recognized through lectins, but somehow lectins
lack catalytic movement. Lectins are proteins that bind to
carbohydrate molecule and are distributed ubiquitously in
nature [1]-[4]. They play a significant role in recognition
of specific sugar structures and in a variety of cellular pro-
cesses that involve cells, proteins and carbohydrates. They
are able to reversibly bind carbohydrates [5]-[7]. Further-
more, Lectins greatly differ from antibodies. They also play
important role in the innate immune system. They are often
considered to be helpful in mediating against the invading
microorganisms as a first line of defense. As compared to
antibodies, they are not an outcome of response from the
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immune system. However, some antibodies also cause agglu-
tinations by binding themselves to antigens and produce sim-
ilar effects as lectins. Lectins are synthesized and secreted
by almost all organisms, mainly including bacteria, viruses,
vertebrates, plants and invertebrates [8]-[10]. Lectins are also
involved in various biological activities such as growth in
cells, development and differentiation of cells, cell migra-
tion and adhesion, interaction between extracellular and cell,
apoptosis and inflammatory response. Many researchers in
the field of molecular biology and immunology often con-
sider lectins as therapeutics and diagnostics tool [11]-[13].
Leading the cause of death, cancer is the outcome of
abnormal growth of cells which cannot be regulated. Lectins
that are related to cancers are known as cancerlectins.
These lectins are protective against the cancer cell growth
mechanisms. The lectins are suggested to be used in the
anti-tumor drugs development as they have minimum side
effects. According to few recent researches [14]-[17], for
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FIGURE 1. The chemical structure of a lectin found in bananas
(http://www.lookchem.com/cas-117/117675-52-2.html).

impediment of the progression of tumors, many lectins are
used as therapeutic agents which outcomes apoptosis and
agglutination of cancer cells. Nagaimo lectin is believed to
be helpful in the treatment of breast cancer [18]. It has
shown in recent studies that HIV replication is inhibited by
lectins in bananas (Figure.1) and is utilized in the investi-
gations of treatment of AIDS [19]. Deficiency of mannose
binding lectins may result in certain forms of skin infec-
tions and inflammatory skin diseases [13], [20]. Molecu-
lar changes triggered through mistletoe lectins can induct
apoptotic cancer cells and inhibit cancer cell growth [21].
Galectins are highly potential in contributions to prolif-
erations, tumorigenesis, metastasis and angiogenesis and
thus are useful in the treatment and diagnosis of specific
cancers, [11], [13], [22]-[24].

Most research studies suggest that lectins possess anti-
tumor characteristics, but the knowledge of lectin biological
properties and its protein interactions is still not sufficient
for developing lectin based drugs [25], [26]. Furthermore,
the currently available cancerlectins in natural form are lim-
ited and cannot fulfil the most requirements of cancerlectins
based drug discovery. Hence, the need for the cancerlectin
identification process exists significantly to provide affilia-
tion in understanding the molecular biology of cancer mech-
anisms. Due to this fact that the availability of cancerlectins
is limited, the newly discovered cancerlectins are of prime
importance and are considered to be significant targets for
advanced research in several applications of immunology and
cancer research [27].

Many cancerlectins have been identified and annotated
functionally by experimental assays. CancerLectinDB [27]
includes cancerlectins integrated and archived with an over-
whelming majority. The cancerlectins detected and annotated
using experiments in CancerLectinDB [27] are extremely
reliable and accurate. With the sequencing technology
advancing continuously, new cancerlectins are increasing and
being stored rapidly. Similarly, this new continuous experi-
mental detection and storage of cancerlectins has led many
computation prediction models to emerge naturally.

Il. RELATED WORK

In the past, several computational models have been devel-
oped for rapid and cost effective prediction of cancer-
lectins based on their evolutionary information, amino
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acid composition (AAC) and dipeptide composition (DPC).
In [28] they proposed the pioneering work and developed
a prediction model for cancerlectins using AAC, DPC,
split-amino-acid compositions, domain and evolutionary
information. Based on Support Vector Machines (SVM)
with integration of position specific scores and domain
information from PROSITE has shown better results in
comparison with other features. In [29] they utilized g-gap
dipeptides and developed a model for cancerlectin prediction
with accuracy highest among other computational models.
Furthermore, several machine learning models including
Decision Trees, Random Forests, SVMs and Artificial Neural
Networks (ANNSs) have been used in classification of cancer-
lectins. However, the methodologies used in the aforemen-
tioned models do not utilize the most pertinent and obscure
features from cancerlectin sequences and thus lack in pre-
dictive power and particularly accuracies not high enough
to support reliable and efficient predictions. The currently
proposed model produced most relevant and crucial features
which were utilized with Random Forest classification and
achieved the highest accuracy in comparison to the other
state-of-the-art models.

Ill. MATERIALS AND METHODS

A. BENCHMARK DATASET

In order to In order to compare performance of the pro-
posed model with the existing state-of-the-art, originally
constructed benchmark dataset [28] was employed in the
proposed model. This dataset was originally extracted
from CancerLectinDB [27] with 509 cancerlectin protein
sequences. To remove similar sequences CD-HIT [30]
tool was used with 100% similarity ratio. This resulted
in 385 positive cancerlectin sequences. To obtain the negative
dataset, UniProtKB (http://www.uniprot.org) was searched
with keyword “Lectin” and a total of 1550 sequences was
obtained. Furthermore, sequences annotated with ambigu-
ous terms like “by similarity”, “fragment”, “probably”,
“probable” and ‘““‘putative” were excluded which resulted
in 891 lectin sequences. 71 sequences were found to be
common among the 385 cancerlectins and 891 lectins which
were removed and lectins were reduced to 820. Random
385 lectin sequences were selected from 820 lectin sequences
to balance the dataset. Moreover, to remove redundancy bias
and homology, CD-HIT [30] software was used to exclude
sequences having a 50% cutoff ratio for sequence similar-
ity. Finally, the benchmark dataset of 404 sequences were
constructed from which 178 are cancerlectins and 226 are
non-cancerlectin protein sequences. In order to further exam-
ine the performance and efficiency of our proposed model,
an independent dataset was also constructed by collecting
40 cancerlectin and 40 non-cancerlectin sequences manu-
ally from UniProtKB (http://www.uniprot.org) and NCBI
(https://www.ncbi.nlm.nih.gov). The independent dataset
is available at http://www.biopred.org/canlect/supl.html.
Table.1 includes the breakdown of the benchmark dataset.
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TABLE 1. Breakdown of the benchmark datasets.

Lectins Benchmark Independent
Dataset [27] Dataset

Cancerlectins 178 40

Non- 226 40

Cancerlectins

Overall 404 80

Prediction models based on statistical measures mostly
have training and testing datasets. But in case of jackknife
tests, the construction of training and testing datasets is not
required. The benchmark datasets used in jackknife tests can
be defined using eqs.(1):

X=XTux"- (1)

where X represents 178 cancerlectins X~ represents 226
non-cancerlectins and U denotes the symbol of “union” in
the set theory.

B. FEATURE EXTRACTION
The biological sequence formulation is the core requirement
in developing an effective Bioinformatics prediction model.
The sequence is formulated, without losing any sequence-
pattern information or key-order characteristics, with a vec-
tor or a discrete model. The reason for this fact, as explained
in a comprehensive state-of-the-art review [31], that the for-
mulations of a vector requires to be computed as sequences
cannot be handled directly by the existing machine learn-
ing algorithms. However, during this whole process there
might be possible that some chance of the sequence-pattern
information to be lost during a discrete model formula-
tion. To overcome this loss of crucial information from the
sequence of proteins, (PseAAC) pseudo amino acid composi-
tion was proposed by [32]. In almost all areas of systems biol-
ogy and Bioinformatics [31], the concept of Chou’s PseAAC
has been extensively utilized and has become an integral
part of many research studies. In the near past, an efficient
and a very useful web-server called ‘Pse-in-One2.0’ [33]
was developed, an updated version of ‘Pse-in-One’ [34],
which enabled researchers to generate DNA/RNA and
protein/peptide sequence pseudo components for any pre-
ferred feature vector as required by the research community.
Two kinds of model construction are usually used to
present protein samples. Both discrete and sequential mod-
eling is mostly utilized to represent proteins in vector formu-
lations. The sequential model expresses the protein sequence
as its amino acid sequence by the using the following
equation (2):

X =2Z12y7324757¢ ... 27, 2)

where Z; is the first amino acid representation in protein X
and Z;, is the last amino acid. The total length of the sequence
is represented as ‘n’.
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In the second model, discrete model representation of a
protein sample is represented using its amino acid compo-
sition (AAC). The protein X representation using a discrete
model is defined using equation (3):

X=[d do dy ... dyl’ A3)

where d, (a = 1, 2, 3, ...20) represents the useful compo-
nent features defined by the extraction methods using relevant
amino acids in protein X. These components are further uti-
lized in the feature extraction methods based on the statistical
moments.

C. STATISTICAL MOMENTS

In statistics and probability distributions, quantitative mea-
sures of certain types are useful in concentration study of
unique configurations. The studies related to these config-
urations in data collections of pattern recognition problems
are known as moments [35]. Moments are beneficial in
many pattern recognition relevant problems for producing
features that are not reliant on parameters from the given
pattern or sequence [36]-[40].

Many different moment orders are used to describe several
data properties. Some moments are used for estimation of the
size of data and some reveal data orientation and data eccen-
tricity. Various statisticians have formed several moments
based on polynomials and distribution functions. Raw, Cen-
tral and Hahn moments are further utilized to explicate the
problem in the current research study [41].

Raw moments are the moments that are used in mean, vari-
ance and asymmetry calculation of probability distribution.
These raw moments are neither scale-invariant nor location-
invariant. The same process is followed in case of Central
moments, but the calculations are performed using the data
centroid. The central moments are scale-variant, but they
remain location-invariant with respect to centroid as they
are calculated along the data centroid. The Hahn moments
are based on Hahn polynomials. These Hahn moments are
neither scale-invariant nor location-variant [42]-[45]. These
moments are able to extract obscure features from pro-
tein sequences are primarily significant because they are
sensitive to ordered biological sequence information. In
the proposed study, the linear structured protein sequence
is utilized which used 2D version of the aforementioned
moments and hence expressed by eqs.(2). This linear struc-
tured sequence information is further transformed into a
2D notation. A row major scheme, defined in eqs. (4),
is used to transform a linear protein structure to a 2D
structure:

m=[p] @
where ‘p’ is the sequence length of a sample protein and

‘m’ represents the 2D square matrix dimensions. The N’
matrix, in egs.(5), is formed using the ordering obtained from
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equation (4) having ‘k x k’ rows and columns respectively.

[ 0151 0152 O1-j 015 |
0251 0Oz 02 02k
N — : : : : 5
Ois1 Oz Oij Oi« )
| Ok—»1 Ok—2 Ok—j Or—x |

The Raw moments are computed using the values of N’.
The Raw moments of R (a, b), a 2D continuous function
having order (a + b), are computed from eqs. (6):

Rap=3_ > r"ad’N'®.a) 6)

The raw moments from the above equation are computed
up to 3™ order. These raw moments assume the origin of
data as the reference point from where these moments are
computed and the origin is utilized as the distance between
the components [46]-[49]. The Raw moment unique fea-
tures computed up to 3" order are labeled as Rgo, Roi, Rio,
R11, Roz, Roo, R12, R21, R30 & Ros.

The center of gravity of any data is also considered as its
centroid. A data point from where all the data is uniformly
distributed in all directions. These directions are relations of
its weighted average [46], [49]-[51]. The central moments
unique features computed up to 3" order, using the centroid
of the data as their reference point, are computed from the
following eqs.(7):

Ca=)_ =P "W@—"N'(p,q (7)
P q

The unique features from Central moments, up to 3rd order,
are labeled as Cyg, Coi1, Cio, Ci1, Co2, Coo, C12, Co1, C30 &
Co3. Here the centroids are calculated as p and g from egs. (8)
and egs. (9):

- Ry

= —, (8)
P Roo
- Ry

= — 9
7 Roo

For computing Hahn moments, transformation into square
matrix notations from 1D notation is required. Discrete Hahn
moments or orthogonal moments, also known as moments
of 2D, require a square matrix input data in 2D struc-
ture [52]. These moments possess inverse properties as they
are orthogonal in nature. The reconstruction of the original
data can be performed using the discrete Hahn moments
inverse functions. After calculating moments, it is further
observed that the positional and compositional features of
a protein sequence are somehow conserved within the com-
puted moments [35], [41]-[45], [52], [53]. To compute the
Orthogonal Hahn moments, 2D input data in the form of N’
matrix was utilized. The Hahn polynomial of order ‘m’ can
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be computed from eqs.(10):

B (r M) = (M +y = DM = 1y Y (=1
L Cmy (=@M x4y —m— 1), 1
M +y—1)(M — 1), s!
(10)

Here ‘p’ and ‘q” (p > -1, q > -1) are controlling the
shape of polynomials using adjustable parameters. The afore-
mentioned Pochhammer symbol was defined as follows in

eqgs.(11):

B, =PEP+1)..B+s—-1) (11)
And was simplified further by the Gamma operator in
eqgs.(12):

T'®+s)
P®)
A weighting function and square norm are usually used to

scale the raw values of Hahn moments given as in eqs.(13):

®)y = (12)

P

2
Sm

i (ro M) = I (r, M) m=01,....M—1

(13)
Meanwhile, in egs.(14),
Tp+r+@Ulg+r+D@p+qg+r+ 1)y
(P +q+2r + Dm(M —r — 1)!

For the 2D discrete data, the Hahn moments are computed
up to 3™ order as follows in egs.(15):

M—1 —M—1 . oy
Hpg =3 o Doy Nighy” G M)l G M)
pg=0,1,....M—1 (15)

P(r)=

(14)

The Hahn moments based unique features are represented
by Hoo, Hoi, Hio, Hi1, Hoa, Hao, Hiz, Ha1, H3o & Hos.
10 Raw, 10 Central and 10 Hahn moments for every protein
sequence are computed which are up to 3™ order and are fur-
ther unified into the miscellany Super Feature Vector (SFV).

D. POSITION-RELATIVE-INCIDENT-MATRIX(PRIM)

For identifying the protein characteristics, the ordered loca-
tion of the amino-acids in the protein sequences are of piv-
otal significance [36], [48], [51], [54]. The relative position
of an amino acid, in any protein sequence, is considered a
core pattern that utilizes the physical features of the protein
sequence. The PRIM is used to represent the protein sequence
in (20 x 20) order. The relative position of every amino-acid
in the given protein sequence is extracted in the form of the
following matrix using eqs.(16):

_01_>1 O1-2 . 01_>j . 01520
0251 Or52 -+ Oyssj -+ O2500
Ver = | - o : 16
PRM Oi»1 Oisy -+ 0O Oi—20 (16)
| Ok—»1 Ok—2 Ok—j -+ Or—20 |
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Here the indication score of the j position amino-acid is
determined by the N;_,; with respect to the first occurrence
of the i amino-acid. This score is substitution of biological
evolutionary process is performed by amino-acid type ‘j°. The
positional values of 20 native amino-acid occurrences are rep-
resented in alphabetical order. 400 coefficients are obtained
from successful computations from position relative inci-
dences in the form of Nprpyv matrix. (Figure.2) shows the
2D-HeatMap of the summation of all PRIMs from cancer-
lectin benchmark dataset.

10 Hahn moments, 10 Central moments and 10 Raw
moments were computed using the 2D Npryy matrix up to
3" order. 30 more unique features were further incorporated
into the miscellany SFV.

E. REVERSE-POSITION-RELATIVE-
INCIDENT-MATRIX(R-PRIM)

In cell biology, there are often many cases where the biologi-
cal sequences are homologous in nature. This usually happens
when the same ancestor is part of the evolution process and
more than one sequence is evolved from it. In such cases,
the performance of the classifier is hugely affected using
these homologous sequences. Hence, to produce accurate
results, effective and reliable sequence similarity searching
is performed during results processing. In machine learning,
accuracy and efficiency is hugely dependent on the metic-
ulousness and thoroughness of algorithms through which
most pertinent features in the data are extracted. During the
learning phase in machine learning algorithms, learning and
adaptation, of the most embedded obscure patterns in the
data, are performed to undercover the relevant and pertinent
features [36], [48], [51], [54]. R-PRIM and PRIM computa-
tions have the same procedure but only R-PRIM works with
the reverse protein sequence ordering. Computing R-PRIM
uncovered hidden patterns which enabled alleviation of any
ambiguities between homologous sequences. R-PRIM was
also formed as 2D matrix of (20 x 20) order with 400 coeffi-
cients. It is defined by eqs.(17):

[O1-1 O152 -+ 015 ... Oi1o20 ]
0251 Or52 -+ Oyssj -+ O
N porr : : : : 17
R=PRM=1 011 Oiny - 0 0i-20 17
| Ok—s1 Ok—2 -+ Op—j -+ Ors20 |

10 Hahn moments, 10 Central moments and 10 Raw
moments were computed using the 2D Ngr_prpv matrix up to
3" order. 30 more unique features were further incorporated
into the miscellany SFV.

F. FREQUENCY-DISTRIBUTION-VECTOR (FDV)
The distribution of occurrence in every amino-acid of a pro-
tein sequence was utilized to form a frequency distribution
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FIGURE 2. The HeatMap of PRIMs from Cancerlectins benchmark Dataset.

vector (FDV). The FDV is defined as in eqs.(18):
., 00) (13)

Here the occurrence frequency of the i (1 < i < 20) rele-
vant amino-acid is represented as «;. However, the alleviation
of information about the position relevance of amino-acids in
a sequence is performed using these measures. 20 features
from FDV are also further incorporated into the miscellany
SFV.

l"l‘={al’

G. AAPIV(ACCUMULATIVE-ABSOLUTE-POSITION-
INCIDENCE-VECTOR)

The frequency distribution vector stores the distributional
information of amino-acids but does not have any relevant
amino-acid relative positional information. Using AAPIV
the relative positional information was accommodated from
20 native amino-acids in a protein sequence with a length
of 20 associated critical features [51], [54]. These 20 critical
features from AAPIV (see eqs.(19)) are also incorporated into
the miscellany SFV.

AAPIV = {V;, ..., W} (19)

Here W; is from protein sequence R, having ‘n’ total
amino-acids, which can be calculated using eqs.(20):

U; = Z R, (20)
x=1

H. RAAPIV(REVERSE-ACCUMULATIVE-ABSOLUTE-
POSITION-INCIDENCE-VECTOR)

R-AAPIV and AAPIV computations have the same pro-
cedure but only R-AAPIV works with the reverse protein
sequence ordering. Computing R-AAPIV utilized reverse
relative positional information by under covering deep and
hidden patterns of every sample features [51], [54]. R-AAPIV
is formed as the following eqs.(21) and generates 20 valuable
features. These 20 unique critical features from R-AAPIV are
also incorporated into the miscellany SFV.

R —AAPIV = {V;, ..., Wy} 2n
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FIGURE 3. The structure of the random forest classifier.

Here «; is any element of R-AAPIV, from protein sequence
R, having ‘n’ total amino-acids, can be calculated using
eqgs.(22):

W; =) Reverse(R), (22)

x=1

After extracting features using all the aforementioned
methods, the SFV of 150-D features was constructed to be
used for further processing in classification algorithm.

IV. CLASSIFICATION ALGORITHMS

A. RANDOM FORESTS

Many research studies, relevant to bioinformatics, have uti-
lized ensemble learning methods in past. These studies have
performance measures of highly efficient and accurate out-
comes. The aggregation results of many classifiers are uti-
lized in ensemble learning methods. Boosting [55], [56] and
Bagging [57] are the two most commonly used methods
which perform tree-based classifications.

In boosting method extra weights are propagated to points,
through trees which are successive, and then later predicted
incorrectly by the previous classifiers. The prediction is
decided using the weighted vote in the end. In bagging
method, from the data using a bootstrap sample, each tree is
constructed independently and the successive trees do not rely
on previous trees. The prediction is decided using the simple
majority vote in the end.

Random Forests were introduced by [58] which added
randomness as an additional layer to bagging. The classifica-
tion trees construction changed after random forests. These
changes are reflected by using a different bootstrap sample
of data for adding the construction of each tree. In standard
classification trees, the splitting of each node is performed
among all the variables by dividing each node equally. How-
ever, random forests choose the best predictor among a subset
of predictors for splitting of each node, which are chosen
randomly at that node (Figure.3 shows the structure of the
random forest classifier). This strategy is counterintuitive
and performs very well against many other classifiers, such
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FIGURE 4. The flowchart of the overall proposed model.

as discriminant analysis, support vector machine and neural
networks and it is robust against overfitting as well [59].

B. ALGORITHM: SUPERVISED LEARNING USING
RANDOM FORESTS

The python library Scikit-Learn [60] was utilized for the
implementation of random forest classifier for our model
trainings and simulations. The default parameter value
of 10 was increased to 25 in order to increase the number of
processing trees in the classifier. It was observed in previous
study [61], that the theoretical upper limit of trees in random
forest classifier is 128 and will not improve the efficiency nor
the accuracy of classifier further if there is any increase in
upper limit of number of trees. During the experimentation
process, minimal contribution to the accuracy of the classifier
was observed if the forest was implemented using more than
25 trees, but the overall size of the proposed model was
enhanced substantially. (Figure.4) illustrates a flowchart to
show the overall process of the proposed model.

V. EXPERIMENTS AND RESULTS

The overall performance of the proposed model is examined
by some methods that will assess and verify how well the
prediction model has performed. Several parameters based
on estimates and assessments are used to measure the per-
formance of classifiers.

A. JACKKNIFE TEST

During the evaluation of statistical predictors, several cross-
validation tests are applied commonly. Jackknife is con-
sidered a consistent and a reliable test among these tests.
Therefore, many classifiers are assessed by extensive jack-
knife tests in most research studies. The accurate estimation
of amodel can be measured using the jackknife method which
is calculated over the entire dataset. The testing of a model
is performed on the left out items after successful training.
After the training and testing are successfully completed,
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a confusion matrix is obtained through which the true positive
and negative values and false positive and negative values are
utilized to estimate the accuracy associated with items in the
data. The mean of all the accuracies is used at the end for final
accuracy of the prediction model.

During jackknife, each protein sequence is tested and the
rest of the protein sequences are used in calculation of the
remaining parameters. This is performed by leaving out each
protein sequence from the dataset and calculating its esti-
mate and the average of all these estimations from the left
out proteins. The performance of our prediction model on a
benchmark dataset is listed in Table 4.

B. K-FOLD CROSS-VALIDATION TEST
K-fold cross validation (KFCV) technique is most commonly
used by practitioners for estimation of errors in classifica-
tions. Also known as rotation estimation, KFCV splits a
dataset into ‘K’ folds which are randomly selected and are
equal in size approximately. The prediction error of the fitted
model is calculated by predicting the k™ part of the data
which is dependent on other K-1 parts to fit the model.
The error estimates of K from the prediction are combined
together using the same procedure foreachk = 1,2, ..., K.
In the KFCYV tests, the selection of ‘K’ is considered as a
significant attribute. To testify errors in prediction models,
cross validations (K = 10) tests have been used in many
research studies. 10-Fold tests proved to have accurate results
in our proposed model and proved to be much better than
other classifiers. These results are listed in Table 6.

VI. EVALUTAION PARAMETERS

To estimate the performance of the prediction model, three
cross validation methods are often used. For performance
evaluation of statistical based classifiers, sub-sampling
(5-fold or 10-fold cross validation) tests, independent tests
and jackknife tests are most commonly used. Accordingly,
we used jackknife and independent tests to evaluate the per-
formance of the classifier.

Accuracy (Acc), Sensitivity (Sn), Specificity (Sp) and
Mathew’s Correlation Coefficient (MCC) and F-measure
metrics are the most commonly used metrics, in binary clas-
sification problems, in the proposed prediction model to mea-
sure its quality and performance. The eqs.(23) defines these
metrics as follows for analyses of the evaluators.

TP

TP + FN
TN

IN + FP

Accuracy =

Sn =

Sp =
TP+ TN

TP+ TN + FP + FN
TP x TN — FP x FN

~ /(TP 1 FPY(TP + FN)(IN + FP)(IN + FN)
(23)

mcc

Unfortunately, the conventional formulations used in above
metrics lack in intuitiveness and have been difficult to
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TABLE 2. Description of symbols used to define these equations.

Symbols Description of Symbols
Q + The total number of true cancerlectins
+ The total number of true cancerlectins
Q_ incorrectly predicted as non-cancerlectins
Q- The total number of true non-cancerlectins
- The total number of non-cancerlectins
Q+ predicted as cancerlectins

understand as many scientists have faced complex measures
in utilizing them especially the MCC. To address this issue,
Chou’s four intuitive equations were converted by [62], [63]
and these conventional equations utilized symbols which
were introduced in [64]. The symbols that define these equa-
tions are O, Q~, Q% and Q.. The description of these
symbols is defined in Table.2.

From the above correspondence in Table.2, we can define
eqgs.(24):

TP = 0t — 0t
IN =0 — 0%
Q_ oy 24)
FP=0Q7
FN = Q"
By substituting above equation (24) to equation (23) we get,
o+
Sp=1- Q—f
+ —
Accuracy = 1 — %
ot +0- (25)
+
o

o
(&%)

0, -0 ot—07
[ (e

The above eqgs.(25) has the same meaning as the eqs.(23)
but it is more easy to understand and intuitive. Table.3 defines
the detail description of these equations.

The set of metrics used in above Table.3 are not applicable
to multi-labeled prediction models rather they are only useful
for single labeled-systems. A different set of metrics exists
for multi-labeled-systems which have been used by various
researchers in [65]-[68]. The comparison of existing models
with the proposed model is mentioned in Table.4

MCC =

VII. RESULTS AND DISCUSSIONS

It is necessary to compare the proposed novel model with
other state-of-the-art models in order to estimate the per-
formance of the proposed prediction model. The proposed
model was compared with well-known existing classifiers
and Random Forest performed quite better in accuracy and
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TABLE 3. Description of equations used egs. (25).

When,

Then,

Description

Sn

Il
—_

None of the
cancerlectin protein
is predicted as a
non-cancerlectin
protein

All of the
cancerlectin proteins
were incorrectly
predicted as non-
cancerlectin proteins

Sp=1

None of the non-
cancerlectin protein
is incorrectly
predicted as
cancerlectin protein

Il
()

Sp

All of the non-
cancerlectin proteins
are incorrectly
predicted as
cancerlectins

ACC=1,
MCC=1

None of the
cancerlectin proteins
and none of the non-
cancerlectin proteins
were incorrectly
predicted

+

Q

+ 1l

I Q
+

(QIQ
>
QU

ACC=0,
MCC=-1

All of the
cancerlectin proteins
and all of the non-
cancerlectin proteins
were incorrectly
predicted.

ACC=
0.5,
MCC=0

The overall
prediction is not a
better than any other
random prediction
outcome.

efficiency in predicting cancerlectins from non-cancerlectins.
The performance of all the compared classifiers is listed
in Table 6. Furthermore, some models based on computa-
tional methodology have been developed in recent past using
the same benchmark dataset of cancerlectins [27]. In cur-
rent comparison, [28] was the pioneering work in devel-
opment of a prediction model for cancer-lectins based on
amino-acid compositions, dipeptide-compositions and evo-
lutionary information. They utilized SVM with PROSITE
domain information with integration of PSSM (position-
specific-scoring-matrix). The maximum accuracy of 69.09%
was achieved during their study. Similarly, [29] utilized
g-gap dipeptides with obtaining an accuracy of 75.19%.
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TABLE 4. Comparison of the proposed model with state-of-the-art
models based on Jackknife tests.

Classifiers | Sn (%) | Sp (%) | ACC (%) | MCC

CancerPred
(AAC) [28]
CancerPred
(DC) [28]
CancerPred
(Split 2-part) 66.3 64.2 65.1 0.31
[28]
CancerPred
(Split 4-part) 65.1 66.9 66.1 0.32
[28]
CancerPred
(PSSM) [28]
CancerPred
(PSSM-14-
PROSITES)
[28]
CaLecPred
(G-gap
dipeptide)
[29]
PSSM-CTD-
PseAAC [71]
Tripeptide
[71]
Proposed
Model

68.0 64.2 65.8 0.32

67.3 62.8 64.8 0.30

67.9 68.6 68.3 0.36

68.0 69.9 69.1 0.38

69.1 80.1 75.2 -

77.9 71.7 74.8 0.497

75.28 80.53 77.48 -

91.57 85.84 88.36 -

Recently, [69] enhanced the accuracy to 77.48% and used tri-
peptide compositions based on optimal feature subset selec-
tion methodology. However, using these features was still
not useful to obtain an efficient and high accuracy. In con-
trast to the above models, our proposed model has achieved
88.36% accuracy using statistical moments based features
and random forest based classification. The performance of
the current prediction model using jackknife tests on bench-
mark dataset is listed in Table 4. In addition to jackknife tests,
an independent test was also performed using the independent
dataset. The independent dataset consists of 40 cancerlectins
and 40 non-cancerlectins. The comparison of proposed model
and CalecPred [29] webserver using independent dataset
is listed in Table 5 and Table 7. Due to unavailability of
the webservers, other methods such as [28], [70] could
not be utilized for independent tests. Furthermore, 10-fold
cross-validation test was also conducted using random forest
classifier on benchmark dataset and obtained the accuracy
of 90.39% listed in Table 6. The ROCs of 5-fold and 10-fold
cross-validation tests are shown in (Figure.5) and (Figure.6)
respectively. Hahn moments based feature sets utilized in the
currently proposed model are easier for the random forest
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TABLE 5. Comparison of proposed model with state-of-the-art models
based on Independent test.

F-
Classifiers | Sn(% Sp(% ACC(% MCC
(%) | Sp(%) ) | Measure

CaLecPred
(G-gap
. . 59.46 58.14 58.75 0.5714 0.1755
dipeptide)
[29]
Proposed

61.54 71.43 65.0 0.6957 0.3145
Model

TABLE 6. Comparison of classifiers for predicting Cancerlectins using
10-fold cross validations.

Classifier Sn (%) | Sp(%) | ACC (%) | MCC
Naive Bayes 77.48 33.20 53.97 0.1182
PNN 63.14 54.86 58.74 0.1839
Ensemble

66.64 22 2.23 0.4430
(AdaBoost) 77 7
SVM 74.78 72.80 73.73 0.4767
KNN 68.80 79.62 74.55 0.4908
Random Forest 84.96 95.20 90.39 0.8101

Receiver Operating Characteristic (ROC) - Curve

0.8

o
o

ROC fold 0 (AUC = 0.63)
, ROC fold 1 (AUC = 0.95)
’ ROC fold 2 (AUC = 0.94)
’ ROC fold 3 (AUC = 0.96)
0.2 ol ROC fold 4 (AUC = 0.94)
s == Luck
a = Mean ROC (AUC = 0.88 + 0.13)
0.0 + 1 std. dev.

True Positive Rate
o
>
\

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

FIGURE 5. ROC Curve for 5-Fold cross-validation using random forest
classifier.

based classifier to classify the feature vectors in acute time.
Using the computational cost of training and testing, previous
models were not able to produce better results during the
classification process. However, the proposed model results
are highly efficient as compared to previous models.

VIIl. WEBSERVER

As observed in past studies by many researchers [72]-[76],
the development of a web-server is highly significant and
useful for building more useful prediction methodologies.
Thus like most of the research studies by many scientists
in past [49], [51], [54], efforts for a user friendly webserver
have been made to provide ease to biologists and scientists
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TABLE 7. List and comparison of 15 random Cancerlectins tested on
CaLecPred [29] and CanLect webservers.

UniProtKB | CaLecPred [29] CanLect
ID Prediction Prediction
P49257 Incorrect Correct
Q86SR1 correct Incorrect
P11226 Incorrect Incorrect
P05162 Incorrect Correct
POCG48 correct Correct
P82683 Incorrect Correct
POCG47 correct Correct
P62987 correct Incorrect
Q9UHVSE Incorrect Correct
Q13404 correct Correct
Q5NKN4 Incorrect Correct
A4KWAI Incorrect Correct
P09382 correct Correct
Q9Y286 correct Incorrect
Q7Z27M9 correct Correct
Receiver Operating Characteristic (ROC) - Curve
1.0 1
081 ROC fold 0 (AUC = 0.57)
° ROC fold 1 (AUC = 0.95)
© ROC fold 2 (AUC = 0.93)
€ 061 ROC fold 3 (AUC = 0.94)
2 ROC fold 4 (AUC = 0.96)
8 J ROC fold 5 (AUC = 0.91)
g 0.4 A // ROC fold 6 (AUC = 0.96)
S 7 ROC fold 7 (AUC = 0.83)
ol ROC fold 8 (AUC = 0.90)
0.2 ROC fold 9 (AUC = 0.90)
== Luck
- Mean ROC (AUC = 0.88 + 0.11)
0.0 1 + 1std. dev.
0.’0 0j2 0:4 0?6 0:8 1?0

False Positive Rate

FIGURE 6. ROC curve for 10-Fold cross-validation using random forest
classifier.

in drug discovery. The webserver for cancerlectin predictions
is freely available at https://www.biopred.org/canlect which
is developed using a web development framework for python
known as Flask (version 1.1.1). The step-wise instructions to
interact with the webserver are provided below.

A. STEP-1

Open your web browser and navigate to www.biopred.org/
canlect. The first page (see Figure.7) of the webserver is
Home, page from where you can proceed to ReadMe,
Server, Data and Citations pages through provided nav-
igation links. The Server tab navigates to the portal for
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Canloct ReadVe Server Data  Citation  About

Cancerlectin Prediction Server

Cancerlectins are significantly important group of lectins that have inhibitory effect on cancer cells with
fespoct to their growth. They have vital role in various tumor cell interactions like adhesicn, growth,
metastasis, differentiation and mainly in cellular infection. The investigations assaciated with cancerlectins ars
applicable to relevant studies in laboratories, diagnostics and therapy in clinical applications, and drug
discoveries in targeting cancers. Prediction of cancerlectins is considered a helpful task due to the fact that
they are specifically useful in dissecting cancers.

Although, several bioinformatics tools have been developed to predict cancerlactins, howaver, the need for
improvement in the quality of its prediction madel requires enhancements in the annotation and determination
process of cancerlectin. In this study, a new model is proposed that builds on statistical moments based
features to distinguish cancerlactins from non-cancerlectins

FIGURE 7. The GUI of www.biopred.org/canlect webserver for
cancerlectin predictions.

prediction process. Data tab facilitates the user with links
to download the benchmark datasets used during the training
and testing process. Finally, the Citations tab redirects the
user to the page where information about the relevant paper
and its citation is provided. In order to perform the prediction,
kindly click on the Server tab.

B. STEP-2

On the Server page, the user is provided with an empty
text-area where the user can input the cancerlectin or non-
cancerlectin sequence for prediction. The sequence input to
the webserver is required to be in FASTA format. The Submit
button will proceed to the prediction process for the input
sequence. The results of the prediction process will appear on
the Results page. The time of the prediction process totally
depends upon the length of the input sequence.

C. STEP-3
On the Data page, the user is provided with links to download
the benchmark datasets for future experimentations.

D. STEP-4

On the ReadMe page, the user is provided with relevant infor-
mation about the current model which includes the details
about the operation algorithm used for predictions.

IX. CONCLUSION

An efficient and reliable model has been developed in the
current study for predicting cancerlectins using statistical
moments and random forest classifier. Several classification
techniques were proposed to predict cancerlectins, but cur-
rently proposed model proved better in accuracy than the
existing models. Among these models, our proposed model
has achieved highest accuracies of 88.36% using jackknife
tests for the benchmark dataset of cancerlectins and 65.0%
for independent dataset of cancerlectins in classifications
which are respectively so far the best classifications for
prediction of cancerlectin proteins. Table.7 shows the com-
parison of 15 randomly selected cancerlectins prediction
results between the CalectPred and proposed CanLect-Pred
webservers.
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