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ABSTRACT In this study, we developed a framework to localize human lying poses by a camera positioned
above. Our framework is motivated by the fact that detecting lying poses is fundamentally more difficult
than detecting pedestrians or localizing nondeformable objects such as cars, roads, and buildings due to the
large number of poses, orientations, and scales that a human lying on the ground can take. An important
problem with lying pose detection is the training dataset, which hardly accounts for each possible body
configuration. As a solution, we propose a geometric expansion procedure that uses a virtual camera to
increase the number of training images. We also use a Gibbs sampler to generate more training samples
in the feature space on which the system can train its model. Once the training is completed, detection is
performed on a multiscale and multirotational space. Because our framework accommodates a variety of
object detection systems, we report the results for the Faster R-CNN, FPN, and RefineDet models. The
results show that using automatic dataset expansion models systematically improves the results.

INDEX TERMS Human lying pose detection, automatic dataset expansion, perspective transformation,
gibbs sampling, deep learning.

I. INTRODUCTION
Object detection is a fundamental task in modern com-
puter vision systems. Although this task has long been
studied [1], [2], only recently have scientific breakthroughs
combined with more processing power led to market-ready
solutions [19]. Among the most frequently used object detec-
tion systems are those that focus on pedestrians [3], [20] and
face detection [4], [24]. Despite these successful attempts,
object detection remains an open problem for numerous
applications. One unresolved issue is the detection of persons
lying on the ground when viewed from a top-down perspec-
tive. Detecting lying poses is more challenging than detecting
pedestrians and human faces because of the large variations
in the pose and orientation that a body can take when lying
on the ground [13]–[15]; thus, this task requires a specific
solution.

The associate editor coordinating the review of this manuscript and
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Lying pose detection has important uses in numerous
applications [14]. One such application is fall detection
for elders and persons with disabilities living in smart
homes [5], [7], [22]. A 2012 World Health Organization
report revealed that falls are the second-leading cause of
accidental-injury deaths worldwide and that every year,
no fewer than 37 million falls are severe enough to require
medical attention.1 Consequently, efficient visual fall detec-
tion algorithms are key to ensuring the safety of elders
and persons with disabilities staying at home. Lying pose
detection can also be used in conjunction with unmanned
aerial vehicles (UAVs) for rescue missions [8], [9], [25].
With an increasing number of UAVs worldwide, robust and
rotation-invariant object detection methods are becoming
increasingly important.

To date, a limited number of studies have focused on lying
pose detection; state-of-the-art human-shape detectors have

1World Health Organization, www.who.int/mediacentre/factsheets/fs344/
en/.
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TABLE 1. Specific aspects of pedestrian detection and lying pose detection.

FIGURE 1. Left: pedestrians from the INRIA dataset. Right: people lying
on the ground from the XMULP (XiaMen University lying pose) dataset.
Lying pose detection is more challenging than detecting pedestrians due
to the large number of other poses and orientations that a person lying
on the ground may take.

focused more on pedestrian detection. One can use a common
sliding-window-based pedestrian detector to detect people
lying on the ground. However, such a method is likely to fail
because people lying on the ground are rarely in an upright
position. Furthermore, depending on the camera location,
human shapes can suffer from severe perspective distortions,
as shown in Fig. 1. Furthermore, no datasets that contain
images of people lying on the ground have been released
because people do not normally lay on the ground. The main
differences between detecting pedestrians and people lying
on the ground are listed in Table 1.

In this study, we aim to enhance the performance of
human lying pose detection using pose clustering and dataset
expansion. We also propose developing a new dataset called
XMULP (XiaMen University lying pose dataset), as well
as a framework to overcome the challenges associated with
detecting people lying on the ground. Our dataset is fully
annotated and contains a bounding box and a 15-joint skele-
ton for each person. The number of images in the dataset
is increased by applying a series of perspective transfor-
mations. This approach simulates the effect of a camera
moving around the persons lying on the ground. In this
way, persons with similar poses are grouped together. Then,
a D-dimensional feature vector is extracted from each body
image of each class. Given these feature vectors, a new series
of D-dimensional points are generated with a Gibbs sampler.
Since these newly generated points have the same distribution
as the original points, they can be considered new body poses,

thus increasing the richness of the dataset. Then, human lying
pose detectors are trained.

We test three state-of-the-art detectors, namely, the faster
region-based convolutional neural network (Faster R-CNN)
proposed by Ren et al. [10], the feature pyramid net-
work (FPN) proposed by Lin et al. [11], and the refinement
neural network (RefineDet) proposed by Zhang et al. [12].
These detectors are used to locate bodies lying on the ground
following a sliding window strategy or feature learning on a
multiscale and multirotational space.

This study provides the following contributions:

1) We propose a new and fully annotated dataset called
XMULP that contains 1, 316 images of 2, 030 persons
lying on the ground.

2) We propose an automatic data expansion procedure
that increases the size of the training dataset. The
experimental results reveal that methods trained on our
extended dataset are up to two times more accurate.

3) We propose a structured feature learning method based
on a human lying pose 15-joint skeleton such that
the feature channels at a body joint can well receive
information from other joints.

4) Unlike other methods designed for fall detec-
tion [5], [22], our approach works on a single image
and does not need a video feed.

The remainder of this paper is organized as follows.
Section II presents previous works related to lying pose
human detection. Our framework is introduced in Section III,
which includes the methods of geometric expansion, pose
clustering, and feature space expansion with Gibbs sam-
pling. Section IV presents the experimental results, and
Section IV-C presents the conclusions.

II. RELATED WORKS
A. PEDESTRIAN DETECTION
Most studies on human-shape detection focus on pedes-
trian detection methods, which can be divided into three
categories: single-model detectors, part-based detectors,
patch-based detectors, and deep learning (for more complete
pedestrian detection surveys, please refer to [3], [20], [21]).

Single-model detection methods treat each human shape
as a whole without considering the body parts. These meth-
ods assume that the human shape is in an upright posi-
tion with roughly the same pose. These methods typically
extract image features from a scanning windowwithout seek-
ing body parts. Some methods use global features such as
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edge templates, while others use local features such as
Haar-like features, histograms of oriented gradients, chan-
nel features, and local binary patterns. Recently, some
researchers have used machine learning to learn the optimal
features for detecting pedestrians. Dollár et al. [27] proposed
a feature mining strategy to explore a large feature space to
train a boosted classifier. Sermanet et al. [28] used a convolu-
tional neural network to learn pedestrian-specific multistage
features. Ren et al. [29] used dictionaries of the features
learned through K-SVD and aggregated them into so-called
‘‘histograms of sparse codes (HSC)’’.

Part-based detection methods have been proposed to detect
people whose body configuration is more complex than that
of pedestrians. Such methods typically model a person as
a set of connected parts, such as legs, torso, arms, and
head. Mohan et al. trained four distinct part detectors to
locate the head, legs, left arm, and right arm. The detec-
tors’ scores were then fed to a classifier to ensure that the
components have a correct anatomical configuration. Most
part-based detectors need a training dataset with manually
annotated body parts. Felzenszwalb et al. [30] proposed a
different approach that accommodates a weakly annotated
training dataset, i.e., a dataset with only a rectangular win-
dow around each human body. In this method, the position
and orientation of the body parts are initially unknown and
thus treated as latent variables. These variables are learned
and then used to detect the humanoid shapes with an SVM
framework. Recently, Yan et al. [31] proposed an accelerated
version of Felzenszwalb et al.’s method. Bar-Hillel et al. [32]
proposed a scheme for synthesizing and combining a fam-
ily of part-based features in an SVM framework. Such a
scheme can process up to 10 fps when using kd-ferns [33].
Ghiasi et al. [46] described a hierarchical deformable part
model for face detection and keypoint localization that explic-
itly accounts for occlusions. The proposed model structure
enables augmenting positive training data with large numbers
of synthetically occluded instances.

The third family of human-shape detection methods is
patch-based methods. One typical patch-based detection
method is the implicit shape model by Leibe et al. With
this method, a codebook of local appearance is learned by
clustering the patches (typically with k-means or a Hough
forest) during the training phase. During the detection phase,
local features are matched to the codebook entries. Since
human shapes are associated with features that match several
codebook entries, the human body is identified by accumu-
lating the match counts. In this manner, sections of an image
with a large number of match counts are likely to contain a
human shape.

Deep learning has recently been used to detect pedestri-
ans and has achieved promising results [2], [18], [42], [43].
A discriminative deep model was used by Ouyang et al. [42]
for learning the visibility relationship among overlapping
parts at multiple layers. This approach estimates the visi-
bility of pedestrian parts at multiple layers and learns their
relationship with a discriminative deep model. This method

was further expanded using a so-called joint deep learn-
ing [24], [43], whose goal is to jointly learn the pedes-
trian parts to maximize their strengths through cooperation.
Sermanet et al. [47] presented an integrated convolutional
network (convnet) framework for classifying, localizing, and
detecting human shapes with a novel approach for learning
to predict the object boundaries. Xianjie et al. [45] presented
a method for estimating the articulated human pose from a
single static image based on a graphical model with pairwise
relations that make adaptive use of local image measure-
ments and use convnets to learn the conditional probabili-
ties for the presence of parts and their spatial relationships.
Ren et al. [10] merged RPN and Fast R-CNN into a single
network by sharing their convolutional features using the
popular approach of neural networks with ‘‘attention’’ mech-
anisms; the RPN component tells the unified network where
to look.

B. LYING POSE DETECTION
Lying pose detection is more challenging than basic
human (pedestrian) detection [13], [14]. Bodies lying on the
ground may have arbitrary positions and configurations and
may suffer from severe perspective distortions. Papers pub-
lished in this area have mainly focused on two applications:
fall detection [5]–[7], [15] and victim localization for rescue
missions [25]. Mirmahboub et al. [22] proposed a low-cost
and easy-to-implement video-based system for human fall
detection. With a background subtraction method, they ana-
lyzed the temporal variations in a human silhouette and
argued that a sudden increase in the size of the silhouette is a
strong indication that the person just fell on the ground. How-
ever, they did not explain how their system accommodates
multiple people and partial occlusions. Su et al. [5] proposed
a method based on spatiotemporal interest points (STIPs)
from multiple views. The number of local STIP clusters was
designed to indicate the degree of the impact shock and body
vibrations.

The main inconvenience with fall detection methods is
their need for a 30-fps video feed from a fixed cam-
era. These methods are thus inappropriate for videos with
a very low frame rate and/or videos taken by a moving
camera, such as on UAVs. As a solution, some authors
have proposed single-image lying pose detection methods.
Andriluka et al. [25] evaluated four state-of-the-art pedes-
trian detectors, i.e. , HOG+SVM, deformable part model
(DPM) [26], pictorial structure (PS), and a poselet-based
detector. These methods were tested in the context of UAV
search and rescue missions. The evaluation results revealed
that DPM is the top-performing detector and that combin-
ing visual detectors with contextual information such as the
UAV height, orientation, and position helps improve the
performance. Wang et al. [23] proposed an extension to
DPM [26]. Additional robustness was achieved by combin-
ing a viewpoint-specific foreground segmentation into the
detection and body pose estimation stages. Although their
system showed promising results, their testing dataset was
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rather limited, containing images taken by an indoor UAV
flying at a height of 1.2 to 1.6 m looking down with a 15-deg
angle. Another approach is to consider the fall detection prob-
lem as an activity recognition problem. From that perspective,
Qian et al. [34] proposed a method that 1) detects moving
blobs, 2) extracts local and global features from everymoving
blob, and 3) uses a multiclass SVM to recognize the activities
of people, including persons falling on the ground.

C. DATASETS
Most of the datasets used in human-shape detection models
focus on pedestrians. The INRIA human dataset contains
1, 208 images for training and 566 images for testing. The
Caltech pedestrian dataset [21] contains 250, 000 images
with 2, 300 unique pedestrians. The NICTA dataset con-
tains 18, 700 training images and 6, 900 testing images.
Since these datasets contain pedestrians, none can be used
to train a lying pose detection system. One of the few
datasets adapted for lying pose detection was proposed by
Andriluka et al. [25]. However, this dataset contains only
220 indoor-images (all taken by a quadrotor UAV flying at
a height of 1.5 to 2.5 m) and is far too limited to train a
good detector. The multiple cameras fall dataset2 contains
24 scenarios recorded with 8 IP video cameras. The first
22 scenarios contain fall and confounding events, and the last
2 scenarios contain only confounding events.

D. DATASET EXPANSION
Machine learningmethods have long been facing the problem
of limited training data. One solution is dataset expansion
(also called data augmentation) to create fake data that can
be used to train the model. Simply flipping, rotating, and
cropping images can provide a positive impact for several
applications [35]. As will be shown in Section III-B, our geo-
metric expansion method is somewhat similar to that method
but is adapted to the context of top-down lying pose detection.

Another increasingly popular solution to limited training
datasets is transfer learning [36], which trains a model on
another [yet richer] dataset and then refines the model on a
smaller application-specific dataset. The first dataset can be
a generic one such as ImageNet or an easy-to-generate syn-
thetic dataset. Recent studies have shown that when synthetic
images are sufficiently photorealistic, they can be used alone
to train the model [37], [38].

Note that in our case, we also use a Gibbs sampler to
increase the number of training feature vectors.

III. PROPOSED METHOD
A. OVERVIEW
The total number of body configurations is eminently
large. Thus, building a complete training dataset that
would include each body configuration is very challeng-
ing. Therefore, rather than constructing such a large dataset,
we start from a smaller dataset (here, XMULP) and increase

2http://www.iro.umontreal.ca/ labimage/Dataset/

its size with two procedures, which are presented in
Sections III-B and III-D. The first procedure, which we call
geometric expansion, increases the number of images in the
training dataset by simulating a camera moving around per-
sons lying on the ground. The second procedure focuses on
increasing the number of body poses with the help of a Gibbs
sampler.

The training stage of our method implements the fol-
lowing four steps: (1) increase the number of images in
the training dataset with a geometric expansion method;
(2) structured feature learning based on their 15-joint skele-
ton; (3) increase the number of poses with Gibbs sampling;
and (4) train human-shape classifiers on the newly expanded
dataset. These four steps are illustrated in Fig. 2.

FIGURE 2. Overview of our proposed method.

In the testing stage, which is shown at the bottom of Fig. 2,
a sliding window is used to localize the lying bodies. Since
bodies have an arbitrary orientation and scale, we slide the
window at different scales and different orientations of the
image. We call this operation a rotation-scale space scanning
procedure. At the end, all detected windows are merged with
a pyramid mean-shift nonmaximum suppression.

FIGURE 3. Fifteen-joint skeleton obtained after manually outlying each
human body in our dataset (in the first row), and seventeen types of
keypoints in MS COCO (person, in the second row), similarly.

B. GEOMETRIC EXPANSION
Our training method starts with a dataset in which each
lying body has been cropped and manually outlined with a
15-joint skeleton (c.f., Fig. 3). The first step of our method
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increases the number of training images (and skeletons). For
this purpose, we simulate a synthetic camera that moves
around each training image (and skeleton) and generate new
images showing different perspective transformations. New
body configurations can also be obtained by tweaking the
Kinect-like 3D skeletons [41]. The main reason we did not do
so is the absence of affordable range scanners that can work
on a 30 m range (a Kinect is not effective at more than 5 m).

This synthetic camera-reprojection procedure is inspired
by Cai et al. [39]. According to their method, each training
image is placed on the XY plane of a three-dimensional
(3D) coordinate system (X ,Y ,Z ). A synthetic camera is then
positioned at (X ′,Y ′,Z ′) and oriented toward the origin of the
world. With that configuration, each pixel of the image has a
3D position w = (x, y, z) with z = 0 because the image is
on the XY plane. Each pixel can then be reprojected onto the
camera image plane following the projection equation.

p = K [R|t]w (1)

where K ,R, t are the intrinsic matrix, rotation matrix, and
translation vector, respectively. Cai et al. [39] show that this
projection procedure can be obtained with a warping homog-
raphy matrix H between the pixels [x, y, 1] T of the input
image to those of the simulated image [x ′, y′, 1] T, i.e.,

H =

 −f cos κ −f sin κ 0
f cosϕ sin κ −f cosϕ cos κ 0
sinϕ sin κ − sinϕ cos κ −r

 (2)

where r is the distance between the optical center and the
reference image plane center, f is the camera focal length,
and (ϕ, κ) are the yaw and pitch angles of the camera, respec-
tively.

FIGURE 4. Perspective camera model. (a) The reference image on the
reference image plane is projected onto the simulated image plane of
camera S. (b) Resulting images from 16 different perspective
transformations.

Using different combinations of ϕ and κ , we obtain various
viewpoints of the input images. Fig. 4(b) illustrates our geo-
metric expansion procedure. Given an input image as in Fig. 4
(a), the geometric expansion procedure generates a series of
perspectively warped images, as shown in (b).

In our case, we consider 16 different camera positions.
We multiply the number of images (and skeletons) in the
dataset by 16. Details of the geometric expansion procedure
are presented in Algorithm 1.

Algorithm 1 Geometric Expansion
Input: image I

r : distance between the optical center and the origin
of the world

f : the camera focal length
1ϕ, 1κ the step size of the camera angles.

Output: I1, I2, . . . , Im

for i = 1 to m
for κ = 0, κ < 2π , κ = κ+ 1κ

for ϕ = 0, ϕ < π/2, ϕ = ϕ +1ϕ
Compute homography matrix H according to
Eq. (2)
for e ach pixel (x, y) in I

compute (x ′, y′) as follows:{
x ′ = (−f cos κ)x−(f sin κ)y

(sinϕ sin κ)x−(sinϕ cos κ)y−r

y′ = (f cosϕ sin κ)x−(f cosϕ cos κ)y
(sinϕ sin κ)x−(sinϕ cos κ)y−r

Ii (x ′, y′) = I (x, y);
end for

end for
end for
i++;

end for

Note that Algorithm 1 samples ϕ and κ but not r and f .
Sampling r and f would lead to the same images but with a
different scaling factor, which in our case would be redundant
with respect to the upcoming human shape detection method
(Algorithm 2), which already accounts for multiple scales.

C. STRUCTURED FEATURE LEARNING
In feature expansion, the effective extraction of human con-
tours is a prerequisite for subsequent processing, including
feature extraction, feature expression, object detection and
object recognition. The structured feature learning framework
is used to calculate the correlations among body joints at
the feature level [16]–[18], and helps maintain the integrity
of these correlations throughout the human body. The cor-
relations among the feature maps of the body joints are
modeled for human lying pose detection, unlike the existing
approaches of modeling the structures on score maps or pre-
dicted labels. Feature-level information passing deliversmore
detailed descriptions of body joints than score maps. The
relationships between the feature maps of joints can easily be
detected with a convolution layer and geometrical transform
kernels. We proposed a bidirectional tree-structured model
for feature channels at a body joint that can well receive
information from other joints.

Hierarchical feature representations of the input images are
learned by convnets with multiple layers. Features capture
low-level information in lower layers. More abstract concepts
can be represented using high-level information. In this work,
we use the fully convolutional faster R-CNN [10], FPN [11],
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Algorithm 2 Pose-Specific Detectors for Lying Pose
Detection

Input:
(a) input image I
(b) The classifier C .
(c) Scale step 1s and rotation step 1θ .

Output: Bounding boxes of object detections.

detections = ∅
foreach classifier C .

for s = 0.7 to 1.1, s = s×1s
for θ = 0 to 360, θ = θ +1θ .

Isθ ← rescale and rotate image I
〈x, y, s, θ, score〉 ←apply Ck to Isθ .
detections = detections ∪〈x, y, s, θ, score〉

end
end

end
return results of pyramid mean shift applied on ‘‘detec-
tions’’.

FIGURE 5. Structured feature learning based on human lying pose
15-joint skeleton.

and RefineDet [12] as the base models and extract feature
maps in the fully convolutional neural networks (fcn7) that
replaced the fully connected (fc) layers. All the joints share
lower layers up to the fcn6 layer, and each body joint has
a separate set of 128 feature maps. Suppose that symbol
hfcn6(x, y) represents the feature vector obtained at location
(x, y) in the fcn6 layer, which has a 4096-dimensional feature
vector. Body joint k at (x, y) in the fcn7 layer is computed as

hkfcn7(x, y) = f (hfcn6(x, y)⊗ wkfcn7 + bfcn6) (3)

where hkfcn7 is the feature tensor containing 128 feature maps
for joint k; f is a nonlinear function; ⊗ denotes convolution;
wkfcn7 is the filter bank for joint k, which includes 128 filters;
and bfcn6 is the bias.
In this model, the spatial distribution and semantic mean-

ing of the feature maps obtained at different joints can effec-
tively improve the features learned at each joint. The rich
information and detailed descriptions of the human lying
pose are contained within the feature maps of the body joints
and show that under a fully convolutional neural network,
messages can be passed between the feature maps through
the introduced geometrical transform kernels and combine
the features at multiple scales. Feature channels for each
joint have different semantic meanings, and the relation-
ships between the feature maps of the neighboring joints

are part-specific. In this section, the model ultimately needs
to capture the feature vectors.

D. FEATURE EXPANSION
After K different poses are identified, a D-dimensional fea-
ture vector Exi ∈ IRD is assigned to each training image
i. This leads to a collection of N training samples X =
{Ex0, Ex1, . . . , ExN }. Depending on the human-shape detection
method, different types of features, such as HOG, Haar-based
features, or features learned with a deep learning method, can
be used.

Regardless of the type of feature vector used, the goal of
the current step is to increase the number of training samples
associated with each body pose recovered in the previous
step. One simplistic way of doing so is by adding random
noise to each training feature, Ex ′i ← Exi + Eε (Eε being a
random vector), and consider Ex ′i to be a new training sam-
ple. However, there is no easy way to determine the correct
magnitude of Eε; a magnitude that is too large would lead
to a noisy dataset, whereas a magnitude that is too low
would lead to samples aggregated around the original training
features.

A better way to increase the amount of training data is
by sampling the data distribution P(Ex). Given training set X
whose elements are iid from P(Ex), the goal is to generate a
new set of points X ′ such that the distribution P(Ex ′) of the
newly generated samples is close to P(Ex). This task can be
performed with rejection sampling [25]. Rejection sampling
generates a series of samples iid of a pdf P(Ex) given a second
pdfQ(Ex) that is easier to sample (e.g., a uniform distribution).
Unfortunately, since samples are randomly sampled from
Q(Ex) and not from P(Ex), rejection sampling is known to be
prohibitively slow in a high-dimensional space.

To our knowledge, the best way to sample a high-
dimensional distribution P(Ex) is via the Markov Chain Monte
Carlo (MCMC) method. The MCMCmethod performs a ran-
dom walk in the space of Ex such that the fraction of samples
Ex[0], Ex[1], . . . , Ex[n] generated from the random walk within an
area � is always proportional to

∫
�
P(Ex).

A random walk is defined as

Ex[i+1] = Ex[i] + Eε (4)

where Eε is a random vector sampled from a kernel distribu-
tion. In our case, Eε is sampled from a zero-centered Gaussian
distribution, and Ex[0] is a vector taken from the training dataset
X . In this way, Ex[i+1] can be considered a random variable
sampled from a transition probability q(Ex[i+1]|Ex[i]), which
in our case is a Gaussian distribution centered at Ex[i]. If we
choose a transition probability of the form q(Ex i+1|Ex i) =
q(Ex i+1), each new sample will be independent of the pre-
vious one, leading to a method that is similar to rejection
sampling.

To force the successive samples to follow the P(Ex) distri-
bution, we need to accept (or reject) each newly generated
sample x[i+1] according to some criteria. These criteria must
ensure that the fraction of the time spent in some area �
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is proportional to
∫
�
P(Ex), the density of P(Ex) in that area.

According to the Metropolis-Hastings algorithm, the accep-
tance probability of Ex[i+1] is given by

α(Ex[i+1]|Ex[i]) = min
(
1,
p(Ex[i+1])q(Ex[i]|Ex[i+1])
p(Ex[i])q(Ex[i+1]|Ex[i])

)
(5)

where q(a, b) is a Gaussian distribution centered at b and eval-
uated at position a in our case. Since P(Ex) is unknown in our
case, we approximate it with a Parzen window distribution.

P(Ex) ≈
1
N

∑
Exi∈X

N (Ex, Exi, 6) (6)

where N (.) is a Gaussian distribution centered at Exi with
variance 6. The experimental results reveal that a simple
identity variance-covariance matrix 6 works well.

Since the dimensionality of the feature samples Ex can be
very large, we implemented a Gibbs sampler, which is a
special case of the Metropolis-Hastings algorithm. Rather
than generating a new sample Ex[i+1] at once, each dimension
of Ex[i+1] is generated in turn. This leads to the following
transition probability:

q(Ex[i+1]|Ex[i]) =
D∏
j

P(Ex[i+1](j) |Ex
[i+1]
(1) , . . . , Ex[i+1](j−1) , Ex

[i]
(j+1), Ex

[i]
(D))

whereD is the total number of dimensions and Ex[i](j) is the value

at the j th dimension of vector Ex[i].
As mentioned in [49], it is often necessary to discard the

first T samples until the Markov chain has burned in or has
entered a stationary distribution. In our case, we discarded the
first T = 1, 500 samples and then retained the subsequent
4 samples, i.e., x[T+1], x[T+2], x[T+3], x[T+4] (the value of
1, 500 was selected empirically). Since the Gibbs sampler
was launched on each training sample of X , we multiplied
the total number of training samples by 5.

Finding the best values of hyperparameter6 is challenging
considering the dimensionality of the data. If the dimension-
ality had been low, we could have used a diagonal matrix
whose values could be estimated with a grid search algorithm.
However, it is widely accepted that the grid search processing
cost increases exponentially with the number of dimensions.
Consequently, we had to simplify the problem by assum-
ing that the data follow an isotropic Gaussian distribution.
We then tested a few variance values and found that a variance
of 1 (the identity matrix) works well in our case because the
average variance along each feature dimension is 1.09. Since
6 is used within a Parzen window PDF estimator, changing
its value does not significantly affect the results.

E. HUMAN LYING POSE DETECTION
The last step is to train the classifiers, one for each body
pose recovered at step 2. The negative examples used for
training consist of non-human images. In this study, we tested
four state-of-the-art detectors: faster R-CNN [10], FPN [11],

and RefineDet [12]. A brief overview of these detectors is
presented below.
Faster R-CNN: is composed of two modules: a deep fully

convolutional network and a fast R-CNN detector. The deep
fully convolutional network proposes regions, and the fast
R-CNN detector uses the proposed regions. The model fur-
ther merges RPN and fast R-CNN into a single network by
sharing their convolutional features. The entire system of the
group of items forms a single, unified network for object
detection.
FPN (Feature Pyramid Network): exploits the inherent

multiscale, pyramidal hierarchy of deep convolutional net-
works such that the marginal extra cost constructs fea-
ture pyramids. Feature pyramids are a basic component in
recognition systems for detecting objects at different scales.
A top-down architecturewith lateral connections is developed
for building high-level semantic feature maps at all scales.
It shows significant improvement as a generic feature extrac-
tor in several applications.
RefineDet: consists of two interconnected modules,

an anchor refinement module and an object detectionmodule,
and it is a single-shot refinement neural-network-based detec-
tor. The entire network is trained in an end-to-end fashion
with multitask loss and introduces the attention mechanism
in RefineDet to further improve the performance.

Our detection phase implements a scanning window pro-
cedure. The three major challenges of human lying pose
detection are scale, in-plane rotation, and pose. The challenge
in pose estimation is to perform the estimation by using
structured feature learning, one for each pose. The scale and
orientation challenges are overcome by scanning the image at
different scales and different orientations.

Let C be the classifier, I be the input image, and Isθ
be the image at scale s and rotation angle θ . As shown in
Algorithm 2, classifier C scans the Isθ images with a sliding
window. Once each classifier has scanned each image Isθ ,
the windows activated by the classifier are fused to obtain the
final detection results.

In our experiments, the rotation step was set to 1θ = 20
deg and the scale step to 1s = 1.05. The total number
of scales is thus log(1.1/0.7)/log(1.05) = 10. The results
returned by each detector are recorded as follows:

detections = {〈x, y, s, θ, score〉}ni=1 (7)

where (x, y) is the center of the sliding window, (s, θ) are the
scale and orientation of the current image Is,θ , and score is
the classifier output. This output is similar to that of most
sliding-window-based detectors, except rotation. We use the
mean shift on the (x, y, s, θ) results to merge the overlapping
windows.

IV. EXPERIMENTAL RESULTS
In this section, we compare our running time with those of the
baseline methods on the same laptop with an Intel CoreTM
i7-4770 CPU @8 GB. We also compare our detector with
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other state-of-the-art detectors using the XMULP dataset.
The sizes of the images are 560×420 and 612×405, and the
size of the sample is 80×160. Other state-of-the-art detectors
include Faster R-CNN [10], FPN [11], and RefineDet [12].

A. DATASET
Our dataset includes various challenging scenarios in indoor
and outdoor environments, parking lots, beaches, and various
grassland areas. The cameras were positioned at a height of
2 to 20 m with different viewing angles and orientations.
Nearly 30 volunteers participated in the process of building
the dataset. Overall, the dataset contains 1, 316 images with
1 to 7 persons per image for a total of 2, 030 human bodies.
In contrast to other datasets such as INRIA and Caltech [21],
which only provide bounding boxes, our dataset contains a
15-joint skeleton for each human body (c.f., Fig. 3).

TABLE 2. Details of the Xiamen University lying pose human dataset.

To evaluate the performance of the models, the dataset
was divided into two groups: training and testing. As shown
in Table 2, the training dataset contains 1, 003 images, 1, 498
human bodies, and 3, 764 negative examples (images without
a human body), while the testing dataset contains 313 images
and 532 human bodies. Note that with geometric expansion,
the number of training human bodies increases to 23, 792.
With the Gibbs samples, the detectionmethods train on a total
of 118, 960 feature points.

FIGURE 6. The aspect ratio and human body angular distribution of the
dataset before (on the left) and after (on the right) geometric expansion.

To illustrate the richness of our dataset, we plotted the
orientation and aspect ratio distributions of all human bodies.
The bar plots on the left side of Fig. 6 show the original
dataset, while those on the right side show the geometrically

expanded dataset. Our dataset contains human shapes with all
orientations (the distribution being almost uniform), while the
aspect ratios follow a Gaussian distribution centered at 2.5.
The similarity between the left and right plots underlines the
effectiveness of our geometric expansion procedure, which
preserves the overall coherence of the dataset. To encourage
future work, our dataset is freely available on the web at
https://bge.gznu.edu.cn/info/1031/1099.htm.

B. PERFORMANCE EVALUATION
Plots of the false positive per image (FPPI) versus the miss
rate are commonly used to evaluate human shape detectors.
The curve is obtained by increasing the detection threshold.
A detected window is considered a true detection if its bound-
ing box BBdt has a significant overlap with the ground-truth
bounding box BBgt :

α0 =
area(BBdt ∩ BBgt )
area(BBdt ∪ BBgt )

≥ thr . (8)

In our case, we use thr = 0.5.
The precision and recall curves are also extensively used

to gauge the performance of object recognition or detection
methods. The average precision (mAP) is the area under the
precision and recall curves, namely, AP =

∫ 1
0 p(r)dr , where

p(r) is precision p as a function of recall r . Average precision
computes the average value of p(r) over the interval from
r = 0 to r = 1. We chose to interpolate the p(r) function
to reduce the impact of the ‘‘wiggles’’ in the curve. Just as
the PASCAL Visual Object Classes (VOC) and Microsoft
COCO3 challenges, we averaged the precision over a set of
evenly spaced recall levels {0, 0.1, 0.2, . . . 1.0}.

AP =
∑

r∈{0,0.1,...,1.0}

pinterp(r)∆r (9)

where∆r = 1
11 and pinterp(r) is an interpolated precision that

takes the maximum precision over all recalls greater than r
and pinterp(r) = maxr̃ :r̃≥r p(r̃). An alternative is to derive an
analytical p(r) function by assuming a particular parametric
distribution for the underlying decision values.

C. RESULTS
Here, we present the experimental results for the four
human-shape detection methods: Faster R-CNN, Mask R-
CNN, FPN, and RefineDet512+. We tested each method
independently without our framework, with geometric expan-
sion (GE), with structured feature learning (SFL), with fea-
ture space expansion (FE), and with GE + SFL, and GE
+ SFL + FE detectors (i.e., our entire framework is shown
in Fig. 2). The results are shown in Table3 and Fig. 7.

Table 3 shows that the mean average precision (mAP)
ranges from 67.6% for faster R-CNN to 68.5% for faster
R-CNN + GE, 70.2% for faster R-CNN + GE + SFL
and 71.5% for the full-blown method, and Mask R-CNN
has a similar trend. FPN + GE + SFL + FE achieves the

3http://cocodataset.org
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TABLE 3. Bounding box detection average precision (%) on the XiaMen
University Human lying pose test set and MS COCO(person).

FIGURE 7. Detection results of Faster R-CNN, FPN, and RefineDet512+.
False positives of the Faster R-CNN model are shown in the last row.

highest mAP, 76.1%, while FPN, FPN + GE and FPN + GE
+ SFL have mAPs of 71.1%, 72.3% and 74.5%, respectively
(Table3). Our expansion framework also reduces the error
rate for RefineDet512+. The mAP of RefineDet512+ GE
+ SFL + FE is 79.1%, which is the best result (Table3).
Note that dataset expansion and feature learning improved the
results; thus, the findings also indicated that SFL has the most
significant impact on detector performance, and the benefits
of FE are independent of the dimensionality of the data.

In summary, the results reported in Table3 show that
regardless of which detector is used, geometric expansion,
feature space expansion, and pose-specific detectors improve
the detection performance. Since detecting people lying on
the ground is by nature more difficult than detecting people

in an upright position, the performances reported here are
lower than those reported in recent surveys [48]. However,
our goal is to show that dataset expansion and feature learning
are sound solutions for improving human lying pose detection
accuracy.

To further prove the reliability of the theory, we evaluate
the proposed detection algorithm on an MS COCO dataset
that has the person object category (with person keypoints or
person skeleton). It should be noted that a graphics processing
unit (GPU, NVIDIA TITAN RTX@24GB, two pieces of
GPU card) cluster system has been built to accomplish these
tasks. We train the specific detector using automatic dataset
expansion with structured feature learning on the union set
of 64,115 images in the training set (262,465 human bodies)
and 2,693 images in the validation set (11,004 human bodies,
minival); the validation set was used for the performance
tests. In the experiment, our detection algorithm improves the
MS COCO-style mAP: an optimized data expansion policy
with structured feature learning improves RefineDet512+
detection accuracy by more than +0.6 mAP, +1.5 mAP
and +1.4 mAP, and the performance of other detectors also
improved under these conditions. See the third column of
Table3.

The results obtained by all three detectors are shown
in Fig. 7. The bounding boxes show the results obtained using
our entire framework, whereas those in blue, green, and red
are the submodules of our framework, representing Faster
R-CNN + GE + SFL + FE[blue], FPN + GE + SFL +
FE[green], and RefineDet512++GE+ SFL+ FE[red]. The
human lying poses could be well detected by these methods.
These methods can also determine the direction of the human
torso series. Although our framework is not without limita-
tions (c.f., last row), the overall results are more accurate than
those of the other frameworks.

Because sample expansion is an important parameter,
we investigated the sensitivity of the Faster R-CNN, FPN,
and RefineDet512+ models with respect to the geometric
expansion and feature expansion frameworks. The evaluation
of mAP for all three methods and different models of sample
expansion is illustrated in Fig. 7. The performance of these
detection models reaches a peak with the feature expansion
framework. For feature expansion, the number of candidate
bounding boxes becomes redundant such that the nonmaxi-
mal suppression and the computing rate gradually decrease
for each image. This shows that the geometric expansion
enriches the dataset and improves the results. The results were
obtained using the MatConvNet and VGG libraries.

In this study, we developed a sample expansion framework
for human lying pose detection. The main objective is to
artificially increase the number of data points on which a
human-shape detection method can be trained. Since gen-
erating a dataset that includes a large number of body con-
figurations is challenging, our method starts with a small
annotated dataset whose size is increased with a geometric
expansion procedure and a Gibbs sampling procedure. More-
over, to account for various body poses, we built human lying
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pose classifiers based on presegmented skeletons. The experi-
mental results obtained on three state-of-the-art human-shape
detection methods show the effectiveness of our expansion
procedure.

Our future research will focus on other related topics,
including occlusion, self-occlusion, camouflage (when the
clothing of people has the same color as the background),
poor illumination and motion blur (which often occurs when
pictures are taken by a moving drone).
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