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ABSTRACT This paper proposes a modified relevance vector machine with slow feature analysis fault
classification for industrial processes. Traditional support vector machine classification does not work well
when there are insufficient training samples. A relevance vector machine, which is a Bayesian learning-based
probabilistic sparse model, is developed to determine the probabilistic prediction and sparse solutions for the
fault category. This approach has the benefits of good generalization ability and robustness to small training
samples. To maximize the dynamic separability between classes and reduce the computational complexity,
slow feature analysis is used to extract the inner dynamic features and reduce the dimension. Experiments
comparing the proposed method, relevance vector machine and support vector machine classification are
performed using the Tennessee Eastman process. For all faults, relevance vector machine has a classification
rate of 39%, while the proposed algorithm has an overall classification rate of 76.1%. This shows the
efficiency and advantages of the proposed method.

INDEX TERMS Slow feature analysis, relevance vector machine, dynamic process, fault classification,
process monitoring, statistical learning, support vector machine, feature extraction, process control.

I. INTRODUCTION
With the increase in industrial plant complexity, the ability to
easily extract information has become more difficult, espe-
cially when considering product quality and process safety
as critical parameters in the manufacturing process. Data-
driven process monitoring techniques have been applied in
modern industry to ensure the safety and stability of processes
[1]–[8]. In recent years, many multivariate statistical process
monitoring algorithms have been proposed for large-scale
industrial processes. He et al. proposed a transition identifica-
tion and process monitoring method for multimode processes
using a dynamic mutual information similarity analysis [9].
A supervised non-Gaussian latent structure was introduced
by He et al. to model the relationship between predictor and
quality variables [10]. He and Zeng proposed double layer
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distributed process monitoring based on hierarchical multi-
block decomposition for large-scale distributed processes
[11]. However, the multivariable statistical methods are not
designed for fault classification. Fault detection is used to
identify whether the process is under normal condition, but
cannot provide any information about the fault type. The
main idea of fault classification is to build a classifier on the
basis of some known fault categories. Fault classification can
provide the connection between the detected fault occurrence
and some known faults. Recognizing the type of fault is an
important step for process monitoring.

A. CLASSIFICATION METHODS
Numerousmachine learningmethods have been used for fault
classification. Ge et al. proposed a kernel-driven semisuper-
vised Fisher discriminant analysis (FDA) model for nonlin-
ear fault classification, which incorporates the advantages of
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FDA for fault classification [12]. However, Chiang et al.,
who investigated the advantages of FDA and support vector
machine (SVM), showed that nonlinear SVM outperforms
FDA [13]. Jing and Hou studied the multiclass classification
problem of SVM and principal component analysis (PCA)
[14], while Gao and Hou improved the multiclass SVM using
a PCA approach and applied it to the Tennessee Eastman (TE)
process [15]. An SVM classifier is the most commonly used
classification technique. However, SVM has the following
three disadvantages [16], [17]. First, the number of support
vectors grows as the size of the training set increases, which
also causes the computational complexity to rapidly increase.
Secondly, the output from the SVM does not use a probabilis-
tic approach for estimating the conditional distribution, which
implies that the prediction cannot capture the uncertainty.
This means that the accuracy of SVM is sensitive to the train-
ing set. Thus, the SVM training set should include a variety
of training samples. Thirdly, the classification performance of
SVM is sensitive to the parameters. Therefore, a probabilistic
and sparse classification algorithm needs to be developed.

Relevance vector machine (RVM) [16], [17] is a classifica-
tion method that does not have any of the above limitations.
Given its probabilistic Bayesian framework, RVM can be
applied in cases where there are limited training samples.
However, no research exists on the application of RVMs
to the data-driven fault classification of chemical processes.
Considering the sensitivity of the RVM prediction to the
input dimension of the training set in industrial data, a sound
method should be used to transform the training set into a
lower-dimensional feature space, which maximizes the sepa-
rability between classes.

B. DYNAMIC DIMENSIONAL REDUCTION METHODS
PCA, a widely used multivariate statistical algorithm, is used
to reduce the dimensions. However, PCA is a static dimension
reduction method. Sometimes it is necessary to consider the
presence of time delay in dynamic systems. In recent years,
slow feature analysis (SFA) [18] has been a popular method
for extracting dynamic features by focusing on learning the
time features that have a slow frequency. Shang et al. pointed
out that the time dynamics in the extracted slow features (SFs)
is an indicator of process changes [19]. Modified SFA meth-
ods have also been proposed [20], [21]. SFA can extract the
dynamic representations of the original data from different
levels of dynamics. The above studies have shown that SFA
can easily extract dynamic features. However, in previous
studies, the SFA algorithm was only used for fault detection,
which does not provide information about the fault type.
In fact, the SFA algorithm has not been applied to fault
classification.

C. MOTIVATION FOR THIS PAPER
In modern chemical processes, sufficient training samples for
fault classifiers are usually not available, which worsens the
performance of traditional classifiers. RVM has the advan-
tages of sparsity and probabilistic prediction. It can be applied

when there are insufficient training samples. Furthermore,
many chemical processes are large dimensional and have
dynamic characteristics. Thus, such processes require that a
dynamic dimensional reduction method be used to transform
the training set into a lower-dimensional feature space. Since
the SFA algorithm shows the inner dynamic characteristics
of the faulty samples, it will indirectly increase the classifi-
cation performance of RVM. Therefore, it seems plausible to
combine SFA and RVM.

The contributions of this paper are the development of a
robust, sparse RVM fault classification method that can be
used when there are insufficient training samples and an SFA
dimension reduction method that when combined with the
RVM classifier can extract the distinct features, and hence,
enhance the classification results. This paper proposes a mod-
ified multiclass RVM with SFA fault classification strategy
for use in industrial processes. First, an SFA dynamic feature
extraction model is built on the benchmark data. Then the
important features are selected in order to reduce the dimen-
sion. After reducing the dimension, the high-dimensional
training set is transformed into a low-dimensional dynamic
feature space, which decreases the computational complexity
of the RVM algorithm. Afterwards, some typical fault sam-
ples are collected and used for RVM training. RVM classifies
the type of fault, providing a connection between the detected
faulty samples and the known faults.

D. NOMENCLATURE
I: Identity matrix
s(t): Slow feature vector
Sk : Selected slow feature matrix
stest: Slow features of the test sample
ti: The label for sample i
X: Data matrix
xtest : Testing sample
w: Weight vector
α: Classification parameters
M : The number of classes
S: Slow feature matrix
Strain: Training set for RVM
ṡ: First derivative of s
x(t): Input sample
Xtrain: Training set
W: Weight matrix
Wk : Selected weight matrix
〈·〉t : Expectation

II. THEORETICAL BASIS
In this section, the SFA, SVM and RVM algorithms are
reviewed. As well, the training results of the SVM and RVM
algorithms are compared using a numerical example.

A. SLOW FEATURE ANALYSIS
SFA [22]–[24] extracts the slowly varying features. The input
signal is expressed as x(t) = [x1(t), x2(t), . . . , xm(t)]T . The
optimization objective of SFA is to find a transformation
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function g(x) such that the feature s(t) = g(x(t)) varies as
slowly as possible [22], [23]. The function g(x) = [g1(x),
g2(x), . . . , gm(x)]T is the transformation function, while s(t)=
[s1(t), s2(t), . . . , sm(t)]T is the slow feature. The optimization
problem for SFA is

min
gi(·)

〈
ṡ2i
〉
t

(1)

with the constraints

〈si〉t = 0 (zero mean), (2)〈
s2i
〉
t
= 1 (unit variance), (3)

∀i 6= j :
〈
sisj
〉
t = 0 (uncorrelated), (4)

The SFA algorithm is formalized as

s = Wx (5)

where W is the weight matrix which is expressed as W =
[w1,w2, . . . ,wm]T . The whitening step is carried out by the
singular value decomposition (SVD) of R =

〈
x(t)x(t)T

〉
t ,

which is given as

R = U3UT (6)

The whitening matrix is Q = 3−1/2UT . Then, the whitening
step is written as

z = 3−1/2UT x = Qx (7)

Based on (5) and (7), the SF vector is given as

s = Wx = WQ−1z = Pz (8)

where P = WQ−1. Clearly,
〈
zzT
〉
t = Q

〈
xxT

〉
QT = I and

〈z〉t = 0. Constraints (3) and (4) imply that〈
ssT
〉
t
= P

〈
zzT
〉
t
PT = PPT = I (9)

The optimization problem for SFA is to find an orthogonal
matrix P to minimize

〈
ṡ2i
〉
t , which is given as〈

ṡ2i
〉
t
= pTi

〈
żż
T
〉
t
pi (10)

The optimal solution is obtained by taking the SVD of the
covariance matrix

〈
żżT
〉
t , that is,〈
żżT
〉
t
= PT�P (11)

where P is the eigenvector matrix and � = diag(λ1, λ2,
. . . , λm) is the eigenvalue matrix, where the eigenvalues λi
are placed in ascending order. Thus,

〈
ṡ2i
〉
t = pTi

〈
żżT
〉
t pi = λi.

The weight matrixW is then

W = PQ = P3−1/2UT (12)

B. SUPPORT VECTOR MACHINE
The main idea of the SVM classifier is to find support vectors
that define the bounding hyperplanes, so as to maximize the
margin between both planes. Let the training set be (xi, ti)
for i = 1, 2, . . . , n and ti ε {−1, 1}, where xi is the ith input
sample and ti is the label corresponding to sample xi. The
SVM optimization problem requires solving the optimization
problem

min
1
2
wTw+ C

n∑
i=1

ξi

ti(wT zi)+ b) ≥ 1 − ξi with ξi ≥ 0 for i = 1, 2, . . . , n

(13)

where the slack variable ξi represents the violation for train-
ing sample xi. A penalty parameter C is introduced to con-
trol the total violation while maximizing the margin. This
introduces a trade-off between maximizing the margin and
minimizing the violation. As well, a nonlinear transformation
z = 8(x) is used to project the training data onto a high-
dimensional linear space. Based on functional theory, a kernel
function should satisfy the Mercer condition.

The Lagrange dual problem is

min
α

1
2
αT (d̃ · d̃

T
)α − eTα

s.t. : αT t = 0, 0 ≤ α ≤ C (14)

where α = [α1, α2,. . . ,αn]T is the Lagrange multiplier vector
with αi ≥ 0, t = [t1, t2, . . . , tn]T , d̃ = [t1z1, t2z2, . . . , tnzn]T ,
and e is a unit column vector, that is, a column vector where
each entry is 1. The input sample xi for which αi 6= 0 is called
a support vector (SV).

The discriminant function f (x) for a test sample x can be
obtained from

f (x) = sign

 ∑
xi∈SVs

αiti8(x · xi)+ b

 (15)

C. RELEVANCE VECTOR MACHINE
RVM seeks to maximize the possible sparsity, by discarding
a large number of extremely small weights and thus, training
samples that have no effect on the classification function.
Originally, RVM [16], [17], [25], [26] was derived for binary
classification. RVM is designed to predict the posterior prob-
ability of the membership of the input x. The training set for
RVM is defined as (xi, ti) for i = 1, 2, . . . , n. The learning
function is

y(x;w) =
n∑
i=1

ωiK (x, xi)+ ω0 (16)

whereK (x, xi) is a kernel transformation andωi is the weight.
Generally, a Gaussian kernel function is used. Bayes’ rule
gives the posterior probability of w, that is,

p(w|t, α) =
p(t|w, α)p(w|α)

p(t|α)
(17)
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where p(t|w, α) is the posterior probability, p(w|a) is the
conditional prior likelihood for the hyperparameters α =
[α1, . . . , αn]T , and p(t|a) is the probability of the evidence.
The logistic sigmoid function σ (y) = 1/(1 + e−y) and
Bernoulli distribution p(t|x) are used to generalize the linear
model. Thus, (17) can be rewritten as

p(t|w, α) =
n∏
i=1

σ {y(xi;w)}ti [1− σ {y(xi;w)}]1−ti (18)

where t = [t1, t2, · · · tn]T, ti ∈ {0, 1}, and w =

[ω0, ω1, · · ·ωn]T. In (17), p(w|a) is the Gaussian kernel func-
tion, where the weights wi are obtained from the parameter αi
using

p(w|α) =
n∏
i=1

√
αi
√
2π

exp

(
−
αiw2

i

2

)
(19)

The approximation procedure is based on Laplace’s
method [27], which consists of the following three steps:

1. Given a fixed value of α, find the maximum posterior
weights wMP to provide the location of the mode of the pos-
terior distribution. To solve the problem, the penalized logis-
tic log-likelihood function is introduced. Since p(w|t, α) ∝
P(t|w)p(w|α), the weights wMP can be obtained from

log {p(t|w)p(w|α)}

=

n∑
i=1

[
ti log yi + (1− ti) log(1− yi)

]
−

1
2
wTAw (20)

where yi = σ {y(xi;w)} and A = diag(α0, α1, . . . , αn).
2. Laplace’s method is used to find a quadratic approxima-

tion of the log-posterior based on its mode. Equation (20) is
solved using the second-order Newton optimization method.
The Hessian is

∇w∇w log p(w|t, α)|wMP = −(8
TB8+ A) (21)

where 8 = [φ(x1),φ(x2), . . . , φ(xn)]T is a structure matrix,
in which φ(xi)=[1,K (xi, x1),K (xi, x2), . . . ,K (xi, xn)]T; and
B = diag(β1, β2, . . . , βn) is a diagonal matrix with βi =
σ {y(xi)} [1− σ {y(xi)}]. The Hessian matrix is converse and
inverted to give 6 = (8TB8 + A)−1 for the Gaus-
sian approximation to the posterior function at wMP. Given
that ∇w log p(w|t, α)|wMP = 0, wMP can be written as
wMP =

∑
8TBt .

3. The hyperparameters α are updated using 6 and wMP

αnewi =
γi

µ2
i

(22)

where γi = 1 − αi6ii, 6ii is the (i, i) diagonal entry of the
matrix 6, and µ = [µ1, . . . , µn]T is the posterior mean
weight vector.

This optimization procedure forces most of the αi to infin-
ity, which implies that, based on (19), the corresponding
weights wi are discarded. The remaining vectors, which are
called the relevance vectors (RVs), give a sparse solution.

FIGURE 1. Training results for the numerical example: (a) SVM classifier
and (b) RVM classifier.

The discriminant function f (x) can be calculated as

f (x) =
r∑
i=1

wiK (x, xi)+ w0 (23)

where r is the number of RVs, xi is the RV, and wi represents
the remaining weights.

Fault classification usually involves more than 2 classes,
whereas RVM and SVM are intrinsically binary classi-
fiers. To convert binary classifiers into multiclass classi-
fiers, the general strategy is to combine an ensemble of
binary classifiers based on some decision rules. In this study,
the one-versus-one strategy is used [17]. In the one-versus-
one approach, an ensemble of models, whose training set is
made of any two classes is designed. Therefore, the total num-
ber of classifiers is M (M − 1)/2. When testing an unknown
sample, all the discriminant functions need to be calculated.
A voting mechanism is used to count the score of each
category. The category that obtains the most votes determines
the category of the test sample.

D. COMPARISON OF SVM AND RVM USING
A NUMERICAL EXAMPLE
Consider the following numerical example with the measure-
ments x = [x1, x2]

x2 = x21 + ya+ v (24)

where x1 is uniformly distributed over the interval [1, 4], ν is a
random Gaussian noise with zero mean and variance of 0.25,
a is an unmeasurable variable with a uniform distribution over
the interval [1, 3], and y ε {−1, 1} is the label for sample x.
The training set consists of 100 samples of which the first
50 samples are labelled 1 and the last 50 samples are labelled
−1.
Figure 1 shows the results of training the SVM and

RVM classifiers. The subfigure on the left shows the
results for the SVM classifier, while the subfigure on the
right shows the same for the RVM classifier. The cir-
cled samples represent the support (respectively, relevant)
vectors. Comparing the two subfigures, it can be seen
that SVM requires 40 support vectors, while RVM only
requires 4 relevance vectors. Thus, RVM shows higher
sparsity.
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III. SLOW FEATURE ANALYSIS AND MULTICLASS
RELEVANCE VECTOR MACHINE-BASED FAULT
CLASSIFICATION METHOD
Since the number of extracted SFs using the SFA algorithm is
always equal to the number of original variables, dimension
reduction is required to select an appropriate number of SFs.
The L2-norm method can be used for SF selection. The main
idea of the L2-norm method is that a large L2 norm of a row
in W is assumed to capture more process information. The
squared coefficient can be computed using

Li =
m∑
j=1

W 2
ij (25)

where Wij is the (i, j)-entry of the weight matrixW.
As the training set is chosen randomly from the industrial

data set, the correlation between samples may be broken.
To extract the inner dynamic features, benchmark data are
collected. The normalized benchmark dataset is written as X.
The dynamic feature extraction from the dataset X can be
expressed as Sk = W kX , where Sk is the selected slow
feature matrix and weight matrix is given asWk.
The normalization for both the training set and testing

set are based on the normalization of the benchmark data.
Assume that the training set is expressed as Xtrain. Dynamic
features are extracted to avoid the computational complexity
during RVM training. The dimension reduction operation is
carried out before RVM training, so that,

Strain = W kX train (26)

Similarly, the testing sample xtest can be written as
stest =Wkxtest .

The training set for each binary RVM model can be
expressed as S(i)train and S

(j)
train, where S

(i)
train are the faults with

label i and S(j)train are the faults with label j (i 6= j) chosen from
the training set Strain. The discriminant function fij(x) can be
obtained from theRVM training based on (23). Then, themul-
ticlass RVM models are made up of an ensemble of binary
RVM classifiers according to the one-versus-one approach.

The multiclass RVM procedure is determined as follows.
First, all possible pairs of classifications are built. The total
number of binary RVMs is M (M − 1)/2. The discriminant
function fij(x) is used to define the assignment of each sample.
The assignments to classes are expressed as P(x,S(i)train) and
P(x,S(j)train). A vote is then taken using the vote function Si(x)

Si(x) =
M∑
j=1
j 6=i

sgn{fij(x)} (27)

The assignment of the sample to a class is based on the
total votes obtained by the class based on the following
maximization

C(x) = argmax
i=1,2,...,M

{Si(x)} (28)

The multiclass RVM approach is summarized by
Algorithm 1.

Algorithm 1 The Multiclass RVM approach
Step 0: Initialization
Define the class number M . Set the training class set
C = {S(1)train,S

(2)
train, . . . ,S

(M)
train}.

Step 1: Training
For i = 1, 2, . . . , M
For j = i + 1, i + 2, . . . , M

Choose the training set S(i)train and S
(j)
train. Obtain the discrim-

inant function fij(x)
End

End
Step 2: Testing
For i = 1, 2, . . . , M
For j = i + 1, i + 2, . . . , M

Test sample x using fij(x) to define P(x, S(i)train) and P(x,
S(j)train). If P(x,S

(i)
train) > P(x,S(j)train), set Si(x) = Si(x) + 1;

otherwise, set Sj (x) = Sj (x)+ 1.
End

End
Step 3: Decision Making
Define the class assignment for x using (28).
Stop.

For the testing vector stest , the discriminant function set
fij(x) is used to determine the fault category for each binary
RVM classifier. Then, a voting mechanism is used to count
the score of each fault category. The test vector belongs to
the fault category that obtains the most votes.

Figure 2 shows the flowchart of the SFA-RVM algorithm.

IV. SIMULATIONS AND EXPERIMENTS
USING THE TE PROCESS
A. BACKGROUND ABOUT THE TE PROCESS
The TE process was introduced by Downs and Vogel
[28]. The control system for the TE process is shown in
Figure 3 [29]. There are 22 measured variables and 12 manip-
ulated variables for the TE process. There are 500 samples
in the normal dataset. To further enhance the TE process,
21 different faults are simulated. For the training dataset,
there are 480 faulty samples for each fault. For the testing
dataset, the first 160 samples in the faulty dataset are collected
under normal condition, while the remaining 800 samples are
faulty data. The measurements contain random noise which
is carried out using a random seed. The sampling frequency
for TE process is 3 minutes. The simulation dataset of the
TE is provided at http://web.mit.edu/braatzgroup/links.html.
In the fault classification procedure, the training set consists
of 100 randomly chosen samples from the training faulty
samples for each class.

B. FEATURE EXTRACTION AND DIMENSION
REDUCTION OF THE TE PROCESS DATA
The goal of feature extraction is to retain only the most sig-
nificant features. The number of SFs retained for dimension
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FIGURE 2. The flowchart for the proposed SFA-RVM fault classification
algorithm.

FIGURE 3. Control strategy for the Tennessee Eastman process.

reduction is based on the L2-norm method. The weight
vectors are re-ordered in descending order based on their
L2-norm. The number of slow features k is determined by

k∑
i=1

Li/
m∑
i=1

Li > θ (29)

where θ is the selection threshold.
The number of SFs depends on the data for the cur-

rent application. After testing a number of threshold values,
the most important SFs are retained when the θ equals to
0.9 with the data used. In the TE process, the number of
slow features is 21 according to (29). Figure 4 shows the
visualization of the first, second, and third dimensions of
the training set. The different categories of fault samples are
separated using different colors. Since faults 3, 9, and 15 are
commonly considered to be hard to detect, the visualization
of the training set does not include faults 3, 9, and 15. The
training samples are gathered in a small area and are hardly
visually separated. The TE process contains 33 variables

TABLE 1. Fault classification results for the TE process.

that are combinations of latent factors. The characteristic of
high dimensionality makes the classification model complex.
Figures 5 and 6 show the visualization for the first 6 dimen-
sions of the SFA dimensionally reduced dataset. Compared
with Figure 4, part of the faulty samples in the SFA dimen-
sionally reduced dataset are visually separated from the
other fault categories. The extracted dynamic features max-
imize the separation between classes, which highlights the
inner dynamic characteristics of faulty samples and indirectly
increases the classification performance of RVM.

C. SIMULATION RESULTS
To test the online fault classification performance of the pro-
posed method, regular RVM and SVM are used for compari-
son. The optimal parameters of the SVM are obtained using
cross-validation and the grid search method. Table 1 gives the
correct fault classification rate (CFCR) and precision for each
fault for RVM, SVM, and SFA-RVM, while Table 2 shows
the fusion matrix of the classification results using the RVM,
SVM, and SFA-RVM methods for each fault type. Each row
gives the fault classification results for a particular fault. The
bold numbers on the diagonal show the number of samples
that are properly classified. The CFCR is calculated using

CFCR =
Number of samples correctly classified

Total number of testing samples
(30)

The precision for each fault is calculated by

Pr ecision=
Number ofsamples correctly classified

Totalnumber ofsamples classified asthisfault
(31)

In Tables 1 and 2, it can be seen that all three methods
have very high correct fault classification rates for Faults 1,
2, and 7. The fault magnitudes for Faults 1, 2, and 7 are large,
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TABLE 2. The fusion matrix for fault classification (without faults 3,
9, and 15).

and their distinct fault features make it easy to classify the
fault. However, for all methods, the correct fault classification
rates for Faults 3, 9, and 15 are very poor. This can be
attributed to the fact that these 3 faults have little extractable
fault information, which then confuses the fault detection
algorithms. The fault classification results for faults without
Faults 3, 9, and 15 are also given in Table 1. Furthermore,
RVM has a low correct fault classification rate (< 30%) for
Faults 4, 5, 10, 11, 16, 19, and 20. These faults are conflated
with each other, that is, RVM cannot distinguish these faults.
Compared with RVM, SVM has better fault classification

FIGURE 4. Visualization of the first, second, and third dimensions of the
scaled training dataset.

FIGURE 5. Visualization of the first, second, and third dimensions of the
SFA dimensionally reduced training dataset.

results for these faults. However, SVM has poor correct fault
classification rates for Faults 6 and 18, where the accuracy
is only 10%. The fusion matrix in Table 2 shows that most
test samples for Faults 6 and 18 are incorrectly classified as
Fault 21. The proposed SFA-RVM algorithm has improved
the correct fault classification rates. SFA-RVM achieves the
best classification rates for Faults 5, 6, 10, 11, 12, 16, 19,
and 20. Of note, the classification rates for SFA-RVM are
over 70% for faults excluding Faults 3, 9, and 15 (the last
3 columns in Table 1). Furthermore, the classification rates
for Faults 1, 2, 5, 6, and 7 are over 90%. Thus, it has been
shown that the proposed SFA-RVM is more robust than RVM
and SVM.

Fault 10 is a random variation in the C feed temperature.
RVM can hardly recognize fault 10 with low fault classifi-
cation rates (approximately 10%). SVM shows better fault
classification results. However, the rates are lower than 50%.
In the previous fault detection studies, the fault detection rates
of some modified process monitoring method for Fault 10 are
approximately 0.85 [7], [30], [31]. Some traditional methods
such as PCA and DPCA can only detect 50% of the fault
samples. The reason why Fault 10 is hard to recognize is
that Fault 10 is a random fault, in which the fault amplitude
varies considerably. Amplitudes of some fault samples are
extremely low, which makes the fault samples similar to
the normal samples. Fault detection is a binary classifica-
tion problem, which is much easier than fault classification,
especially for the TE process. The fault classification rate of
SFA-RVM (excluding Faults 3, 9, and 15) reaches 0.83, which
is close to the best fault detection rate.

Fault 11 is a random change in the reactor cooling inlet
temperature. Fault 11 has the same problem as Fault 10 in
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FIGURE 6. Visualization of the fourth, fifth, and sixth dimensions of the
SFA dimensionally reduced training dataset.

TABLE 3. The total classification rates for the TE process.

that it also has low fault amplitudes. The fault classification
rates of RVM are 0.11 and 0.13. SVM has better results
with a classification rate over 50%. In the previous stud-
ies, the fault detection rates of some advanced methods are
approximately 0.85 [7], [30], [31]. The fault classification
rate of SFA-RVM (excluding Faults 3, 9, and 15) is 0.74.
It should be noted that Faults 4 and 11 occurred in the reactor
cooling inlet temperature. The only difference between Faults
4 and 11 is that Fault 4 is a step fault whereas Fault 11 is
random. Some of the fault samples from Fault 11 are quite
similar to samples from Fault 4, which will confuse the fault
classification model. It can be seen in Table 2 that there are
74 test samples belonging to Fault 11 that are classified as
belonging to Fault 4. In industrial processes, different faults
may result in similar evidence because of the presence of the
control system. Therefore, the definition of fault categories
before model training is also important.

Table 3 shows the overall classification rates for RVM,
SVM, decision tree, SFA-based decision tree (SFA-decision
tree), and SFA-RVM, as well as the classification rates for
different number of training samples (100 and 200 training
samples). For all faults (100 training samples), RVM can only
recognize 39% of the test samples, while the accuracy of
SVM reaches 55.8%. Furthermore, the SFA-RVM algorithm
has an overall classification rate of 76.1%, which is the
best fault recognition algorithm. The overall classification
rates excluding Faults 3, 9, and 15 are higher than those for
all faults. The RVM approach leads to a high dimensional
solution that causes the accuracy to be lower than 50%. Since
SVM is not a probabilistic algorithm, a complete training set
is needed to contain enough samples. If the training set is

limited, the accuracy of SVM is sensitive to the size of the
training set. For example, some of the TE process faults are
random faults, which means that the amplitude of the faults
varies. If the randomly chosen training sets differ greatly at
different times, the training models of SVM may have many
differences. The proposed SFA-RVM algorithm extracts the
inner dynamic features to maximize the separability between
classes. Dimension reduction avoids the computational com-
plexity of the RVM training. The extracted features are good
dynamic representations of the TE process. RVM has proba-
bilistic prediction and sparsity properties, which achieve good
generalization ability and robustness for small scaled training
samples. The proposed method takes advantages of both SFA
in extracting dynamic features and RVM in classifying.

V. CONCLUSION
In this paper, a modified RVMwith the SFA algorithm is pro-
posed for fault classification in dynamic industrial processes.
SFA extracts the lower-dimensional dynamic features, which
maximizes separability and reduces the computational com-
plexity of RVM. Simultaneously, a one-versus-one multiclass
RVM model is built to recognize the fault category when
there are insufficient training samples. RVM classifies the
type of faults, providing the connection between the detected
faulty samples and known faults. RVM has the advantages
of probabilistic prediction and sparsity properties for small
training sets. Detailed comparative studies between the SFA-
RVM method and traditional RVM and SVM were carried
out using the TE benchmark process. The simulations show
that the proposed SFA-RVM method has much better overall
fault classification rates than either the RVM or the SVM
method alone. For all faults, RVM can only recognize 39%.
The SFA-RVM algorithm has an overall classification rate
of 76.1%, which is a remarkable improvement.

However, the proposed method was not tested in a real pro-
cess. Collecting sufficient data with faults can be an issue for
real processes. Furthermore, the knowledge of fault type may
be not clear, that is, the training samples for fault classifiers
are not available as fast as required. Limited by the diversity
and quantity of the training samples for fault classification,
the dataset of a realistic experimental application is hard to
obtain. Finally, even if faulty data can be obtained, it may
not be possible to obtain meaningful fault classifications due
to the fact that some of the faults may have a very weak
signal. Thus, future work will focus on the application of this
method to fault classification on a real process and improving
its ability to better handle weak faults.
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