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ABSTRACT Remaining useful life (RUL) prediction plays a crucial role in prognostics and health manage-
ment (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible,
has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener
process. However, since the degradation process of some products is accumulated and irreversible, the inverse
Gaussian (IG) process that can describe monotonic degradation paths is a natural choice for degradation
modelling. This article proposes a nonlinear adaptive IG process along with the corresponding state space
model considering measurement errors. Then, an improved particle filtering algorithm is presented to update
the degradation parameter and estimate the underlying degradation state under the nonGaussian assumptions
in the state space model. The RUL prediction depending on historical degradation data is derived based on
the results of particle methods, which can avoid high-dimensional integration. In addition, the expectation-
maximization (EM) algorithm combined with an improved particle smoother is developed to estimate and
adaptively update the unknown model parameters once newly monitored degradation data become available.
Finally, this article concludes with a simulation study and a case application to demonstrate the applicability
and superiority of the proposed method.

INDEX TERMS Adaptive model, inverse Gaussian process, measurement errors, remaining useful life.

I. INTRODUCTION
With the improvement of the design levels andmanufacturing
techniques, products are getting more and more reliable.
Accurately assessing the reliability of these highly reliable
products has become an urgent need in industry. This also
leads to an emerging concept called prognostics and health
management (PHM) [1]. As a new engineering technology,
PHM based on condition monitoring (CM) data can effec-
tively reduce maintenance costs, improve the reliability, and
mitigate system risk. The main purpose of PHM is to predict
the remaining useful life (RUL) of a product accurately, and
then the RUL will offer guidance for sequential management
involving inspection schedule, maintenance, replacement,
and spare parts ordering [2], [3]. The RUL prediction
is typically characterized by the probability distribution
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function (PDF), which incorporates the expectation and the
uncertainty of the predicted RUL simultaneously [4].

In order to predict the RUL accurately, it is necessary
to construct an appropriate and applicable reliability model.
Since stochastic processes have good properties in modelling
the randomness of the degradation process of highly reliable
products, the stochastic process-based degradation models
have become a research focus [5]. The Wiener process,
gamma process, and inverse Gaussian (IG) process are three
popular stochastic processes used in degradation modelling.
The variants of these stochastic degradation models that con-
sider covariates, random effects, and measurement errors can
be found in [6]–[12]. In recent years, the Ornstein-Uhlenbeck
(OU) process has been introduced to describe the nonmono-
tonic degradation path by researchers [13], [14]. However,
the OU process is still in the exploratory stage in degradation
modelling without a widely used form [15].

The Wiener process that can describe the nonmono-
tonic degradation path has been well studied and gained
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wide applications. Nevertheless, the conventional Wiener
process model is based on a Markov assumption that
the degradation evolution and the RUL prediction depend
only on the current degradation observation, rather than
the historical degradation data [4]. The RUL prediction
based on incomplete degradation information is inaccu-
rate. To overcome this limitation, Wang et al. [16] pre-
sented an adaptive Brownian motion-based model with
an adaptive drift coefficient and explored to use histori-
cal degradation data for predicting RUL. In their model,
the adaptation of the drift coefficient was performed by
the Kalman filter (KF). However, the distribution of the
drift coefficient was not incorporated into the RUL estima-
tion. Motivated by this, Si et al. [17] developed a Wiener
process-based degradation model with a recursive filtering
algorithm. Also, they revealed that considering such distri-
bution could reduce the uncertainty of the estimated RUL.
Subsequently, this linear degradation model was extended
to a nonlinear prognostic model by [1]. More research
on nonlinear adaptive models can be found in [18]–[20].
In fact, the models presented in above literatures are all
nonstandard state space models, which result in the inappro-
priateness for a KF or a strong tracking filter (STF) to esti-
mate the degradation drift directly. Huang et al. [4] proposed
an online filtering algorithm based on Bayes’ theorem for
the nonstandard state space model. Similar online filtering
algorithm was investigated by [21].

Furthermore, Wang and Tsui [22] pointed that existing
state space models used for RUL prediction assumed that the
drift coefficient was constant during the given sampling inter-
val until the next observation was available, which caused
a contradiction with the drift coefficient evolution. To alle-
viate this assumption, they constructed a new space model
and explained the main reasons why the new model could
provided highRULprediction accuracies.More details can be
found in [23]. Zhai and Ye [24] had similar views and consid-
ered that the existing studies used an autoregressive model of
order 1 for the adaptive drift. Accordingly, they introduced a
new adaptive Wiener process model that modelled the adap-
tive drift by a continuous Brownian motion, and presented
an analytical parameter estimation method without using the
filtering algorithm. In addition, the error term was introduced
in the adaptive models proposed by [25], [26], where the KF
could be employed directly due to the introduction of two
or more hidden states in the state space model. However,
these two models still assumed that the drift coefficient was
constant between adjacent measurements.

Since the degradation process is an accumulated and
irreversible process for some products, the gamma pro-
cess and IG process that can describe monotonic degrada-
tion paths become a more natural choice for degradation
modelling [15], [27]. Compared with the Wiener process
and gamma process, the IG process shows better goodness
of fit for some degradation data [9], [10]. However, most
IG process-based degradation models do not consider the
error term, which limits the application of the IG process in

degradation analysis, and regard the lifetime distribution as
a reliability index, rather than the RUL based on historical
degradation data [28], [29]. Although Peng et al. [30] derived
the reliability functions depending on observed data under
a general Bayesian framework, the corresponding degrada-
tion models did not incorporate measurement errors. Xu and
Wang [31] developed a linear adaptive IG process to charac-
terize the degradation process of condition monitored com-
ponents, and to employ a general Bayesian filtering process,
they assumed that the sampling interval was fixed. However,
their model also did not incorporate measurement errors and
the derived RUL did not make full use of historical degrada-
tion data.

From the above review of the related work, it can be found
that there are three problems remaining to be addressed when
utilizing the IG process for RUL prediction. The first is to
construct an appropriate adaptive IG process model such
that the historical degradation data can be incorporated into
the PDF of the RUL with lower uncertainty. The second
is to consider the error term in the degradation model to
extend the application of IG process. The third is to solve
the filtering problem when considering two hidden states in
the state space model, and establish a parameter estimation
procedure updated with the newly observed data. In this
article, we propose a nonlinear IG process model to predict
the RUL adaptively. To consider the measurement errors in
degradation analysis and incorporate historical degradation
data for RUL prediction, a state space model with two hid-
den states is constructed. Since the conventional KF can-
not be employed to update the degradation parameter and
estimate the underlying degradation state under nonGaussian
assumptions, an improved particle filtering algorithm is pre-
sented. Based on the filtering results, we derive the particle
representations of the RUL without using high-dimensional
integration. In addition, the expectation-maximization (EM)
algorithm combined with particle methods is developed to
estimate and update the model parameters adaptively.

The remainder of this article is organized as follows.
Section II presents an adaptive IG process model consid-
ering measurement errors. In Section III, we propose an
improved filtering algorithm and derive the RUL grounded
in particle representations. In Section IV, the parameter
estimation and updating approach based on the EM algo-
rithm is investigated. A simulation study and a case appli-
cation are provided to demonstrate the performance of the
proposed model in Section V. Section VI concludes this
article.

II. ADAPTIVE IG PROCESS
A. BASIC IG PROCESS MODEL
Let {X (t), t ≥ 0} denote the underlying degradation process
and follow an IG process with increment X (t)−X (t−1t) ∼
IG(µ13(t), η(13(t))2), t > 0, where X (0) = 0 and
13(t) = 3(t) − 3(t − 1t) with 3(0) = 0. Here, 3(t|θ3)
is a given, monotone increasing shape function of time t
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with unknown parameters θ3. For notation simplicity, it is
rewritten as 3(t). The IG density function is defined by

f (x|µ, η, θ3)

=

√
η32(t)
2πx3

exp

[
−
η

2x

(
x
µ
−3(t)

)2
]
, x, µ, η > 0.

(1)

Then the IG process has mean µ3(t) and variance µ33(t)/η.
The parameter µ represents the degradation rate, and
the parameter η has no direct physical meaning. The
shape function 3(t) is usually decided by the particular
failure-generating mechanism [10].

Let D denote the threshold level for the degradation path.
Under the definition of the first passage time, the product’s
lifetime T is expressed as T = inf {t|X (t) ≥ D}. According
to themonotonicity property of the IG process, the cumulative
distribution function (CDF) of T is given by

FT (t|µ, η, θ3)

= 8

[
−

√
η

D

(
D
µ
−3(t)

)]
− exp

(
2η3(t)
µ

)
8

[
−

√
η

D

(
D
µ
+3(t)

)]
, (2)

where 8(·) is the standard normal CDF.

B. STATE SPACE MODEL WITH MEASUREMENT ERRORS
In practice, the CM data contain observation noise inevitably.
Thus, the observed degradation process {Y (t), t ≥ 0} is given
by

Y (t) = X (t)+ ε, (3)

where Y (0) = 0 and ε denotes the measurement error, which
is assumed to be s-independent and identically distributed
with ε ∼ N (0, σ 2

ε ) at any time point t [6].
For a product in service, it is assumed that the degra-

dation process is monitored at t1, t2, . . . , tm with degrada-
tion observations y1, y2, . . . , ym, where m is the number of
measurements. The corresponding underlying degradation
state is expressed as x1, x2, . . . , xm. For simplicity, we fur-
ther assume that y1:m = (y1, y2, . . . , ym)′ and x1:m =

(x1, x2, . . . , xm)′. The conventional PDF of the RUL uses
only the current degradation observation, rather than the his-
torical data. In Wiener process-based degradation analysis,
researcher investigated the RUL based on historical data by
establishing a state space model. Si et al. [17] revealed that
utilizing the historical data could reduce the uncertainty of
RUL prediction. However, the lifetime distribution or the
RUL of existing IG process models rarely incorporate histor-
ical data. To address this problem, we consider an updating
process for degradation parameter µ by assuming ξj = ξj−1
with initial parameter ξ0 following a truncated normal dis-
tribution T N (a0, σ 2

0 ) to avoid negative values of ξ , where
ξ = 1/µ. Then, this IG process model with an adaptive

degradation rate can be discretely expressed as a state space
model, i.e., 

ξj = ξj−1

xj = xj−1 + υj
yj = xj + εj

, (4)

where υj ∼ IG(13j/ξj−1, η(13j)2), 13j = 3(tj)
−3(tj−1) with 3(t0) = 0, and εj ∼ N (0, σ 2

ε ).
Based on (4) and particle methods, we can incorporate the

historical degradation data y1:m into the PDF of the RUL. The
details on particle methods are given in the following. In par-
ticular, if σε → 0, the model characterized by (4) reduces
to the model without considering measurement errors, where
εj ∼ N (0, 0) [24]. This situation can be viewed as a special
case of (4).

C. MODEL COMPARISON AND DISCUSSION
In this section, two adaptive Wiener process models will
be reviewed to illustrate the starting points of the proposed
model constructed in (4). The first model is a nonlinear
adaptiveWiener process model proposed byWang et al. [26].
They assumed that there are multiple hidden parameters.
Here, we only provide the state space model with one hidden
parameter as follows

λj = λj−1 + α

xj = xj−1 + λj−113j + σ1Bj
yj = xj + εj

, (5)

where the drift coefficient λ is characterized by an updating
procedure with α ∼ N (0,Q), 3(t) is the shape function
with 13j = 3(tj) − 3(tj−1), B(t) is a standard Brownian
motion with 1Bj = B(tj) − B(tj−1), and σ is the volatil-
ity parameter. This model, considering measurement errors,
extends the application of existingWiener models, but adopts
the assumption that the drift coefficient is constant between
adjacent measurements, which can be viewed as an approxi-
mation of the time-varying drift.

The second adaptivemodel is proposed by Zhai andYe [24]
as follows

λj = λj−1 + k1Wj

xj = xj−1 + λj−11Sj

+ k
∫ tj

tj−1

(
W (τ )−W (tj−1)

)
dS(τ )+ σ1Bj

, (6)

where λ is an adaptive drift modelled by a Wiener process,
W (t) is a standard Brownian motion independent of B(t)
with 1Wj = W (tj) − W (tj−1), and S(t) is a monotonically
increasing function of t with 1Sj = S(tj) − S(tj−1). The
continuous form of the observation equation in (6) can be
expressed as X (t) =

∫ t
0 λ(τ )dS(τ ) + σB(t). This means that

the drift parameter is time-varying, and thus the contradiction
in Wang’s model [26] is overcome. However, the error term
is not incorporated into this model, the applicability of which
is worth further study.
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The adaptive model established in this article can not
only consider the influence of measurement errors, but also
introduce the historical degradation data into the RUL predic-
tion (see next section). Therefore, the model form is closer
to the Wang’s model, and at the same time, it overcomes
the contradiction of the assumption in Wang’s model. It is
worth noting that in this article, the updating process for ξ
is expressed as ξj = ξj−1, mainly for the following two
reasons. First, the main purpose of establishing an adaptive
model is to update the posterior distribution of the degra-
dation parameter (µ or λ) and then incorporate the his-
torical degradation data into RUL prediction. The updat-
ing state equation described in (4) can achieve the same
effect and simplify the computation of statistical inferences
simultaneously. In fact, we have also established updating
equation ξj = ξj−1 + α for ξ , which is similar to those
in Wang’s model and Zhai’s model. However, the corre-
sponding parameter estimation methods we built showed
poor performance since they were sensitive to initial val-
ues. Second, we assume that the volatility of the degrada-
tion parameter is relatively small. The results in [24], [26]
reveal that the volatility of the drift coefficient in both
case applications is quite small, i.e., the estimated values of
Q and k close to 0. Accordingly, the updating state equations
in (5) and (6) actually reduce to the updating state equa-
tion proposed in (4). More case applications can be found
in [1], [4], [16]. In addition, Peng et al. [32] presented a
quantitative description of the approximated slope or steep-
ness of the degradation path, named the degradation rate
function. When the degradation slope changes dramatically,
it is more appropriate to adopt this concept to investigate the
evolving path of the degradation parameter. This is beyond
the scope of this article, and thusmore discussions are omitted
here.

In many cases, the degradation process of products is
accumulated and irreversible, such as fatigue crack growth
and corrosion. The advantages of the IG process in mod-
elling monotonic degradation paths have been well studied
by Ye and Chen [9], Peng [10], and Chen et al. [15] respec-
tively. This article aims to further study the IG process-based
adaptive model, which will extend the application of the
IG process.

III. RUL PREDICTION
A. BASIC RUL
This article focuses on the degradation of an individual
product and uses the concept of the first passage time [33]
to define RUL. Given X (tj) = xj, the RUL at time tj is
defined by

Lj = inf
{
lj : X (tj + lj) ≥ D|X (tj) = xj, ξj, η, θ3

}
. (7)

According to the independent increment property,
i.e., X (tj + lj) − X (tj) ∼ IG(13(lj)/ξj, η(13(lj))2),
the RUL Lj is equal to the first passage time of the pro-
cess

{
Z (lj), lj ≥ 0

}
crossing threshold D̃ = D − xj, where

13(lj) = 3(tj + lj) − 3(tj), and Z (lj) = X (tj + lj) − X (tj)

with Z (0) = 0. The CDF of Lj is given by

FLj|xj,ξj,η,θ3 (lj|xj, ξj, η, θ3)

= 8

[
−

√
η

D̃

(
D̃ξj −13(lj)

)]
− exp

(
2ηξj13(lj)

)
8

[
−

√
η

D̃

(
D̃ξj +13(lj)

)]
. (8)

When 3(t) is differentiable, the PDF of Lj can be easily
obtained as follows

fLj|xj,ξj,η,θ3 (lj|xj, ξj, η, θ3)

= 23′(tj + lj)
√
η

D̃
φ

[
−

√
η

D̃

(
D̃ξj −13(lj)

)]
− 2ηξj3′(tj + lj) exp

(
2ηξj13(lj)

)
·8

[
−

√
η

D̃

(
D̃ξj +13(lj)

)]
, (9)

where 3′(tj + lj) = d3(tj + lj)/dlj, and φ(·) is the standard
normal PDF.

B. IMPROVED PARTICLE FILTERING ALGORITHM
To incorporate historical degradation data, Wang et al. [26],
and Zhai and Ye [24] respectively constructed the state space
model with an adaptive drift and employed the KF to update
the hidden state. However, the KF cannot be utilized in the
proposed model due to its nonGaussian assumptions. Con-
sequently, this article proposes an improved particle filter
to address this problem. The filtering results can be used
to calculated the PDF of the RUL in the following section.
See [11], [34], [35] for more applications of particle filters in
degradation analysis.

The particle filter is a sequential Monte Carlo method
grounded in particle representations and can be viewed as the
generalization of the well-knownKF [36]. The main idea is to
represent the PDF of x approximatively by usingM particles
and associated weights, i.e., {f(k),w(k)

|k = 1, . . . ,M}, where
w(k) denotes the weight of the kth particle f(k). Since there
are two hidden states in the proposed state space model,
the conventional particle filter needs to be improved. The
following is the improved particle filtering algorithm based
on the sequential importance resampling (SIR) filter.

First, we assume symbols: (1) (f(k)j , f̃
(k)
j ) denotes the kth

pair of particle filters of (xj, ξj) at time tj, i.e., (f
(k)
j , f̃

(k)
j ) ∼

f (xj, ξj|y1:j); (2) (p
(k)
j , p̃

(k)
j ) denotes the kth pair of particle

predictors of (xj, ξj) at time tj, i.e., (p
(k)
j , p̃

(k)
j ) ∼ f (xj, ξj|y1:u),

(j > u). Given model parameters, the algorithm is summa-
rized as follows.

Algorithm 1 (Improved SIR Filtering Algorithm):

Step 1. Generate f(k)0 = 0 and f̃
(k)
0 ∼ T N

(
a0, σ 2

0

)
,

k = 1, . . . ,M .
Step 2. For j = 1, . . . ,m,
• Generate a random number
υ
(k)
j ∼ IG(13j/f̃

(k)
j−1, η(13j)2), k = 1, . . . ,M .
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• Compute p(k)j = f(k)j−1 + υ
(k)
j and p̃(k)j = f̃

(k)
j−1,

k = 1, . . . ,M .
• Compute

w(k)
j = f (yj|p

(k)
j , p̃

(k)
j ) ∝ exp

[
−(yj − p(k)j )

2
/2σ 2

ε

]
,

k = 1, . . . ,M .
• Generate {f(k)j , f̃

(k)
j |k = 1, . . . ,M} by resam-

pling {p(k)j , p̃
(k)
j |k = 1, . . . ,M} with weights

{w(k)
j |k = 1, . . . ,M}.

At the end of this filtering algorithm, M pairs of samples
from f (xj, ξj|y1:j) for j = 0, . . . ,m are obtained. The proof of
Algorithm 1 is given in the Appendix A.

C. RUL BASED ON THE HISTORICAL DATA
Based on the results of the improved particle filter, we can
obtain the particle representations of f (xj, ξj|y1:j). Then the
PDF of the RUL depending on the historical degradation data,
fLj|y1:j (lj|y1:j), can be derived as follows

fLj|y1:j (lj|y1:j)

=

∫
+∞

0

∫
+∞

0
fLj|xj,ξj (lj|xj, ξj)f (ξj|xj, y1:j)

· f (xj|y1:j)dξjdxj. (10)

For notation simplicity, fLj|xj,ξj,η,θ3 (lj|xj, ξj, η, θ3) is replaced
by fLj|xj,ξj (lj|xj, ξj) since some parameters are not random
in (10). Once new degradation data are observed, the RUL
based on the historical degradation data can be updated
adaptively.

Assume that

fLj|xj,y1:j (lj|xj, y1:j)

=

∫
+∞

0
fLj|xj,ξj (lj|xj, ξj)f (ξj|xj, y1:j)dξj, (11)

and then the particle representations of fLj|y1:j (lj|y1:j) can be
expressed as

fLj|y1:j (lj|y1:j) =
∫
+∞

0
fLj|xj,y1:j (lj|xj, y1:j)f (xj|y1:j)dxj

≈
1
M

M∑
k=1

fLj|xj,y1:j (lj|f
(k)
j , y1:j). (12)

From (12), it is easy to obtain numerical results, which avoids
the high-dimensional integration in (10). It is worth noting
that the key for estimating RUL is to derive the analytical
expression of (11). The detailed expression is given in the
Appendix B.

IV. PARAMETER ESTIMATION
Maximum likelihood estimation (MLE) is one of the most
popular methods for parameter estimation [4]. The state space
model proposed in this article considers two hidden states,
i.e., the underlying degradation state and the adaptive degra-
dation rate. Thus, it is difficult to directly employ MLE to
estimate unknown parameters in the proposed model. The
EM algorithm offers an alternative framework for parameter

estimation in the model with hidden states. See [7], [10] for
details. In the following, we present the parameter updating
algorithm.

A. EM ALGORITHM
Let θ = (θ3, η, a0, σ0, σε)′ and ξ0:m = (ξ0, ξ1, . . . , ξm)

′.
Given CM data y1:m, the complete log-likelihood about y1:m,
x0:m, and ξ0:m can be formulated as

L(y1:m, x0:m, ξ0:m|θ ) = ln f (y1:m|x0:m, θ )+ ln f (x0:m, ξ0:m|θ ).

(13)

The estimation procedure of the EM algorithm is given as
follows.

• E-step: Calculate

`(θ |θ̂
(i)
m ) = E

x0:m,ξ0:m|y1:m,θ̂
(i)
m
[L(y1:m, x0:m, ξ0:m|θ )] ,

(14)

where, θ̂
(i)
m denotes the estimate of θ at the ith iterative

step of the EM algorithm based on data y1:m.
• M-step: Calculate

θ̂
(i+1)
m = argmax

θ

`(θ |θ̂
(i)
m ). (15)

Through iteratively calculating E-step and M-step,
the parameter estimates converge to true values.

To be more precise, the expectation of the complete
log-likelihood is given by

`(θ |θ̂
(i)
m ) ∝ −

m
2
ln σ 2

ε −
1

2σ 2
ε

m∑
j=1

(
y2j − 2yjE(xj)+ E(x2j )

)
+
m
2
ln η +

m∑
j=1

ln13j −
η

2

m∑
j=1

(E(1xjξ2j−1)

− 213jE(ξj−1)+132
j E(1/1xj))

− (m+ 1)
[
1
2
ln σ 2

0 + ln
(
1−8

(
−
a0
σ0

))]
−

1

2σ 2
0

m∑
j=0

(E(ξ2j )− 2a0E(ξj)+ a20), (16)

where 1xj = xj − xj−1 with x0 = 0.

After deriving `(θ |θ̂
(i)
m ), we can obtain the θ̂

(i+1)
m by max-

imizing (16) with respect to θ . Since σε in the second line
of (16) is independent of other unknown parameters, σε has
the analytical results as follows

σ̂ε =

√√√√√ m∑
j=1

(
y2j − 2yjE(xj)+ E(x2j )

)
m

. (17)

The remaining parameters can be obtained by using fmin-
search function in MATLAB.
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B. IMPROVED PARTICLE SMOOTHING ALGORITHM
It is worth noting that the expectations, i.e., E(·),
in (16) and (17) are unknown. In this article, we use the
results of particle smoother to calculate these expectations.
Godsill et al. [37] suggested a particle smoother using back-
wards simulation that concerned the whole trajectory of
states (x1, x2 . . . , xm)′. The state space model proposed in this
article considers two hidden states, and thus it is necessary to
improve this particle smoother.

We assume that (s(k)j , s̃
(k)
j ) denotes the kth pair of particle

smoothers of (xj, ξj) at time tj, i.e., (s
(k)
j , s̃

(k)
j ) ∼ f (xj, ξj|y1:v),

(j < v). Based on the filtering results in Algorithm 1,
the improved particle smoothing algorithm is summarized in
the following. The proof is given in the Appendix C.

Algorithm 2 (Improved Particle Smoothing Algorithm):

Step 1. Choose [s(k)m , s̃
(k)
m ] = [f(l)m , f̃

(l)
m ] with probabil-

ity 1/M .
Step 2. For j = m− 1, . . . , 1
• Calculate

w(l)
j|j+1 ∝ f (s(k)j+1|f

(l)
j , f̃

(l)
j )

∝

√√√√ (13j+1)2

(s(k)j+1 − f(l)j )
3

· exp

−
η
[(

s(k)j+1 − f(l)j
)
f̃
(l)
j −13j+1

]2
2(s(k)j+1 − f(l)j )

 ,
l = 1, . . . ,M .

• Choose [s(k)j , s̃
(k)
j ] = [f(l)j , f̃

(l)
j ] with probability w(l)

j|j+1.

Step 3. s(k)1:m = (s(k)1 , . . . , s
(k)
m )′ and s̃(k)1:m = (s̃(k)1 , . . . , s̃

(k)
m )′

are the random samples from f (x1:m, ξ1:m|y1:m).
Step 4. Repeat Step 1-3 for k = 1, . . . ,M .

According to the Appendix B, we assume that
E(ξj) = ϕ1(xm) and E(ξ2j ) = ϕ2(xm). The partial expectations
can be calculated as follows

E(x2j ) ≈
1
M

M∑
k=1

(
s(k)j
)2

E(1/1xj) ≈
1
M

M∑
k=1

1

(s(k)j − s(k)j−1)

E(1xjξ2j−1) ≈
1
M

M∑
k=1

(s(k)j − s(k)j−1)ϕ2(s
(k)
m ).

(18)

C. CONVERGENCE ASSESSMENT
In the EM algorithm, the complete likelihood increases at
each iteration and tends to a certain value, which is commonly
used to assess the convergence of the EM algorithm. How-
ever, the proposed EM algorithm based on particle methods
does not guarantee the strict monotone likelihood property.
In this article, the relative likelihood, which is the ratio of the
likelihoods at two adjacent iterations [36], is considered as

a measure in assessing convergence. The relative likelihood
function of the proposed model at the ith iteration is given by

ln
[
fθ (i) (y1:m)

fθ (i−1) (y1:m)

]
= lnEθ (i−1)

[
fθ (i) (x1:m, y1:m)

fθ (i−1) (x1:m, y1:m)

∣∣∣∣ y1:m]
≈ − ln

[
1
M

M∑
k=1

fθ (i−1) (s
(k)
1:m, y1:m)

fθ (i) (s
(k)
1:m, y1:m)

]
, (19)

where s(k)1:m is the kth smoothing particle during the ith EM
iteration, and fθ (i) (x1:m, y1:m) is the complete likelihood func-
tion about x1:m and y1:m. See Supplementary Materials in [9]
for further details of fθ (i) (x1:m, y1:m).

Generally, the EM algorithm is converged if the relative
likelihood function is less than a predetermined tolerance.
Theoretically, the relative likelihood function will converge
to any predetermined tolerance eventually if the particle size
M and the number of iterations are large enough. Practically,
overlarge particle size and number of iterations will affect
the computational efficiency. To strike a balance between
the efficiency and accuracy, we provide a three-stage EM
algorithm as follows:

• Stage 1: 200 particles with no tolerance or a very
small tolerance are used for initial estimation. At this
stage, the relative likelihood function decreases fast and
the parameter estimates converge to reasonable small
ranges.

• Stage 2: 500 particles with tolerance 0.001 are used.
The parameter estimates tend to be stable within small
number of iterations at this stage.

• Stage 3: 1000 particles with tolerance 0.001 are used.
This stage further improves the calculation accuracy.

In fact, the accuracy of parameter estimates can be further
improved by increasing the particle size and decreasing the
tolerance. However, the proposed three-stage EM algorithm
is able to balance the efficiency and accuracy.

D. PARAMETER UPDATING ALGORITHM
Once newly monitored degradation data become available,
the model parameters and the RUL based on historical data
can be adaptively estimated. Let θ̂

(i)
j denote the estimate of θ

at the ith iterative step of the EM algorithm based on CM
data y1:j. Given initial monitored data y1:m0 , the parameter
updating algorithm is summarized in Algorithm 3.
Algorithm 3 (Parameter Updating Algorithm):

Step 1. Estimate a set of reasonable initial parameters, θ̂
(0)
m0
.

Step 2. For CM data y1:j, employ the three-stage EM algo-
rithm. Each stage is performed as follows:

• E-step: Substitute θ̂
(i−1)
j into (14) to obtain `(θ |θ̂

(i−1)
j ).

• M-step: Maximize `(θ |θ̂
(i−1)
j ) with respect to θ to obtain

new estimate θ̂
(i)
j .

• Convergence assessment: Compare the relative like-
lihood with the predetermined tolerance, and decide
whether to move to the next EM stage.
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At the end of the third EM stage, regard the esti-
mated θ̂

(imax)
j as the parameter estimates with respect to y1:j.

Step 3. Once observe new data, assume θ̂
(0)
j+1 = θ̂

(imax)
j and

repeat Step 2.

V. ILLUSTRATIVE EXAMPLES
In this section, a simulation study and a case application
are provided to demonstrate the applicability and superiority
of the proposed model. To compare the performance of the
proposed model with two existing models, we introduce the
mean square error (MSE) [1]. TheMSE about the actual RUL
at tj is defined by

MSEj =
∫
∞

0

(
lj − l̃j

)2
fLj|y1:j (lj|y1:j)dlj, (20)

where l̃j is the actual RUL obtained at time point tj, and
fLj|y1:j (lj|y1:j) is the PDF of the RUL based on the historical
degradation data.

A. SIMULATION STUDY
This simulation study is provided to demonstrate the appli-
cability of the proposed model along with the parameter
estimation algorithm. For illustration purpose, we assume that
3(t) = tq and set q = 1.7, η = 0.3, a0 = 6, σ0 = 0.1, and
σε = 0.2. Then, the proposed model in (4) is used to generate
a simulated degradation path, where m = 150 and sampling
interval 1t = 0.1, as shown in Fig. 1. Here, the underlying
degradation state x150 is set as the threshold, i.e., D = 14.45.

FIGURE 1. The simulated degradation path.

For the simulated degradation path, we apply the proposed
model to estimate model parameters based on data y1:j, where
j ≥ 39 such that there are sufficient degradation data for ini-
tial parameter estimation [24]. The initial parameters are set
as θ̂

(0)
39 = (1.77, 1.00, 6.54, 0.50, 0.50), where the estimates

of q and a0 are obtained by fitting data y1:39 against non-
linear function tq/a0, and the remaining estimates are set as
reasonable values. As the degradation data are accumulated,
the model parameters are estimated adaptively. The evolving

FIGURE 2. The evolving paths of parameter estimates.

paths of parameter estimates are illustrated in Fig. 2. From
Fig. 2, the parameter estimates are updated and tend to be
stable, where the estimates of q and a0 approach to the
true values. For comparison, we also provide the evolving
paths of parameter estimates based on initial parameters
θ̂
(02)
39 = (1.77, 5.00, 6.54, 5.00, 5.00) in Fig. 2, where q

and a0 are calculated by the same fitting method, and the
remaining initial parameters are chosen as ten times more
than true values. As shown, the evolving paths based on
both sets of initial parameters are almost identical, except
for η at the initial sampling points. These results verify the
applicability of the proposed parameter estimation method.
In the following, the results based on θ̂

(0)
39 are used for further

analysis.
Based on the updated model parameters, we can obtain the

PDFs of the RUL at different sampling points. To compare
the performance of predicting RUL, we also consider Wang’s
model in (5) and Zhai’s model in (6). For simplicity, let M1
denote the proposed model, MW denote Wang’s model con-
sidering measurement errors, and MZ denote Zhai’s model
without considering measurement errors. Then the PDFs of
the RUL of three models are plotted in Fig. 3 from the 85th
sampling point to the 145th point in increments of 10 points.

FIGURE 3. Predicted RUL based on M1, MW , and MZ.
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TABLE 1. MRUL, 95% CIs, and REs of the three models.

It can be observed from Fig. 3 that compared with models
MW and MZ , model M1 provides a better prediction for the
RUL, especially at the early sampling points. Meanwhile,
the PDF curves of modelM1 are narrower than that of models
MW and MZ at each sampling point, which means that the
former has lower uncertainty. Additionally, the models con-
sidering measurement errors, i.e., M1 and MW , have better
predictive performance than the model without considering
measurement errors, i.e., MZ . Therefore, it is necessary to
consider the error term in the state space model for the
degradation data with measurement errors.

To quantitatively compare the performance, the mediums
of the RUL (MRUL) along with the associated 95% con-
fidence intervals (CIs), and the relative errors (REs) of the
estimated RUL of three models are calculated at the 80th,
110th, and 140th sampling point, as shown in Table 1. The
concepts of MRUL and RE are defined in [1]. Table 1 shows
that model M1 provides a better prediction for the RUL with
lower uncertainty, which is confirmed by Fig. 3 qualitatively.

In addition, the MSE about the actual RUL at each sam-
pling point for all models are shown in Fig. 4. This fig-
ure indicates that model M1 has a lower MSE as a whole.
Before time t50, the MSE of models MW and MZ evolves
dramatically, while the MSE of model M1 avoids the abrupt
change. Thus, modelM1 is obviously a better choice for RUL
prediction. As the degradation data are accumulated, theMSE
of model MW quickly reduces and approaches the MSE of
model M1. One reasonable explanation for this is that both
models consider measurement errors.

FIGURE 4. MSE of the RUL based on M1, MW , and MZ.

Furthermore, the two filtering methods used in models
M1 and MW are compared. In this article, the improved SIR
filter is presented to obtain the particle representations of

FIGURE 5. Comparison of two filtering methods based on MAE.

the underlying degradation state, i.e., x̂j ≈ 1
M

∑M
k=1 f

(k)
j .

In model MW , Wang et al. [26] employed KF to obtain
the distribution of the underlying degradation state, i.e.,
xj|y1:j ∼ N (x̂j|j,Pj|j). Thus, the estimated underlying degra-
dation state can be expressed as x̂j ≈ x̂j|j. Fig. 5 shows
the absolute error between the actual underlying degradation
state and the estimated underlying degradation state,
|xj − x̂j|, at each sampling point based on two filtering
methods. Accordingly, the mean absolute errors (MAEs) [24]
between xj and x̂j of models M1 and MW are calculated,
i.e., 0.0871 and 0.1484. These results indicate that the pro-
posed particle filter provides better filtering accuracy for the
underlying degradation process, and also demonstrate the
applicability of the proposed algorithm.

B. APPLICATION TO GAAS LASER DATA
In this section, we consider the degradation data of GaAs
laser devices described by Meeker and Escobar [38] (Exam-
ple 13.10). The quality characteristic of a laser device is its
operating current. The lasers contain a feedback mechanism
that can maintain nearly constant light output by increasing
operating current as the laser degrades. The laser device is
considered to have failed when the operating current exceeds
a threshold level,D = 10%. Fig. 6 gives 15 degradation paths
of laser devices, the operating current of which is recorded
every 250 hours. Details about this degradation dataset can
be found in Table C.17 of [38].

Some degradation models [9], [10], [39] have been pro-
vided to demonstrate the effectiveness of the IG process in
modelling the degradation dataset mentioned above. These
studies assumed that 3(t) = tq, and thus it is adopted here.
In the following, the first degradation path in Table C.17 of
[38] is used for illustration purpose, i.e., the dark dotted line
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TABLE 2. MRUL, 95% CIs, and REs of the three models.

FIGURE 6. Degradation paths of the GaAs laser current.

FIGURE 7. Predicted RUL based on M1, MW , and MZ.

in Fig. 6. It is noted that there are two other degradation
paths that reach the threshold. Following the procedure below,
we can draw similar conclusions from these degradation
paths. Thus the detailed discussions about them are omitted.

Similarly, models M1, MW , and MZ are used for RUL
prediction. The parameter estimation is assumed to start from
t8 = 2 × 103 hours. The initial parameters are set as θ̂

(0)
8 =

(1.10, 100.00, 0.39, 0.10, 0.10). Fig. 7 shows the PDFs of the
RUL of three models at each sampling point. This figure indi-
cates that modelM1 provides a more precise RUL prediction
with lower uncertainty, while model MW has relatively poor
performance. In addition, the PDF curves of models M1 and
MZ coincide with each other as the degradation data are
accumulated. For further comparison, the MRUL along with
the associated 95% CIs, and the REs of the estimated RUL
of three models at the 9th, 11th, and 13th operating time are
summarized in Table 2. From Table 2, it is found that the

FIGURE 8. Predicted RUL based on M1 and M2.

FIGURE 9. MSE of the RUL based on M1, MW , and MZ.

results of model M1 are superior to the results of models
MW and MZ . It is worth noting that although model MW
considers the error term, its predictive performance is not as
good as that of modelMZ . It may be related to the assumption
of model MW that the drift coefficient is constant over the
given sampling interval. In addition, due to small sample size,
the RE of the same model does not necessary decrease as the
degradation data are accumulated.

From Fig. 7 and Table 2, it is found that the performance
of model MZ without considering error term is close to that
of modelM1. Therefore, we consider a special case of model
M1, i.e. the model characterized by (4) without considering
error term, where εj ∼ N (0, 0). Similar idea can be found
in [24]. Correspondingly, Algorithm 1 and Algorithm 2 can be
simplified directly according to Appendix A andAppendix C.
Let M2 denote this special case. Then, the results based on
modelM2 are demonstrated in Table 2 and Fig. 8. As shown,
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the error term has less influence on the RUL prediction, and
thus model M1 has reduced to model M2.
To further compare the accuracy of RUL prediction, Fig. 9

shows the MSE about the actual RUL at each operating time
for all models. As shown in Fig. 9, model M1 and model M2
have lower MSEs as a whole, except at operating time t8.
This is because the parameter estimates of both models have
not yet converged at t8 due to insufficient initial degradation
data. In practice, increasing degradation data can avoid this
problem.

From the qualitative and quantitative results in Fig. 7,
Fig. 8, Fig. 9, and Table 2, we can conclude that the model
M1 and model M2 provide better prediction accuracy for
the laser data. Similar conclusions can be drawn from other
degradation paths in Fig. 6, and thus the details are omitted
here.

VI. CONCLUSION
In this article, an adaptive IG process model is presented
for RUL prediction. To incorporate measurement errors and
derive the RUL based on the historical degradation data,
we construct a state space model accordingly. Then an
improved SIR filter is proposed to overcome the nonGaussian
assumptions in the state space model and obtain the parti-
cle representations of the estimated RUL, which can avoid
high-dimensional integration. In addition, we investigate
the EM algorithm combined with particle methods, based
on which a parameter updating algorithm is provided to
update the unknown parameters along with the RUL adap-
tively. To balance the efficiency and accuracy of the com-
putation, we propose a multistage convergence assessment
approach. Furthermore, a simulation study and a case applica-
tion are used to demonstrate the applicability of the proposed
method. Meanwhile, compared with the adaptive Wiener
process models presented by [24], [26], the proposed model
shows the superiority in describing monotonic degradation
paths, which extends the application of IG process in degra-
dation analysis.

Finally, there are two issues needed to be further studied.
First, this article focuses on the situation that the volatility
of the degradation parameter is relatively small. To address a
more general case, it is necessary to change the structure of
the proposed state space model and propose a new parameter
estimation method. Second, we do not consider the effect of
the error term on the PDF of RUL. For example, it can occur
that the underlying degradation level exceeds the threshold
although the observed degradation level does not exceed the
threshold, or vice verse (see [40]). This situation deserves
further investigation.

APPENDIXES
APPENDIX A
PROOF OF ALGORITHM 1
The proof of the SIR filter with only one hidden state can be
found in [36], [41]. In the following, we provide the proof of
the improved SIR particle filter with two hidden states.

Proof: The predictive distribution, f (xj, ξj
∣∣ y1:j−1), can be

expressed as

f (xj, ξj
∣∣ y1:j−1) = ∫∫ f (xj, ξj|xj−1, ξj−1, y1:j−1)

· f (xj−1, ξj−1|y1:j−1)dxj−1dξj−1

=

∫∫
f (xj|xj−1, ξj−1)f (ξj|ξj−1)

· f (xj−1, ξj−1|y1:j−1)dxj−1dξj−1. (21)

Given the particle representations of f (xj−1, ξj−1|y1:j−1),

p(k)j = f(k)j−1 + υ
(k)
j and p̃(k)j = f̃

(k)
j−1 can be regarded as

random samples from f (xj, ξj
∣∣ y1:j−1). Therefore, we obtain

{p(k)j , p̃
(k)
j |k = 1, . . . ,M} by repeating above procedure M

times.
If the new degradation data yj is observed, we get {f(k)j ,

f̃
(k)
j |k = 1, . . . ,M} as follows

Pr
(
(xj, ξj) = (p(k)j , p̃

(k)
j )|y1:j

)
= Pr

(
(xj, ξj) = (p(k)j , p̃

(k)
j )|y1:j−1, yj

)
=

p(yj|p
(k)
j , p̃

(k)
j , y1:j−1) Pr

(
(xj, ξj) = (p(k)j , p̃

(k)
j )|y1:j−1

)
p(yj|y1:j−1)

=

p(yj|p
(k)
j , p̃

(k)
j ) Pr

(
(xj, ξj) = (p(k)j , p̃

(k)
j )|y1:j−1

)
M∑
z=1

p(yj|p
(z)
j , p̃

(z)
j ) Pr

(
(xj, ξj) = (p(z)j , p̃

(z)
j )|y1:j−1

) .
(22)

Here, Pr((xj, ξj) = (p(k)j , p̃
(k)
j )|y1:j−1) =

1
M . If we

sample from {p(k)j , p̃
(k)
j |k = 1, . . . ,M} with weight

w(k)
j = p(yj|p

(k)
j , p̃

(k)
j ), we get (f(k)j , f̃

(k)
j ).

This proof is complete.

APPENDIX B
ANALYTICAL EXPRESSION OF (11)
According to [9], we know that ξj|x1:j ∼ T N (ã0, σ̃ 2

0 )
with parameters ã0 = (ησ 2

03(tj) + a0)/(ησ 2
0 xj + 1) and

σ̃ 2
0 = σ

2
0 /(ησ

2
0 xj + 1). Then, the fLj|xj,y1:j (lj|xj, y1:j) is further

expressed in (23), as shown at the bottom of the next page.
This equation can be regarded as the sum of two integrals,
i.e., I1 and I2.
For deriving I1, we need the following theorem, which can

be obtained directly by using the formula 110 in [42].
Theorem 1 If Z ∼ N (0, 1), and a, b ∈ R, then∫
+∞

0
φ(z)φ(a+ bz)dz

=
1

√
1+ b2

φ

(
a

√
1+ b2

)
8

(
−

ab
√
1+ b2

)
. (24)
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Making the change of variablem = (ξj− ã0)/σ̃0, and using
Theorem 1, we obtain (25), as shown at the bottom of this
page.

For deriving I2, we provide Theorem 2, which can be
derived by using the formulas 10,011.1 and 10,011.3 in [42].

Theorem 2 If Z ∼ N (0, 1), and a, b, c, d ∈ R, then∫
+∞

r
(cz+ d)φ(z)8(a+ bz) dz

=
cb

√
1+ b2

φ

(
a

√
1+ b2

)
8

(
−r
√
1+ b2 −

ab
√
1+ b2

)
+ cφ (r)8 (a+ br)+ d ·

[
8(−r)8

(
a

√
1+ b2

)
−T

(
r,

a

r
√
1+ b2

)
− T

(
a

√
1+ b2

,
r
√
1+ b2

a

)

+T
(
r,
a+ br
r

)
+ T

(
a

√
1+ b2

,
ab+ r(1+ b2)

a

)]
,

(26)

where the T-function is defined as

T(u, v) =
∫ v

0

φ(u)φ(ux)
1+ x2

dx.

For notation simplicity, we assume that
h̃ = ã0 + 2ησ̃ 2

013(lj)

Ã = −
2η3′(tj + lj)exp(2ã0η13(lj)− 2η2σ̃ 2

013
2(lj))

1−8
(
−
ã0
σ̃0

) .

Making the change of variable m = (ξj − h̃)/σ̃0, we have

I2 =
Ã
σ̃0

∫
+∞

0
ξjφ

(
ξj − h̃
σ̃0

)
8

[
−

√
η

D̃
(D̃ξj +13(lj))

]
dξj

= Ã
∫
+∞

−
h̃
σ̃0

(σ̃0m+ h̃)φ(m)8
[
−

√
η

D̃
(D̃h̃+13(lj))

−

√
ηD̃σ̃0m

]
dm. (27)

Further, we assume that

a = −
√
η

D̃

(
D̃h̃+13(lj)

)
b = −

√
ηD̃σ̃0

c = σ̃0

d = h̃

Then I2 is derived by using Theorem 2. The numerical
calculation of the T-function can refer to the algorithm
in [43].

Finally, the result of (11) follows by combing I1 and I2.

APPENDIX C
PROOF OF ALGORITHM 2
The proof of the particle smoother using backward simulation
with only one hidden state can be found in [36], [37]. In the
following, we provide the proof of the improved particle
smoother with two hidden states.
Proof: The p(x1:m,ξ1:m|y1:m) can be expressed as

p(x1:m,ξ1:m|y1:m)

= p(xm,ξm|y1:m)
m−1∏
j=1

p
(
xj,ξj|xj+1,...,xm,ξj+1...,ξm,y1:m

)
(28)

and

p
(
xj,ξj|xj+1,...,xm,ξj+1...,ξm,y1:m

)
= p

(
xj,ξj|xj+1,ξj+1,y1:j

)
=

p
(
xj+1,ξj+1,xj,ξj|y1:j

)
p
(
xj+1,ξj+1|y1:j

)
∝ p

(
xj+1,ξj+1|xj,ξj,y1:j

)
p
(
xj,ξj|y1:j

)
= p

(
xj+1|xj,ξj

)
p
(
ξj+1|ξj

)
p
(
xj,ξj|y1:j

)
. (29)

Given filtering results {f(k)j ,f̃
(k)
j |k = 1,...,M} and asso-

ciated weights {w(k)
j |k = 1,...,M}, the p(xj,ξj|xj+1,...,

fLj|xj,y1:j (lj|xj, y1:j)

=

∫
+∞

0
23′(tj + lj)

√
η

D̃
φ

[
−

√
η

D̃

(
D̃ξj −13(lj)

)] φ
[(
ξj − ã0

)
/σ̃0

]
σ̃0
[
1−8(−ã0/σ̃0)

]dξj
+

∫
+∞

0

{
−2ηξj3′(tj + lj) exp

(
2ηξj13(lj)

)
8

[
−

√
η

D̃

(
D̃ξj +13(lj)

)]} φ
[(
ξj − ã0

)
/σ̃0

]
σ̃0
[
1−8(−ã0/σ̃0)

]dξj
= I1 + I2. (23)

I1 =
23′(tj + lj)

1−8(− ã0
σ̃0
)

√
η

D̃

∫
+∞

−
ã0
σ̃0

φ(m)φ
[
−

√
ηD̃σ̃0m−

√
η

D̃
(D̃ã0 −13(lj))

]
dm

=
23′(tj + lj)√

1+ ηD̃σ̃ 2
0

[
1−8(− ã0

σ̃0
)
]√ η

D̃
φ

−√ η
D̃

(D̃ã0 −13(lj))√
1+ ηD̃σ̃ 2

0

8
 ã0
σ̃0

√
1+ ηD̃σ̃ 2

0 −
ησ̃0(D̃ã0 −13(lj))√

1+ ηD̃σ̃ 2
0

 . (25)
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xm,ξj+1...,ξm,y1:m) can be approximated as follows

p
(
xj,ξj|xj+1,...,xm,ξj+1...,ξm,y1:m

)
≈

M∑
k=1

w(k)
j|j+1δ

(
(xj,ξj)− (f(k)j ,f̃

(k)
j )
)
, (30)

where

w(k)
j|j+1 =

w(k)
j f (xj+1|f

(k)
j ,f̃

(k)
j )

M∑
z=1

w(z)
j f (xj+1|f

(z)
j ,f̃

(z)
j )

,

and δ(x) denotes an indicator function whose value is 1 if
x = 0, 0 otherwise.
The idea of the particle smoothing algorithm is: given ran-

dom samples (sj+1,...,sm)′ and (s̃j+1,...,s̃m)′ approximately
from p

(
xj+1,...,xm,ξj+1...,ξm|y1:m

)
, it is possible to obtain

samples sj and s̃j from p(xj,ξj|sj+1,...,sm,s̃j+1...,s̃m,y1:m), and
thus (sj,sj+1,...,sm)′ and (s̃j,s̃j+1,...,s̃m)′ are random sam-
ples from p(xj,...,xm, ξj...,ξm|y1:m). By repeating this proce-
dure sequentially back over time, the results of the particle
smoother can be obtained.
This proof is complete.
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