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ABSTRACT The adoption of electronic health records (EHRs) is an important step in the development
of modern medicine. However, complete health records are not often available during treatment because
of the functional problem of the EHR system or information barriers. This paper presents a deep-learning-
based approach for textual information extraction from images of medical laboratory reports, which may
help physicians solve the data-sharing problem. The approach consists of two modules: text detection and
recognition. In text detection, a patch-based training strategy is applied, which can achieve the recall of 99.5%
in the experiments. For text recognition, a concatenation structure is designed to combine the features
from both shallow and deep layers in neural networks. The experimental results demonstrate that the text
recognizer in our approach can improve the accuracy of multi-lingual text recognition. The approach will be
beneficial for integrating historical health records and engaging patients in their own health care.

INDEX TERMS Medical laboratory reports, textual information extraction, text detection, text recognition.

I. INTRODUCTION

The medical laboratory report is one kind of important clin-
ical data, which helps health care professionals with patient
assessment, diagnosis, and long-term monitoring. The digi-
tization process of healthcare services has been introduced
into European countries under study during the last ten years.
It has already reached excellent levels in some countries,
especially in Northern Europe [1], [2]. In North America,
the US government has also granted the substantial federal
financial incentives to promote the adoption and use of elec-
tronic health records (EHRs) [3]-[5]. However, the situation
may be different in developing countries, where paper doc-
uments are still common for health reports and records in
hospitals. Taking China as an example, nearly 30% of tertiary
hospitals still have paper-based or stand-alone computer sys-
tems, and another 30% have only basic systems that cannot
share data among departments and hospitals [6]. Based on the
above background, the purpose of our work is making papery
medical laboratory reports digitalized for EHR system, which
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mainly relates to optical character recognition (OCR) tech-
niques, especially text detection and recognition [7].
Though OCR is well-established for certain applications,
text detection and recognition still face many challenges, such
as the diversified requirements in different scenes (e.g., texts
in street scene for robot navigation and receipts OCR for
financial departments) and lower quality or degraded data
(e.g., scanned legacy books in Google Books service) [7].
This work focuses on the digitization of documents in the
medical scene. The most significant challenge to apply a text
detection model to a documental image is that the image usu-
ally has a high resolution and many textual objects, while the
single textual object occupies a very small region. It requires
more memory to store the model’s variables and takes more
time to train and test the model when processing such a
large image. A common operation [8], [9] for this problem
is to resize the large image into a small scale. As shown
in Fig. 1, generic objects can still keep saliency when they
are resized twice or four times smaller. However, for a doc-
umental image, texts can be blurry and hard to be detected
if they are resized into such small scales. Because a single
text occupies a small region and can be recognized in a small
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FIGURE 1. The outlines of pedestrians and cars on the left image can still
be recognized when the image is resized twice or four times smaller.
While each textual object occupies a small region on the right image,
which becomes blurry and hard to be distinguished on the resized images.
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FIGURE 2. Images of text samples on medical laboratory report. The
column (a) represents the texts that mix numbers and mathematics
symbols. The column (b) contains Chinese and Latin characters. The last
column (c) represents the typical long texts including multi-lingual
characters and symbols. In the column (b) and (c), two groups of strokes
that have local similarity are bounded with red box.

image patch, this work proposes a patch-based strategy to
cope with the challenge occurring during text detection.

Another challenge is brought by multi-lingual texts. The
texts in a medical laboratory report often contain more than
one kind of characters. In our experiments, besides numbers
and symbols, the characters are mainly from Chinese and
Latin. Chinese characters usually have a complex structure
that consists of several parts. Some of these parts are basic
strokes that are similar or identical, which bring difficulty for
text recognition. Fig. 2 gives two groups of similar strokes
that are bounded with red boxes. For text recognition, most
existing approaches focuses on a single language, which is
probably due to insufficient data [7], [10]. In this work,
a concatenation structure is proposed to solve this problem,
which can merge the features from both shallow and deep
layers in the neural network.

In this work, a deep learning approach is presented to
detect and recognize texts from a laboratory report image.
In this approach, a patch-based strategy and a concatenation
structure are proposed to handle the problems mentioned
above. Specifically, an input documental image is cropped
into patches firstly. Then a detector searches textual objects
on each patch and outputs a set of predictions. The predic-
tions from all patches are integrated as the final detection
results. The module of text recognition is constructed based
on CRNN (Convolutional Recurrent Neural Network [11])
and improved through a concatenation structure. For each
detected textual object, the text recognizer outputs a text
sequence directly. Because mobile devices have been more
popular than before, we evaluate the proposed approach on a
dataset with both scanned and phone-captured images. The
results demonstrate that the proposed approach can effec-
tively detect and recognize texts from medical laboratory
reports. The contributions of this work are summarized as
follows:
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FIGURE 3. The pipeline of our approach. First, the input image of a
medical laboratory report is cropped into small patches. Then the text
detector searches textual objects on each patch and outputs their
locations. According to detection results, the text recognizer takes each
text area as input and predicts the contents within it.

o A patch-based strategy is used for text detection on doc-
umental images with high resolution and this strategy
results in a high recall and precision.

o A concatenation structure is proposed that combines
the features from two adjacent convolutional layers
and brings a significant improvement in a multi-lingual
scene.

o A deep learning approach is presented for text detec-
tion and recognition from images of medical laboratory
reports.

Il. RELATED WORK

A. TEXT DETECTION

The early approaches [13]-[16] mostly follow a bottom-up
pipeline that applies artificial features [17]-[19] to detect
strokes or characters. The individual character or combined
strokes are directly classified in the recognition period or con-
structed into a line for text line verification in text detection.
However, their performance relies on the results of character
detection, and the extracted features are not robust to distin-
guish strokes or characters in different scenes (e.g., various
fonts and degraded images).

Recent works in text detection are mostly inspired by scene
object detection [20]-[22] and semantic segmentation [23],
[24]. These methods can be categorized into bounding box
regression based methods, segmentation based methods, and
combined methods. Bounding box regression based meth-
ods [8], [9], [25], [26] treat each textual area as a kind of
object and directly predict its bounding box and classifica-
tion. Segmentation based methods [27]-[29] try to segment
text regions from the background and output the final bound-
ing boxes according to the segmented results. Combined
methods [30] use a similar approach like Mask R-CNN [24],
in which both segmentation and bounding box regression are
used for better performance. However, combined methods
are time consuming because more steps are involved. Among
the three kinds of methods, bounding box regression based
methods are the most popular in scene text detection and we
also adopt this kind of method.

Bounding box regression based methods can be divided
into one-stage methods and two-stage methods. One-stage
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FIGURE 4. Overview of our detection pipeline. The network inherits from faster RCNN [12] architecture.

methods [9], [26] directly output detection results at several
grids that correspond to the specific locations on feature
maps. These methods often have faster speed but lower accu-
racy. Two-stage methods [8], [25] first apply CNN (Convo-
lutional Neural Network) to extract features and generate a
sparse set of candidate proposals that are supposed to contain
all texts and filter out the majority of negative candidates.
In the second stage, each candidate proposal is classified into
one specific class and more accurate location is conducted
through the learned bounding box regression. Considering
the sequence characteristic of text, CTPN (Connectionist Text
Proposal Network [8]) combines CNN and RNN (Recur-
rent Neural Network) to detect sequential features. EAST
(An Efficient and Accurate Scene Text Detector [31]) is
another two-stage detector, where a FCN-based (Fully Con-
volutional Networks [23]) pipeline is devised to merge the
features from each convolutional layer. Besides class score
and axis-aligned coordinates, EAST also outputs text rotation
angle and quadrangle coordinates. Our text detector also
adopts the two-stage design. But different from these methods
that aim to natural scene images (COCO-Text [32], ICDAR
2013 [33] and ICDAR 2015 [34]), our method uses a patch-
based strategy to address the challenge happened on images
of medical laboratory reports, in which the image usually has
a high resolution and many small textual objects.

B. TEXT RECOGNITION

Traditional methods [35]-[37] recognize characters individu-
ally and then group them into words. They explore low-level
features, which are not robust to identify complex struc-
tures without context information. Then Wang, et al. [38]
developed a CNN-based feature extraction framework for
character recognition that achieved a better result than the
methods [37], [39] with artificial features in individual char-
acter recognition. However, it is challenging to segment
single characters because of the complicated background
and inconsistent character spacing, e.g., Chinese character
spacing is usually larger than Latin character spacing. As a
natural characteristic of language, the relationship among
characters or words is an important cue to make a predic-
tion. CRNN [11] utilizes a sequential model to learn this
relationship, which combines CNN and RNN for visual fea-
ture representation. Then, the CTC (Connectionist Temporal
Classification [40]) loss is connected with the RNN outputs
for calculating the conditional probability of the predictions.
Most recent works [41], [42] take this approach as skeleton
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and introduce attention mechanism. However, few research
aim at the multi-lingual scene [7], [43], [44]. For images
of medical laboratory reports, we devise a concatenation
structure to solve the recognition problem caused by multiple
languages.

lIl. OUR APPROACH

The pipeline of our approach is illustrated in Fig. 3. Given
an image of medical laboratory report, we first detect text
blocks on it with the proposed patch-based strategy. Then
each detected textual object is cropped from the source image
and fed into a text recognizer. Due to the problem of multi-
lingual texts and limited real data, the recognizer is enhanced
with the proposed concatenation structure and trained on a
synthetic dataset. The output for one source image contains
the localizations and contents of all detected texts.

A. TEXT DETECTION IN DOCUMENT IMAGE

The supervised feature learning and end-to-end training pro-
cedure make it easy to transfer neural network methods to
other applications. We adopt a two-stage architecture that
is originally used for generic object detection. The patch-
based strategy is applied to this architecture for text detection.
Multiple optimizing methods are also adopted in this work to
improve the performance.

1) NETWORK ARCHITECTURE

The detection module in our work is built based on Faster
RCNN [12] architecture. As shown in Fig. 4, an input
image first goes through a VGG16 [45] network to extract
a group of feature maps. Second, a region proposal network
(RPN) takes these feature maps as inputs and proposes axis-
aligned bounding boxes that have more overlap areas with
the ground-truth boxes. Then according to the locations of
proposals, region-of-interest (ROI) pooling extracts the fea-
tures from the previous feature maps and transforms them into
fixed size (7 x 7 in our experiments). Third, these ROI features
are flattened and pass through two fully connected (fc) layers.
At last, the output layer, connected with fc layers, calcu-
lates the loss of text/non-text classification and bounding box
regression.

2) TRAINING WITH PATCH-BASED STRATEGY

To begin with, the source image is cropped into small patches
by a sliding window. The maximum length among tex-
tual objects is selected as the width of the sliding window.
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The aspect ratio of the sliding window is set to 3:4. The
horizontal and vertical strides are one-tenth of the width and
height of the sliding window, respectively. These patches are
randomly sampled and grouped into mini-batches, which are
then sent to the detection network. During the training stage,
the original coordinates of ground-truth bounding boxes are
realigned to the axes of the corresponding patches. After
getting feature maps, the RPN proposes a set of possible
regions that may exist texts. In this period, the targets of these
regions are a group of boxes named anchors. Every center of
anchors is associated with one location in the feature maps,
which can be calculated through the network architecture.
The anchors are labeled according to their intersection-over-
union (IoU') with the ground-truth. We apply online hard
negative mining [46] for the selection of anchors. Negative
anchors with low IoU are abandoned and the ratio between
negatives and positives is 1:1. The loss function is the same
with [12]. At last, non-maximum suppression (NMS) [47]
is used to post-process detection candidates to get the final
results. During inference, all patch-based predictions will be
aligned to the axes in the original image and NMS is used
again to filter the overlapping bounding boxes.

B. MULTI-LINGUAL TEXT RECOGNITION

Deep convolutional networks can learn high-level features
through successive convolutions. Recent studies [23], [48],
[49] show that the features from shallow layers are also
important in image classification, object detection, and
semantic segmentation. Inspired by these works, we also take
the strategy that combines the features from both deep and
shallow layers to solve the local similarity problem between
multi-lingual characters. In this section, we implement this
idea by introducing a concatenation structure that learns more
distinguishing features from shallow layers.

1) NETWORK ARCHITECTURE WITH

CONCATENATION STRUCTURE

In our network, the features from two adjacent convolu-
tional layers will be concatenated together as the input of
the third layer. See Fig. 5 as an illustration. The network
takes CRNN [11] as skeleton. The convolutional configu-
ration from conv_1 to conv_6 is set to 3 x 3 kernel size,
one stride, and one padding. Every convolution connects with
ReLU (Rectified Linear Unit) function. From the third layer,
the input of each convolutional layer is the concatenation
of its previous two layers’ outputs. Average pooling is used
here to squeeze the feature maps so that they will have the
same width and height before concatenation. It is noted that
this operation does not bring too many extra parameters
compared with convolution or deconvolution. Except for the
last convolutional layer, all changes of width and height
occur in max poolings or average poolings. After the seventh
layer, two BLSTM (Bidirectional Long Short-Term Memory)

Area of Overlap

IFor one anchor and one ground-truth, JoU = =~ of Union
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FIGURE 5. The recognition network in this work. The features from two
adjacent convolutional layers are concatenated together as the input of
the third layer. Before concatenation, the former feature map changes
into the same width and height with the later by average pooling.

layers [50] along the horizontal direction are involved to
predict a label sequence of characters.

2) TRAINING

Given a batch of textual images, they are resized into (W' xw'),
where i/ = 32, and w' is the maximum width among these
images. Then the batch of images is fed into the network,
which outputs a sequence of labels y = yi, ..., y,. Each
yi € D, where D is the dictionary that contains all characters
in our task. Because the prediction may include incorrect
labels, repeated labels, and blank’s, we adopt the conditional
probability defined in the Connectionist Temporal Classifi-
cation (CTC) [40] layer to align the prediction and ground-
truth. First, repeated labels and ’blank’s are removed. Then,
the conditional probability is defined as the sum of probabil-
ities of all subsequence within ¥:

M

PGy =Y pGoyly) e
j=0
J

pGogly) = [ [pGH )
i=0

VOLUME 8, 2020



W. Xue et al.: Text Detection and Recognition for Images of Medical Laboratory Reports With a Deep Learning Approach

IEEE Access

where y is the label sequence of ground truth and o rep-
resents the subsequence of y from the 1st position to the jth
position. In Eq. 2, p(3!) is the probability that y; has the same
label ¢ with y; at the ith position, which is directly outputted
from the network.

Denote the training set X' = {I;, y;};, where [; is a training
image and y; is its ground truth label sequence. The objective
is to minimize the negative log-likelihood of conditional
probability for predictons when the corresponding ground
truths are given:

L=— )" logpGily) 3)

I, yieX

This objective function can directly calculate the cost value
for one pair of prediction and ground truth so that the whole
network can be trained by an end-to-end way.

IV. EXPERIMENTS AND RESULTS

The proposed approach is evaluated for both text detec-
tion and recognition. The experiments are conducted on an
image dataset of medical laboratory reports. The details of
metrics and implementation are presented in Section IV-A
and Section IV-B, respectively. We give the experimental
results and discussion in Section IV-C, Section IV-D, and
Section I'V-E, respectively.

A. DATASET AND METRICS

We conduct experiments on Chinese Medical Documents
Dataset (CMDD) [51], which has three subsets (’scan’, ’illu’,
and ’rota’) classified by image capturing devices (i.e., scan-
ners and smart phones) and conditions (i.e., illuminations and
rotations). Because the ’rota’ subset is not annotated, only
the subsets of ’scan’ and ’illu’ are used in our work, and
each of them contains 119 labeled documental images. Fig. 6
illustrates the layout of medical laboratory report in CMDD.
The first line at the top of report lists the report time and test
type. Next, a patient’s private information about the medical
test fills in the first table. The second table reports the details
of test results. The physician’s signature is at the bottom of
report. The resolution of the images in CMDD is around
2500 x 3400. 50 to 150 textual objects distribute in such a
documental image. There are totally 18402 textual instances
and 351 different characters that contain Arabic numerals,
mathematical symbols, Chinese, and Latin characters.

The performance of the detector is evaluated with Recall,
Precision, F1-measure, and Average Precision (AP). Recall
reflects how many labeled texts are predicted correctly and
precision tells us how many text predictions are correct.
In experiments, one prediction is correct when both two cri-
teria are satisfied: first, its class must be predicted as “text”;
second, its IoU with one of the ground truths is over 0.6.
Fl-meansure and Average Precision (AP) are considered as
tradeoff metrics.

For text recognition, both Accuracy and mean Edit Dis-
tance (mED) are taken into account for evaluation. In accu-
racy metric, the prediction of one test image is correct if
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FIGURE 6. A template of medical laboratory report in CMDD.

and only if the predicted sequence is totally identical with
the ground-truth label. However, this metric is not enough
to evaluate the incorrect results. For example, if one ground
truth is “‘hello”, the model with prediction of “‘hel-o” has a
better performance than the model with prediction of “he—"".
Therefore, we introduce mean edit distance to evaluate the
models on incorrect predictions. Edit distance quantifies the
similarity between one pair of prediction and ground truth
by counting the minimum number of operations required to
transform one string into the other. In addition, we also report
the size of every model.

B. IMPLEMENTATION DETAILS

We fork the implementation in [52] to build our text detector.
NMS is applied for RPN and the threshold is 0.7. Before
NMS, the number of anchor boxes is set to 12,000 for training
and 6,000 for testing. After NMS, 3,000 and 500 anchor
boxes are preserved for training and testing, respectively. The
Momentum optimizer is adopted for training. The learning
rate and momentum are set to 0.001 and 0.9, respectively. The
ratio between train set and test set is 8:2 and no extra data
are added. We train the whole network for 30,000 iterations
and divide the learning rate by a factor of 10 after the ten-
thousandth iteration. The detection results on image patches
are aligned to the source image and then evaluated with
the ground truth on an intact image. All comparison meth-
ods in text detection experiments are pre-trained on ICDAR
2013 dataset [33] and then fine-tuned on CMDD.

In the experiments of text recognition, we use the Adam
optimizer to train the whole network. The learning rate and
betal are set to 0.0001 and 0.5, respectively. The network
is initialized with values randomly drawn from a normal
distribution having a mean of 0.0 and a standard deviation
of 0.02. The comparison methods also adopt the same way
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TABLE 1. Comparison results of text detection. The resolution of source image is around 2500 x 3400. The zoom scales are set to x0.40, x0.50, and x1.00.

Method Patch-based Strategy | Training Resoluiton (Xn) | Recall  Precision  FIl-measure AP
x0.40 68.3% 98.4% 80.7% 63.6%
Faster RCNN [12] %0.50 81.8%  99.6% 89.8%  81.7%
x0.40 70.9% 82.6% 76.3% 63.3%
CTPN [3] x0.50 84.5% 93.5% 88.8% 79.3%
v x1.0 94.6% 56.8% 71.0% 85.8%
x0.50 86.9% 99.4% 92.7% 81.4%
EAST [31] v x0.50 95.8% 94.7% 95.2% 90.0%
v x1.0 96.8% 98.8% 97.8% 90.9 %
v x0.40 95.1% 96.4% 95.7% 90.9%
Ours v x0.50 97.4% 98.6% 98.0% 90.9%
v x1.0 99.5% 98.6% 99.1% 90.9 %

for initialization. Both the proposed recognizer and compar-
ison methods use one million synthetic textual images for
training due to the unbalanced distribution of the limited
data in CMDD. The synthetic images are generated through
FreeType library”. Because this method does not aim at a
general text recognizer, the lexicon used for image generation
has the same character set as CMDD. In order to make the
distribution of synthetic data close to the real data, Gaus-
sian noise is added according to the mean values and stan-
dard deviations of the image foreground and background in
CMDD training set. We have released the source code® for
synthetic images generation. The recognition model is trained
for 6 epochs and all cropped textual images from CMDD
are tested after every 5000 iterations. We compute the mean
for every metric in the last ten epochs as the final results to
report. The proposed approach is implemented on two GPUs
(GeForce GTX TITAN Xp) and takes about ten hours for
training. The source code and data* have been released for
testing the proposed methods.

C. TEXT DETECTION

As mentioned in Section I, characters may be blurry when the
documental image is resized into a small scale. The proposed
strategy for detector training can preserve the original infor-
mation as much as possible. In order to verify the influence
of image resolution on text detection, we conduct the first
experiment by resizing the input image into different resolu-
tions. The resolution of source image is around 2500 x 3400.
The zoom scales are set to x0.4 and x0.5. Faster RCNN [12]
and CTPN [8] are taken as comparison methods in this
experiment. The main difference between these two models
is that RNN layers are connected with CNN in CTPN. RNN
layers explore the sequence relationship among the CNN
feature maps, which makes CTPN more suitable to detect
horizontal texts in documental images. From the qualitative
visualization in Fig. 7, it can be noticed that the performances
for all of the methods improve significantly when the input
image resolution becomes larger. The quantitative experi-
mental results are reported in Table 1. CTPN achieves better

2www.freetype.org

3 https://github.com/VisintLab-BJTU/GenTextImageBlocks
4https:// github.com/xuewenyuan/OCR-for-Medical-Laboratory-Reports
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performance in recall than the Faster RCNN (70.9%:68.3%,
84.5%:81.8%), which owes to the application of RNN layers.
In addition, Faster RCNN achieves good results in precision
(98.4%, 99.6%) while recall improves from 68.3% to 81.8%.
This reflects that some characters become indistinguish-
able for text detector with the image resolution becoming
small.

We also apply the patch-based strategy to CTPN and
EAST [31] in the second experiment. The experimental
results are listed in Table 1. When the zoom scale is set to
0.5, EAST improves 8.9% in recall with 4.7% decrease in
precision after using patch-based strategy. When the cropped
patches keep original resolution, EAST achieves 96.8% in
recall and 98.8% in precision. The patch-based strategy does
not bring improvement to CTPN in precision. According to
the qualitative visualization in Fig. 7, the reason is that RNN
is sensitive to character spacing and the patches cut off the
original text sequence, which confuses CTPN to make accu-
rate predictions. Among all experimental results, our detec-
tor has the best performance in recall (99.5%), F1-measure
(99.1%), and AP (90.9%) when keeping the original resolu-
tion of cropped patches. Further more, our detector still has
good results (recall: 95.1%, precision: 96.4%) even though
the patch resolution is reduced to 40%. The visualization of
results in Fig. 7 shows that our method can detect almost all
textual objects with rare false positives.

The experiments in this section show that the resolution of
input image affects the text detection results for comparison
methods. The patch-based strategy can bring much more
improvements, especially in recall.

D. TEXT RECOGNITION

The core of the proposed recognition model is merging
two adjacent layers’ features as the input of the next layer.
To explore which layer’s features conduce to the per-
formance, we conduct the first experiment by deploying
the concatenation structure in different layers. We make
ours_Li denote the model that the concatenation struc-
ture is inserted from the ith layer to the sixth layer.
As reported in Table 3, ours_L5 has the highest accuracy
that reaches to 95.8%. The second highest accuracy is from
ours_L2, which is 95.4%. The mean edit distances of these
two models are 3.29 and 3.30, respectively. With more
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FIGURE 7. Some qualitative results on the experiments of text detection. The detection results are bounded with red boxes. In the
experiment without patch-based strategy, all of the methods have a better performance with the input size increasing. CTPN is sensitive
to character spacing and small characters are easily ignored. When applied the patch-based strategy, all of the methods get a better result
except that many overlapping boxes occur in the result of CTPN. Zoom in the figure for more details.

TABLE 2. Text detection results on the multi-resolution test set where each original test image has five different resolutions. The results on the original

test set are presented in parentheses.

Method Patch-based Strategy | Training Resoluiton (xn) Recall Precision Fl-measure AP
Faster RCNN [12] x0.50 44.2%(81.8%) 39.4%(99.6%) 41.7%(89.8%) 38.4%(81.7%)
x0.50 87.0%(86.9%) 99.4% (99.4%) 92.7%(92.7%) 81.4%(81.4%)
BAST [31] v %0.40 92.8%(91.0%)  90.6%(88.8%)  91.7%(89.9%)  87.0%(84.6%)
. v x0.50 96.8%(95.8%) 95.8%(94.7%) 96.3%(95.2%) 90.0%(90.0%)
v x1.0 97.6%(96.8%) 95.5%(98.8%) 96.5%(97.8%) 89.4%(90.9%)
v x0.40 94.8%(95.1%) 95.4%(96.4%) 95.1%(95.7%) 90.8%(90.9%)
Ours v x0.50 97.2%(97.4%) 96.8%(98.6%)  97.0%(98.0%)  90.9%(90.9%)
v x1.0 98.8%(99.5%) 95.3%(98.6%) 97.0% (99.1%) 90.8%(90.9%)
concatenation structure inserted into shallow layers, An easy way to add multi-scale features in CNN is con-

the model size increases gradually. ours_L5 has a better
tradeoff among the three metrics.

VOLUME 8, 2020

catenating the features from shallow layers to the last lay-
ers. We implement this method in the second experiment.
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FIGURE 8. Sample qualitative results on the experiments of text recognition. The red characters are repeated or wrong predictions. The

missing characters in prediction are marked as blue.

TABLE 3. Text recognition results. The top two results are highlighted.

Method Accuracy mED  Size (MB)
ours_L2 94.2% 2.85 49.4
ours_L3 95.4% 3.30 48.8
ours_L4 94.4% 3.75 47.6
ours_L5 95.8% 3.29 429
ours_L6 93.4% 322 38.3
multi-scale(2~7) 94.2% 2.85 71.2
multi-scale(3~7) 94.8% 3.50 59.2
multi-scale(4~7) 93.7% 3.92 59.2
multi-scale(5~7) 93.1% 3.76 53.9
multi-scale(6~7) 92.8% 3.49 40.3
CRNN [11] 90.6% 3.79 34.0
Attention OCR [41] 83.8% 2.51 221.5

Because the aspect ratio of feature map in the last layer is
different from that in previous layers, the previous feature
map is resized through convolution so that the transformation
can be learned during training period. Table 3 lists all the
results in this experiment, in which multi-scale(i~j) means
that all feature maps from the ith layer to the jth layer are
concatenated before they are delivered to the BLSTM layers.
The experimental results also demonstrate that the features
from shallow layers can improve the accuracy. However,
the space occupation of this method is twice as large as that
of our proposed model.

At last, we also compare the proposed model with
CRNN [11] and the attention model [41]. The former is a
classic recognition model from which many works devel-
oped. The later applies an attention model as a decoder on
a “CNN+BLSTM” architecture. According to the results
shown in Table 3, the accuracy of CRNN is 2% ~ 5% lower
than the models with fusion features. That means merging
features is an effective way to improve the recognizer’s per-
formance. The attention model has the smallest mean edit
distance while its accuracy is not good, which partly attributes
to the attention mechanism.

Some qualitative results are presented in Fig. 8, where the
wrong and missing predictions are marked as red and blue,
respectively. In summary, all the three experiments show that
the proposed recognition model can effectively utilize the
shallow features and result in a higher accuracy and lower
mean edit distance without too much space occupation.

E. TEST WITH MULTIPLE RESOLUTIONS
The image resolution in CMDD is around 2500 x 3400. The
model trained on such a dataset may be overfitting. In order to
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TABLE 4. Text recognition results on the multi-resolution test set. The
results on the original test set are presented in parentheses.

Method Accuracy mED

ours_L3 93.2%(95.4%)  3.22(3.30)
ours_L5 92.7%(95.8%)  3.12(3.29)
multi-scale(2~7) 89.92%(94.2%)  3.41(2.85)
multi-scale(3~7) 91.41%(94.8%)  3.22(3.50)
CRNN [11] 88.97%(90.6%)  3.68(3.79)
Attention OCR [41] | 85.98%(83.8%) 2.07(2.51)

verify the robustness of the proposed approach, we generate
a multi-resolution test set where each original test image
has five different resolutions. Each new image in the multi-
resolution test set is obtained by resizing an original test
image with a scale randomly drawn from (1.2 ~ 0.7). This
new multi-resolution set is tested with the models trained
on the original train set. Table 2 and Table 4 report the text
detection and recognition results on the multi-resolution set,
where the results on the original test set are also presented in
parentheses. For text detection, Faster RCNN and EAST are
chosen as comparison methods for their good performance
shown in Table 1. According to the results in Table 2, Faster
RCNN is susceptible to the change of resolution. Our method
and EAST perform better than Faster RCNN when facing
different resolutions. Further, when the training images are
resized 0.5 times, our method has the best result on this reso-
lution. That means the training can be speeded up by resizing
the image patch into a small scale with less performance loss.
As for the text recognition on the multi-resolution test set,
the results presented in Table 4 show that the accuracy of our
method is 2% ~ 3% lower than that tested on the original set,
but higher than other comparison methods.

V. CONCLUSION
This paper presents a deep learning approach for text detec-
tion and recognition from images of medical laboratory
reports. Given an image of medical laboratory report, first,
a patch-based training strategy is applied to a detector that
outputs a set of bounding boxes containing texts. Then a
concatenation structure is inserted into a recognizer, which
takes the areas of bounding boxes in source image as inputs
and outputs recognized texts.

In text detection experiments, image resolution can seri-
ously affect the detection results. Our text detection module
is enhanced through a patch-based strategy, which achieves
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99.5% in recall and 98.6% in precision. The recogni-
tion experimental results demonstrate that the concatenation
structure can effectively combine shallow and deep features
and contribute to the recognition performance. In addition,
the experiments on the multi-resolution test set show that the
proposed approach has the ability to deal with images with
different resolutions.

Although the presented approach can be further improved,
it would benefit to reducing the cost of manual transcription
for digitization of healthcare service in developing countries.
The structured health records, which are recovered from
document images, will be used for medical data mining to
improve health services in our future works.
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