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ABSTRACT The stabilization problem for a class of discrete network control system with time-delay and
packet loss in both S-C side and C-A side is researched in this paper. Firstly, two independent discrete
Markov chains are used to describe the network time-delay from sensor to controller and the network
time-delay from controller to actuator. Two random variables obeying the Bernoulli distribution are
employed to describe the packet loss between the sensor and the controller and the packet loss between
the controller and the actuator. Secondly, a mathematical model for closed-loop system is established.
By constructing the appropriate Lyapunov-Krasovskii functional, the sufficient conditions for the existence
of the controller and observer gain matrix are obtained under the condition that the transition probabilities
of S-C time-delay and C-A time-delay are both partly unknown. Finally, two examples are exploited to
illustrate the effectiveness of the proposed method.

INDEX TERMS Time-delay, packet loss, observer, stabilization, networked control system, Lyapunov–
Krasovskii functional.

I. INTRODUCTION
Networked control system (NCS) has a great many advan-
tages, such as easy expansion, easy diagnosis and low cost,
and it is widely used in industrial control, environmen-
tal monitoring, military and other fields [1]–[3]. However,
the introduction of the network inevitably produces the time-
delay, packet loss and other problems [4]–[6], which makes
the performance of the control system degraded and may
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even lead to system instability. How to design the controller
for NCS with time-delay and packet loss has attracted the
attention of many scholars and a lot of research results have
appeared [7]–[11].

The network of the NCS exists not only between the sensor
and the controller (sensor to controller, S-C) but also between
the controller and the actuator (controller to actuator, C-A),
and both networks will experience time-delay and packet
loss. However, among the existing literatures on stabilization
controller design for NCS, some literatures only considered
the time-delay of two networks, and some literatures only
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considered the packet loss of two networks, and some liter-
atures only consider the time-delay and packet loss of S-C
side or C-A side. The existing literatures on controller design
for NCS can be divided into the following three types:

The first type of literatures only considered time-delay.
The S-C time-delay was described by a finite-state discrete
Markov chain, and the closed-loop NCS was modelled as a
Markov jump linear system [12]. Two independent discrete
Markov chains were employed to describe the S-C time-
delay σk and C-A time-delay φk respectively, and the math-
ematical model of the closed-loop system was established
by the method of state augmentation. The necessary and
sufficient conditions for the stochastic stability of the closed-
loop system were obtained, and the solution method of the
state feedback controller was proposed [13]. Considering
S-C time-delay σk and C-A time-delay φk , the H2/H∞ con-
trol problem for a class of discrete-time NCS was inves-
tigated. Two independent Markov chains were exploited
to model the time-delay in S-C side and C-A side. The
resulting closed-loop system was a jump linear time-delay
induced by two Markov chains. Sufficient conditions for
existence of H2/H∞ controller were established based on
the free weight matrix method [14]. The robust H∞ fault
detection problem was investigated for the discrete NCS
with time-delay on condition that the transition probabil-
ities of time-delay were partly unknown. The closed-loop
NCS was molded as a control system which contained two
Markov chains, and the relationship between transition prob-
abilities and the minimum H∞ attenuation level was also
obtained [15].

The second type of literatures only considered packet
loss. Considering the S-C packet loss and C-A packet loss,
the observer-based stabilization controller design problem
was researched for a class of nonlinear NCS. The S-C packet
loss and C-A packet loss were described by two random
variables obeying the Bernoulli distribution. The controller
that made the closed-loop system stochastically mean square
stable and meet certain H∞ performance was designed [16].
For a class of nonlinear NCS with S-C packet loss and C-A
packet loss, the H∞ controller was designed as an observer-
based dynamic, such that the closed-loop system was expo-
nentially mean square stable and the effect of the disturbance
input on the controlled output was less than a minimum level
γ for all admissible uncertainties [17].
The third type of literatures only considered time-delay

and packet loss in S-C side or time-delay and packet loss
in C-A side. The dynamic output feedback controller was
designed for nonlinear NCS with time-delay and packet loss
in S-C side. The time-delay and packet loss were modeled
as two independent random variables. An observer-based
dynamic output feedback controller was designed based upon
the Lyapunov theory.The quantitative relationship between
the packet loss rate and nonlinear level was derived by solving
a set of linear matrix inequalities (LMIs) [18]. For the NCS
with time-delay and packet loss, the sufficient conditions for
the existence of the fault detection filter which made the

closed-loop system stable and achieve givenH∞ attenuation
performance were established. Although the time-delay in
S-C side and C-A side were considered, but the packet loss in
C-A side was ignored [19].

Due to the limitation of environmental or economic con-
ditions, it is usually difficult to measure the entire states of
the controlled plant, which makes state feedback difficult to
achieve. Hence, the state observer needs to be designed, and
the state of the controlled plant can be reconstructed through
the observer to achieve the required feedback. Therefore, it is
of great practical significance to research the observer-based
stabilization for NCS [20].

In summary, the current research on the controller design of
NCS is not sufficient. To the best of our knowledge, for NCS
with time-delay and packet loss in both S-C side and C-A
side, the stabilization problem under the condition that the
transition probabilities of S-C time-delay and C-A time-delay
are both partly unknown has not been researched, whichmoti-
vates our investigation. Compared to the previous relevant
literatures, the main contribution of this paper is that a math-
ematical model of NCS with time-delay and packet loss in
both S-C side and C-A side has been proposed. By construct-
ing proper Lyapunov-Krasovskii functional, and separating
unknown probabilities from the known ones, the proposed
controller design method is applicable not only to the case
that the transition probabilities of the time-delay are partially
unknown, but also to the case where the transition probabil-
ities of the time-delay are known, which is less conservative
than the existing literatures.

The rest of this paper is organized as follows. The math-
ematical model of NCS with time-delay and packet loss in
both S-C side and C-A side is obtained in Section II. Themain
results are provided in Section III. Section IV presents a sim-
ulation example, and the conclusions are given in Section V.
Notations: Throughout the paper, Pr{·} means mathemat-

ical probability, E{·} stands for mathematical expectation
and Var{·} denotes variance. The superscript ‘‘T’’ and ‘‘-1’’
stands for the transpose and inverse of a matrix, respectively.
Diag{· · · } stands for a block-diagonal matrix. The symbol
‘‘*’’ denotes the symmetric part in a symmetric matrix. P > 0
denotes a positive definite matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES
The structure of the NCS considered in this paper is shown
in Figure 1, where the switch closure indicates that the
packet transmission is successful, and the switch open indi-
cates that a packet loss has occurred. σk and φk denotes the
time-delay in S-C side and C-A side and takes value from
� = {0, · · · , σM } and 4 = {0, · · · , φM }, respectively. The
transition probability matrix of σk and φk is 5 = [µab],
2 = [νmn], respectively, where µab and νmn is defined as
µab = Pr{µk+1 = b|µk = a}, νmn = Pr{νk+1 = n|νk = m},

respectively, where µab ≥ 0, νmn ≥ 0,
σM∑
b=0

µab = 1,

φM∑
n=0

νmn = 1.
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FIGURE 1. Structure of NCS with time-delay and packet loss.

It is usually difficult to obtain the all transition probabil-
ities of the time-delay, so it is assumed that there are some
unknown elements in the transition probability matrix of the
time-delay. For notational clarity, ∀b ∈ �, let� = �a

k +�
a
uk

with �a
k = {b : µab is known}, �

a
uk = {b : µab is unknown}.

If �a
k is not an empty set, it is further described as

�a
k={�ka1

, �ka2
, · · · , �kap }, where 8kap represents the pth

known element in the ath row of matrix 5 with the index
8kap .�

a
uk can be described as�

a
uk={�k̄a1

, �k̄a2
, · · · , �k̄aσM−p

},
where8k̄aσM−p

represents the (σM − p)th unknown element in
the ath row of matrix 5 with the index 8k̄aσM−p

.
Similarly, ∀n ∈ 4, let 4 = 4m

k + 4m
uk with 4m

k =

{n : νmn is known}, 4m
uk = {n : νmn is unknown}.

If 4m
k is not an empty set, it is further described as

4m
k ={4km1

, 4km2
, · · · , 4kmq }, where 4kmq represents the qth

known element in the mth row of matrix 2 with the index
4kmq .4

m
uk can be described as4

m
uk={4k̄m1

, 4k̄m2
, · · · , 4k̄mφM−q

},
where4k̄mφM−q

represents the (φM − q)th unknown element in
the mth row of matrix 2 with the index 4k̄mφM−q

.
The random variable αk , βk which obeys Bernoulli distri-

bution is used to describe the packet loss in S-C side and
C-A side, respectively. When the random variable takes the
value of 1, it indicates that the data packet was successfully
transmitted. Otherwise, it indicates that the data packet trans-
mission failed. Random variables αk , βk satisfy the following
characteristics:

Pr{αk = 1} = E{αk}
1
= ᾱ,

Pr{αk = 0} = 1− ᾱ,

Var{αk} = E{(αk − ᾱ)2} = (1− ᾱ)ᾱ 1
= α21,

Pr{βk = 1} = E{βk}
1
= β̄,

Pr{βk = 0} = 1− β̄,

Var{βk} = E{(βk − β̄)2} = (1− β̄)β̄ 1
= β21 .

The discrete NCS equation considered in this paper are as
follows: {

xk+1 = Axk + Buk
yk = Cxk

(1)

where xk is the system state vector, uk is the control input vec-
tor, yk is the system measurement output vector, A, B, C are
known real constant matrices with appropriate dimensions.

The state equation of the observer is as follows:{
x̂k+1 = Ax̂k + Būk + L(ȳk − αk ŷk−σk )
ŷk = Cx̂k

(2)

where x̂k is the state vector of the observer, ŷk is the out vector
of the observer, L is the gain matrix to be determined, ȳk is the
system output received by the observer and ūk is the control
input of the observer which expressed as

ūk = Kx̂k (3)

Considering the time-delay and packet loss, the system output
ȳk received by the observer and the control input uk received
by the actuator can be expressed as:

ȳk = αkyk−σk (4)

uk = βk ūk−φk (5)

Define the following state estimation error and augmentation
vector:

ek = xk − x̂k (6)

ζk =
[
xTk eTk

]T (7)

The state equation of the closed-loop system can be
obtained from (1)-(7):

ζk+1 = (Ā+ B̄KE1)ζk + αkE2LC̄ζk−σk
+βk B̃KE1ζk−φk (8)

where Ā =
[
A 0
0 A

]
, B̄ =

[
0
−B

]
, B̃ =

[
B
B

]
, C̄ =

[
0 −C

]
,

E1 =
[
E −E

]
, E2 =

[
0
E

]
.

In order to deal with the stochastic parameter in closed-
loop system (8), it is necessary to introduce the following
definition.
Definition 1 [13]: For any initial system state ζ0 and

initial time-delay mode σ0 ∈ �, φ0 ∈ 4 , if there exists a
positive definite matrixW , such that

E

{
∞∑
k=0

‖ ζk‖
2
|ζ0, σ0, φ0

}
< ζ T0 W ζ0 (9)

the closed-loop system (8) is said to be stochastically stable.
Remark 1: Because of the existence of the time-delay and

the packet loss in C-A side, the control input of the observer
ūk in (3) is different from the control input of the controlled
system uk in (1), which brings difficulties in the controller
design.

III. MAIN RESULTS
In this section, the main resuls of this paper are presented.
To proceed, the following lemma is needed.
Lemma 1 [21]: For any positive definite matrix H and

two scalar θ , θ0 satisfying θ ≥ θ0 ≥ 1, the following formula
always holds:

θ∑
ρ=θ0

υTρ H
θ∑

ρ=θ0

υρ ≤ (θ − θ0 + 1)
θ∑

ρ=θ0

υTρ Hυρ (10)
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The following theorem presents a sufficient condition on
the stochastic stability of the system (8).
Theorem 1: Under the proposed control law (3), the result-

ing system (8) is stochastically stable if for given scalars
0 ≤ ᾱ ≤ 1, 0 ≤ β̄ ≤ 1, there exist matrices K , L and
positive definite matrices Sam > 0, Sbn > 0, P1 > 0, P2 > 0,
P3 > 0, P4 > 0, Y1 > 0, Y2 > 0 such that the following
matrix inequality:

ϒ
1
=


ϒ11 ∗ ∗ ∗ ∗

ϒ21 ϒ22 ∗ ∗ ∗

ϒ31 ϒ32 ϒ33 ∗ ∗

0 Y1 0 −P1 − Y1 ∗

0 0 Y2 0 −P2 − Y2

<0

(11)

where

ϒ11 = (Ā+ B̄KE1)T S̄bn(Ā+ B̄KE1)

+ σ 2
M (Ā+ B̄KE1 − E)TY1(Ā+ B̄KE1 − E)

+φ2M (Ā+ B̄KE1 − E)TY2(Ā+ B̄KE1 − E)

+P1 + P2 + (σM + 1)P3 + (φM + 1)P4
−Y1 − Y2 − Sam,

ϒ21 = (ᾱE2LC̄)T S̄bn(Ā+ B̄KE1)

+ σ 2
M (ᾱE2LC̄)TY1(Ā+ B̄KE1 − E)

+φ2M (ᾱE2LC̄)TY2(Ā+ B̄KE1 − E)+ Y1,

ϒ22 = (ᾱ2 + α21)(E2LC̄)
T S̄bnE2LC̄

+ σ 2
M (ᾱ2 + α21)(E2LC̄)

TY1E2LC̄

+φ2M (ᾱ2 + α21)(E2LC̄)
TY2E2LC̄ − P3 − 2Y1,

ϒ31 = (β̄B̃KE1)T S̄bn(Ā+ B̄KE1)

+ σ 2
M (β̄B̃KE1)TY1(Ā+ B̄KE1 − E)

+φ2M (β̄B̃KE1)TY2(Ā+ B̄KE1 − E)+ Y2,

ϒ32 = (β̄B̃KE1)T S̄bn(ᾱE2LC̄)

+ σ 2
M (β̄B̃KE1)TY1(ᾱE2LC̄)

+φ2M (β̄B̃KE1)TY2(ᾱE2LC̄),

ϒ33 = (β̄2 + β21 )(B̃KE1)
T S̄bnB̃KE1

+ σ 2
M (β̄2 + β21 )(B̃KE1)

TY1B̃KE1
+φ2M (β̄2 + β21 )(B2KI1)

TY2B2KI1 − 2Y2 − P4,

S̄bn =
σM∑
b=0

φM∑
n=0

µabνmnSbn,

holds for all a, b ∈ �,m, n ∈ 4. �
Proof: Let ξk=ζk+1 − ζk , and construct the following

Lyapnov-Krasovskii functional:

Vk =
4∑
l=1

Vl(ζk , σk , φk )
1
= ζ Tk 0σkφk ζk , (12)

where

V1(ζk , σk , φk )=ζ Tk Sσkφk ζk ,

V2(ζk , σk , φk )=
k−1∑

ρ=k−σM

ζ Tρ P1ζρ +
k−1∑

ρ=k−φM

ζ Tρ P2ζρ,

V3(ζk , σk , φk )=
0∑

j=−σM+1

k−1∑
i=k+j

ζ Ti P3ζi +
k−1∑

ρ=k−σk

ζ Tρ P3ζρ

+

0∑
j=−φM+1

k−1∑
i=k+j

ζ Ti P4ζi +
k−1∑

ρ=k−φk

ζ Tρ P4ζρ,

V4(ζk , σk , φk )=
0∑

j=−σM+1

k−1∑
i=k+j

σM ξ
T
i Y1ξi

+

0∑
j=−φM+1

k−1∑
i=k+j

φM ξ
T
i Y2ξi.

Obviously, one has 0σkφk > 0.

E{1V1(ζk , σk , φk )}

= E{ζ Tk+1Sσk+1φk+1ζk+1 |σk = a, φk = m}

− ζ Tk Sσkφk ζk
= E{((Ā+ B̄KE1)ζk + ᾱE2LC̄ζk−σk
+ (αk − ᾱ)E2LC̄ζk−σk + β̄B̃KE1ζk−φk

+ (βk − β̄)B̃KE1ζk−φk )
T
σM∑
b=0

φM∑
n=0

µabνmnSbn

((Ā+ B̄KE1)ζk + ᾱE2LC̄ζk−σk
+ (αk − ᾱ)E2LC̄ζk−σk + β̄B̃KE1ζk−φk
+ (βk − β̄)B̃KE1ζk−φk )} − ζ

T
k Samζk

= ζ Tk (Ā+ B̄KE1)
T P̄bn(Ā+ B̄KE1)ζk

+ ζ Tk (Ā+ B̄KE1)
T P̄bn(ᾱE2LC̄)ζk−σk

+ ζ Tk (Ā+ B̄KE1)
T P̄bn(β̄B̃KE1)ζk−φk

+ ζ Tk−σk (ᾱE2LC̄)
T P̄bn(Ā+ B̄KE1)ζk

+ ζ Tk−σk (ᾱE2LC̄)
T P̄bn(ᾱE2LC̄)ζk−σk

+α21ζ
T
k−σk (E2LC̄)

T P̄bn(E2LC̄)ζk−σk
+ ζ Tk−σk (ᾱE2LC̄)

T P̄bn(β̄B̃KE1)ζk−φk
+ ζ Tk−φk (β̄B̃KE1)

T P̄bn (Ā+ B̄KE1)ζk

+ ζ Tk−φk (β̄B̃KE1)
T P̄bn(ᾱE2LC̄)ζk−σk

+ ζ Tk−φk (β̄B̃KE1)
T P̄bn(β̄B̃KE1)ζk−φk

+β21ζ
T
k−φk (B̃KE1)

T P̄bn B̃KE1ζk−φk
− ζ Tk Samζk . (13)

E{1V2(ζk , σk , φk )}

= ζ Tk P1ζk − ζ
T
k−σMP1ζk−σM + ζ

T
k P2ζk

− ζ Tk−φMP2ζk−φM . (14)

E{1V3(ζk , σk , φk )}

= σMζ
T
k P3ζk −

k∑
ρ=k+1−σM

ζ Tρ P3ζρ + ζ
T
k P3ζk

− ζ Tk−σkP3ζk−σk +
k−1∑

ρ=k+1−σk+1

ζ Tρ P3ζρ
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−

k−1∑
ρ=k+1−σk

ζ Tρ P3ζρ + φMζ
T
k P4ζk

−

k∑
ρ=k+1−φM

ζ Tk P4ζk + ζ
T
k P4ζk − ζ

T
k−φkP4ζk−φk

+

k−1∑
ρ=k+1−φk+1

ζ Tρ P4ζρ −
k−1∑

ρ=k+1−φk

ζ Tρ P4ζρ

= σMζ
T
k P3ζk −

k∑
ρ=k+1−σM

ζ Tρ P3ζρ + ζ
T
k P3ζk

− ζ Tk−σkP3ζk−σk +
k−1∑

ρ=k+1−σk

ζ Tρ P3ζρ

+

k−σk∑
ρ=k+1−σk+1

ζ Tρ P3ζρ −
k−1∑

ρ=k+1−σk

ζ Tρ P3ζρ

+φMζ
T
k P4ζk −

k∑
ρ=k+1−φM

ζ Tk P4ζk + ζ
T
k P4ζk

− ζ Tk−φkP4ζk−φk +
k−1∑

ρ=k+1−φk

ζ Tρ P4ζρ

+

k−φk∑
ρ=k+1−φk+1

ζ Tρ P4ζρ −
k−1∑

ρ=k+1−φk

ζ Tρ P4ζρ

≤ σMζ
T
k P3ζk −

k∑
ρ=k+1−σM

ζ Tρ P3ζρ + ζ
T
k P3ζk

− ζ Tk−σkP3ζk−σk +
k−1∑

ρ=k+1−σk

ζ Tρ P3ζρ

+

k∑
ρ=k+1−σM

ζ Tρ P3ζρ −
k−1∑

ρ=k+1−σk

ζ Tρ P3ζρ

+φMζ
T
k P4ζk −

k∑
ρ=k+1−φM

ζ Tk P4ζk + ζ
T
k P4ζk

− ζ Tk−φkP4ζk−φk +
k−1∑

ρ=k+1−φk

ζ Tρ P4ζρ

+

k∑
ρ=k+1−φM

ζ Tρ P4ζρ −
k−1∑

ρ=k+1−φk

ζ Tρ P4ζρ

= (σM + 1)ζ Tk P3ζk − ζ
T
k−σkP3ζk−σk

+ (φM + 1)ζ Tk P4ζk − ζ
T
k−φkP4ζk−φk . (15)

E{1V4(ζk , σk , φk )}

= E{σ 2
M ξ

T
k Y1ξk} −

k−1∑
ρ=k−σM

σM ξ
T
ρ Y1ξρ

+E{φ2M ξ
T
k Y2ξk} −

k−1∑
ρ=k−φM

φM ξ
T
ρ Y2ξρ

= E{σ 2
M ((Ā+ B̄KE1 − E)ζk + ᾱE2LC̄ζk−σk

+ (αk − ᾱ)E2LC̄ζk−σk + β̄B̃KE1ζk−φk
+ (βk − β̄)B̃KE1ζk−φk )

TY1((Ā+ B̄KE1 − E)ζk
+ ᾱE2LC̄ζk−σk + (αk − ᾱ)E2LC̄ζk−σk
+ β̄B̃KE1ζk−φk + (βk − β̄)B̃KE1ζk−φk )}

−

k−1∑
ρ=k−σM

σM ξ
T
ρ Y1ξρ + E{φ2M ((Ā+ B̄KE1 − E)ζk

+ ᾱE2LC̄ζk−σk + (αk − ᾱ)E2LC̄ζk−σk
+β̄B̃KE1ζk−φk + (βk − β̄)B̃KE1ζk−φk )

TY2
× ((Ā+ B̄KE1 − E)ζk + ᾱE2LC̄ζk−σk
+ (αk − ᾱ)E2LC̄ζk−σk + β̄B̃KE1ζk−φk

+ (βk − β̄)B̃KE1ζk−φk )} −
k−1∑

ρ=k−φM

φM ξ
T
ρ Y2ξρ

= σ 2
M (ζ Tk (Ā+ B̄KE1 − E)

TY1(Ā+ B̄KE1 − E)ζk
+ ζ Tk (Ā+ B̄KE1 − E)

TY1(ᾱE2LC̄)ζk−σk
+ ζ Tk (Ā+ B̄KE1 − E)

TY1(β̄B̃KE1)ζk−φk
+ ζ Tk−σk (ᾱE2LC̄)

TY1(Ā+ B̄KE1 − E)ζk

+ ζ Tk−σk (ᾱE2LC̄)
TY1(ᾱE2LC̄)ζk−σk

+α21ζ
T
k−σk (E2LC̄)

TY1(E2LC̄)ζk−σk
+ ζ Tk−σk (ᾱE2LC̄)

TY1(β̄B̃KE1)ζk−φk
+ζ Tk−φk (β̄B̃KE1)

TY1 (Ā+ B̄KE1)ζk

+ ζ Tk−φk (β̄B̃KE1)
TY1(ᾱE2LC̄)ζk−σk

+ζ Tk−φk (β̄B̃KE1)
TY1(β̄B̃KE1)ζk−φk

+ ζ Tk−φkβ
2
1 (B̃KE1)

TY1B̃KE1ζk−φk )

−

k−1∑
ρ=k−σM

σM ξ
T
ρ Y1ξρ + φ

2
M (ζ Tk (Ā+ B̄KE1 − E)

TY2

× (Ā+ B̄KE1 − E)ζk + ζ Tk (Ā+ B̄KE1 − E)
TY2

× (ᾱE2LC̄)ζk−σk + ζ
T
k (Ā+ B̄KE1 − E)

TY2
× (β̄B̃KE1)ζk−φk + ζ

T
k−σk (ᾱE2LC̄)

TY2(Ā

+ B̄KE1 − E)ζk + ζ Tk−σk (ᾱE2LC̄)
TY2(ᾱE2LC̄)

× ζk−σk + α
2
1ζ

T
k−σk (E2LC̄)

TY2(E2LC̄)ζk−σk
+ ζ Tk−σk (ᾱE2LC̄)

TY2(β̄B̃KE1)ζk−φk
+ ζ Tk−φk (β̄B̃KE1)

TY2 (Ā+ B̄KE1)ζk

+ ζ Tk−φk (β̄B̃KE1)
TY2(ᾱE2LC̄)ζk−σk

+ ζ Tk−φk (β̄B̃KE1)
TY2(β̄B̃KE1)ζk−φk

+ ζ Tk−φkβ
2
1 (B̃KE1)

TY2B̃KE1ζk−φk )

−

k−1∑
ρ=k−φM

φM ξ
T
ρ Y2ξρ . (16)

Since

−

k−1∑
ρ=k−σM

σM ξ
T
ρ Y1ξρ −

k−1∑
ρ=k−φM

φM ξ
T
ρ Y2ξρ
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≤ −

k−1∑
ρ=k−a

aξTρ Y1ξρ −
k−a−1∑
ρ=k−σM

(σM − a)ξTρ Y1ξρ

−

k−1∑
ρ=k−m

mξTρ Y2ξρ −
k−m−1∑
ρ=k−φM

(φM − m)ξTρ Y2ξρ,

by Lemma1, one can obtain:

−

k−1∑
ρ=k−a

aξTρ Y1ξρ −
k−a−1∑
ρ=k−σM

(σM − a)ξTρ Y1ξρ

−

k−1∑
ρ=k−m

mξTρ Y2ξρ −
k−m−1∑
ρ=k−φM

(φM − m)ξTρ Y2ξρ

≤ − [ζk − ζk−a]TY1[ζk − ζk−a]

− [ζk−a − ζk−τM ]
TY1[ζk−a − ζk−τM ]

− [ζk − ζk−m]TY2[ζk − ζk−m]

− [ζk−m − ζk−φM ]
TY2[ζk−m − ζk−φM ]. (17)

From (13)-(17), one can get:

E{1Vk}

≤ χTk ϒχk

≤ −λmin(−ϒ)χTk χk
≤ −ε‖χk‖

2

≤ −ε‖ζk‖
2, (18)

where

χk =
[
ζ Tk ζ Tk−a ζ

T
k−m ζ

T
k−σM ζ Tk−φM

]T
,

ε = inf{−λmin(−ϒ)} > 0.

From (17), for any positive integer N ≥ 1:

E

{
∞∑
k=0

‖ ζk‖
2

}
≤ 1

/
εE{V0} − 1

/
εE{VN+1}

≤ 1
/
εE{V0}

= 1
/
εζ Tk 0σ0φ0ζk .

It can be seen from Definition 1 that the closed-loop system
(8) is stochastically stable, which completes the proof. �
The sufficient conditions in Theorem 1 need to be fur-

ther processed to obtain the controller gain matrix K and
the observer gain matrix L, thus Theorem 2 is obtained as
follows:
Theorem 2: For given scalars 0 ≤ ᾱ ≤ 1, 0 ≤ β̄ ≤ 1,

if there exist matrices K , L and positive definite matrices
Sam, Sbn,Mbn > 0, P1 > 0, P2 > 0, P3 > 0, P4 > 0, Y1 > 0,
Y2 > 0, Z1 > 0, Z2 > 0 such that

µν911 ∗ ∗ ∗

µν921 µν922 ∗ ∗

µν931 0 µν933 ∗

9�ak4
m
k

0 0 3�ak4
m
k

 < 0, (19)


ν911 ∗ ∗ ∗

ν921 ν922 ∗ ∗

ν931 0 ν933 ∗

9�auk4
m
k

0 0 3�auk4
m
k

 < 0,

∀b ∈ �a
uk (20)

µ911 ∗ ∗ ∗

µ921 µ922 ∗ ∗

µ931 0 µ933 ∗

9�ak4
m
uk

0 0 3�ak4
m
uk

 < 0,

∀n ∈ 4m
uk (21)

911 ∗ ∗ ∗

921 922 ∗ ∗

931 0 933 ∗

9�auk4
m
uk

0 0 3�auk4
m
uk

 < 0,

∀b ∈ �a
uk ,∀n ∈ 4

m
uk , (22)

SbnMbn = E, YρZρ = E, ρ ∈ {1, 2} (23)

where

911=


9̄11 ∗ ∗ ∗ ∗

Y1 −P3−2Y1 ∗ ∗ ∗

Z2 0 −P4−2Y2 ∗ ∗

0 Y1 0 −P1−Y1 ∗

0 0 Y2 0 −P2−Y2

,

921 = σM

 Ā+ B̄KE1 − E ᾱE2LC̄ β̄B̃KE1 0 0
0 α1E2LC̄ 0 0 0
0 0 β1B̃KE1 0 0

 ,
922 = Diag{−Z1,−Z1,−Z1},

831 = φM

 Ā+ B̄KE1 − E ᾱE2LC̄ β̄B̃KE1 0 0
0 α1E2LC̄ 0 0 0
0 0 β1B̃KE1 0 0

 ,
933 = Diag{−Z2 − Z2 − Z2},

9̄11 = P1 + P2 + (σM + 1)P3 + (φM + 1)P4 − Y1
−Y2 − Sam,

3�ak4
m
k
= Diag{3̃�ak4mk 3̃�ak4mk 3̃�ak4

m
k
},

3̃�ak4
m
k
= Diag{−M�ka1

4km1
. . .−M�kap

4kmq
},

9T
�ak4

m
k
=

[
9̃T
�ak4

m
k
9̄T
�ak4

m
k

_

9
T

�ak4
m
k

]
,

9̃T
�ak4

m
k
=

[√
µa�ka1

νm4km1
η̄T1 · · ·

√
µa�kap

νm4kmq
η̄T1

]
,

9̄T
�ak4

m
k
=

[√
µa�ka1

νm4km1
η̄T2 · · ·

√
µa�kap

νm4kmq
η̄T2

]
,

_

9
T

�ak4
m
k
=

[√
µa�ka1

νm4km1
η̄T3 · · ·

√
µa�kap

νm4kmq
η̄T3

]
,

3�auk4
m
k
= Diag{3̃�auk4mk 3̃�auk4mk 3̃�auk4mk },

3̃�auk4
m
k
= Diag{−Mb4km1

. . .−Mb4kmq
},

9T
�auk4

m
k
=

[
9̃T
�auk4

m
k
9̄T
5a
uk4

m
k

_

9
T

�auk4
m
k

]
,

9̃T
�auk4

m
k
=

[√
νm4km1

η̄T1 · · ·
√
νm4kmq

η̄T1

]
,

9̄T
�auk4

m
k
=

[√
νm4km1

η̄T2 · · ·
√
νm4kmq

η̄T2

]
,
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_

9
T

�auk4
m
k
=

[√
νm4km1

η̄T3 · · ·
√
νm4kmq

η̄T3

]
,

3�ak4
m
uk
= Diag{3̃�ak4muk 3̃�ak4muk 3̃�ak4muk },

3̃�ak4
m
uk
= Diag{−M�ka1

n . . .−M�kap
n},

9T
�ak4

m
uk
=

[
9̃T
�ak4

m
uk
9̄T
�ak4

m
uk

_

9
T

�ak4
m
uk

]
,

9̃T
�ak4

m
uk
=

[√
µa�ka1

η̄T1 · · ·
√
µa�kap

η̄T1

]
,

9̄T
�ak4

m
uk
=

[√
µa�ka1

η̄T2 · · ·
√
µa�kap

η̄T2

]
,

_

9
T

�ak4
m
uk
=

[√
µa�ka1

η̄T3 · · ·
√
µa�kap

η̄T3

]
,

3�auk4
m
uk
= Diag{3̃�auk4muk 3̃�auk4muk 3̃�auk4muk },

3̃�auk4
m
uk
= Diag{−Mbn . . .−Mbn},

9T
�auk4

m
uk
=

[
9̃T
�auk4

m
uk
9̄T
�auk4

m
uk

_

9
T

�auk4
m
uk

]
,

9̃T
�auk4

m
uk
=
[
η̄T1 · · · η̄

T
1

]
,

9̄T
�auk4

m
uk
=
[
η̄T2 · · · η̄

T
2

]
,

_

9
T

�auk4
m
uk
=
[
η̄T3 · · · η̄

T
3

]
,

η̄1 =
[
η1 0 0

]
,

η̄2 =
[
0 η2 0

]
,

η̄3 =
[
0 0 η3

]
,

η1 =
[
Ā+ B̄KE1 ᾱE2LC̄ β̄B̃KE1 0 0

]
,

η2 =
[
0 ᾱE2LC̄ 0 0 0

]
,

η3 =
[
0 0 β̄B̃KE1 0 0

]
,

µ =
∑
b∈�ak

µab,

µ̄ =
∑
b∈�auk

µab,

ν =
∑
n∈4mk

νmn,

ν̄ =
∑
n∈4muk

νmn,

holds for all a, b ∈ �,m, n ∈ 4, the closed-loop system (8)
is stochastically stable. �
Proof: Letting Y−1ρ = Zρ, ρ ∈ {1, 2}, by the Schur

complement, ϒ in (11) can be written as:

ϒ =

911 ∗ ∗

921 922 ∗

931 0 933

+
 η10

0

T S̄bn
[
η1 0 0

]
+

 0
η2
0

T S̄bn [ 0 η2 0
]

+

 0
0
η3

T S̄bn [ 0 0 η3
]

= (µν + µ̄ν + µν̄ + µ̄ν̄)(

911 ∗ ∗

921 922 ∗

931 0 933


+ η̄T1 S̄bnη̄1 + η̄

T
2 S̄bnη̄2 + η̄

T
3 S̄bnη̄3)

= µν(

911 ∗ ∗

921 922 ∗

931 0 933

+ η̄T1 S̄bnη̄1
+ η̄T2 S̄bnη̄2 + η̄

T
3 S̄bnη̄3)

+ µ̄(ν(

911 ∗ ∗

921 922 ∗

931 0 933

+ η̄T1 S̄bnη̄1
+ η̄T2 S̄bnη̄2 + η̄

T
3 S̄bnη̄3))

+ ν̄(µ(

911 ∗ ∗

921 922 ∗

931 0 933

+ η̄T1 S̄bnη̄1
+ η̄T2 S̄bnη̄2 + η̄

T
3 S̄bnη̄3))

+ µ̄ν̄(

911 ∗ ∗

921 922 ∗

931 0 933

+ η̄T1 S̄bnη̄1
+ η̄T2 S̄bnη̄2 + η̄

T
3 S̄bnη̄3).

Appling Schur complement again, one can obtain:

µν(

911 ∗ ∗

921 922 ∗

931 0 933

+ η̄T1 S̄bnη̄1
+ η̄T2 S̄bnη̄2 + η̄

T
3 S̄bnη̄3) < 0 (24)

is equivalent to
µν911 ∗ ∗ ∗

µν921 µν922 ∗ ∗

µν931 0 µν933 ∗

9�ak4
m
k

0 0 3̄�ak4
m
k

 < 0 (25)

where 3̄�ak4mk = Diag{−S−1�ka14km1
, . . . ,−S−1�kap4kmq }.

Letting S−1bn = Mbn, b ∈ �, n ∈ 4, one can obtain (19).
Therefore, if (19) holds, then (25) holds. Since µab ≥ 0,
νmn ≥ 0, if (19)-(23) hold, then (11) holds, that is, the closed-
loop system (8) is stochastically stable. �
Remark 2: In dealing with the unknown time-delay transi-

tion probabilities, another method is to separate the unknown
probabilities from the correlation matrices and estimate the
unknown probabilities with the known ones by the related
lemma [15], for example,

∑
b∈�auk

∑
n∈4mk

µabνmnSbn ≤ (1 −∑
ρ∈�ak

µaρ)
∑
n∈4mk

νmn
∑

b∈�auk

∑
n∈4mk

Sbn. This method will cause

certain conservativeness. In this paper, the unknown proba-
bilities are separated from the known ones, and the obtained
result is less conservative, as shown in Example 2.
Remark 3: This paper deals with time-delay by construct-

ing a proper Lyapnov-Krasovskii functional. Another method
is to convert the time-delay into the parameter matrix of the
closed-loop system by the state augmentation technique [13].
However, as the time-delay mode increases, the dimension of
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the closed-loop systemwill become high, which increases the
controller solution time. The method in this paper reduces the
dimension of the matrix for the closed-loop system.

The conditions in Theorem 2 are a set of LMIs with non-
convex constraints which can be solved by several existing
iterative algorithms. The cone complementarity linearization
(CCL)method [22] is used to transform the conditions in The-
orem 2 into the following nonlinear minimization problem
with LMI constraints.

Min tr

{
σM∑
b=0

φM∑
n=0

SbnMbn +
2∑
ρ=1

YρZρ

}
, s.t. (19)-(22), (26)

and (27): [
Sbn ∗

E Mbn

]
≥ 0, b ∈ �, n ∈ 4 (26)[

Yρ ∗

E Zρ

]
≥ 0, ρ ∈ {1, 2}. (27)

The procedure for solving the controller and observer gain
matrix is presented in Algorithm 1.
Remark 4: The method proposed in this paper can also be

applied to the H∞ control and guaranteed performance con-
trol where the relationship among the system performance,
packet loss probability and the information amount of time-
delay transition probability can be further researched.

IV. NUMERICAL EXAMPLE
In this section, two examples are presented to illustrated the
effectiveness of the proposed method.
Example 1: Consider the controlled plant with the follow-

ing parameters [18]:

A =
[
0.52 −0.69
0 0.19

]
, B =

[
0.3
0.2

]
,

C =
[
1.5 0.7
0.2 0.4

]
.

Assume S-C time-delay σk ∈ � = {0, 1}, and C-A time-
delay φk ∈ 4 = {0, 1} , the transition probability matrices of
which are as follows:

5 =

[
0.8 0.2
? ?

]
, 2 =

[
? ?
0.7 0.3

]
.

The packet loss probability 1−E{αk} = 1−ᾱ = 1−E{βk} =
1 − β̄ = 0.2. According to Algorithm 1, a set of feasible
solutions for the controller and observer gain matrices are
obtained as follows:

K =
[
0.0927 −0.0083

]
, L =

[
3.7145 −0.8976
5.1640 −1.8151

]
.

By the method in [15], a set of feasible solutions can also be
gotten as follows:

K =
[
0.0268 −0.0720

]
, L =

[
4.0541 −1.4713
2.1661 −0.362

]
.

The initial state of the system is xT0 =
[
1 −0.5

]
. Figure 2 and

Figure 3 illustrate the response of system state x1 and x2 using

FIGURE 2. System state x1.

FIGURE 3. System state x2.

FIGURE 4. Angle position tracking system.

the proposed method and the method in [15]. It is observed
that the proposed method outperforms the method in [15].
Example 2: Considering the angular position tracking sys-

tem [23] shown in Figure 4, where ϕr is the angular position
of the moving object, and ϕ is the angular position of the
antenna. The function of this system is that the antenna can
rotate with the movement of the target object by applying a
voltage to the motor and satisfy ϕ ∼= ϕr .

The state space model parameters of the angular position
tracking system are as follows:

A =
[
1 0.0995
0 0.99

]
, B =

[
0.0039
0.0783

]
,

C =
[

1.4 0.8
−0.2 0.4

]
.

Obviously this system is unstable. Assume S-C time-delay
σk ∈ � = {0, 1}, and C-A time-delay φk ∈ 4 = {0, 1} ,
the transition probability matrix of σk and φk is as follows,
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Algorithm 1 Procedure for Solving the Controller and Observer Gain Matrix
1: Set the maximum number of iterations
2: Find a set of feasible solution satisfying (19)-(22), (26) and (27), and let k = 0
3: Solve the following optimization problem for variables:

4: Min tr

{
σM∑
b=0

φM∑
n=0

(SkbnMbn + SbnM k
bn)+

2∑
ρ=1

(Y kρ Zρ + YρZ
k
ρ )

}
, s.t. (19)-(22), (26) and (27)

5: Set (Sk+1bn = Sbn, M
k+1
bn = Sbn, Y

k+1
1 = Y1, Z

k+1
1 = Z1, Y

k+1
2 = Y2, Z

k+1
2 = Z2,K k+1

= K , Lk+1 = L)
6: while number of iterations <Maximum number of iterations do
7: if (11) is satisfied then
8: break
9: else

10: k = k + 1, go to step 4.
11: end if
12: end while

FIGURE 5. The S-C time-delay σk .

FIGURE 6. The C-A time-delay σk .

respectively:

5 =

[
0.7 0.3
? ?

]
, 2 =

[
? ?
0.9 0.1

]
The S-C packet loss probability and the C-A packet loss
probability 1−E{αk} = 1−ᾱ = 0.1 and 1−E{βk} = 1−β̄ =
0.2, respectively. According to Algorithm 1, the controller
and observer gain matrices are obtained as follows:

K =
[
−0.3648 −0.5975

]
, L =

[
−0.0721 −0.2065
−0.0642 −0.1445

]
.

Assume that the initial state of the system x0 =
[
2 −1

]T ,
x̂0 =

[
1.8 −1.2

]T . The time-delay σk and φk is shown
in Figure 5 and Figure 6, respectively. The closed-loop system

FIGURE 7. System state x1 and estimated values x̂1.

FIGURE 8. System state x2 and estimated values x̂2.

state response curve under the controller designed in this
paper is shown in Figure 7 and Figure 8.

Due to the introduced conservativeness, one cannot use the
method in [15] to obtain a set of feasible solutions for K
and L. Therefore, the method proposed in this paper is less
conservative than the method in [15].

V. CONCLUSION
In this paper, the observer-based stabilization problem is
studied for NCS with time-delay and packet loss in both S-C
side and C-A side. Under the condition that the S-C and
C-A time-delay transition probability are partially unknown,
the sufficient conditions for the stability of the closed-loop
system are obtained. Themethod of solving the controller and
observer gain matrix of the NCS is also proposed.
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