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ABSTRACT We consider using sparse representations to identify underwater targets, since underwater
acoustic signal have sparse characteristics. We consider the identification problem as one of the identifying
among multiple linear regression models and believe that the new theory from sparse signal representation
provides the key to solving this problem. Based on a sparse representation computed by `1 − minimization,
we propose a general classification algorithm for (hydroacoustic signal-based) targets identification. This
new framework provides new insights into identifying two key issues in underwater targets: feature extraction
and robustness of signal loss and noise interference. For feature extraction, we point out that feature
extraction is no longer critical if the sparseness of the underwater acoustic signal is properly utilized. The
critical is whether the number of features is large enough and whether the sparse representation is correctly
computed. This framework can handle errors due to signal loss and noise interference uniformly by exploiting
the fact that these errors are often sparse with respect to the standard (hydroacoustic signal) basis. Extensive
experiments have been conducted based on a public underwater acoustic signal sampling set to verify the
efficacy of the proposed algorithm and corroborate the above claims.

INDEX TERMS Identification of underwater targets, sparse representation, `1−norm, compressed sensing.

I. INTRODUCTION
Progress of underwater sensors and other equipment enable
intelligent identification technology of underwater targets to
be widely applied in many fields, primarily involvingmilitary
invasion monitoring [1], exploitation of seabed resources [2],
positioning and protection of fish [3] and so on. Due to the
complicated underwater environment (e.g., Acoustic medium
constraints and heterogeneity), the diversity of target identi-
fication and the difficulty in obtaining targeted underwater
signal (e.g., Data of sensitive equipment such as military
vessels) [4], it is more difficult to intelligently recognize
underwater objects than other objects. At present, the main
research method for underwater targets identification is
the statistical identification method based on the theory
of hydroacoustic signal and information processing [5].The
low-dimensional observations of sparse representation must
contain most of the useful information of the original
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signal. Most signal in nature are sparse to some extent, and
hydroacoustic signal are no exception. If the sparse basis of
the hydroacoustic signal can be constructed, the compressed
sensing can be applied to underwater signal processing,
which can reduce the cost of signal processing, improve the
compression efficiency, enhance the anti-noise performance
of the identification system as well as the robustness.

In the field of statistical signal, the sparse linear expression
for computing a super complete dictionary with basic ele-
ments or signal atoms has recently attracted many scholars’
attentions [6]–[9]. and the researches maily focus on the
following aspects: when the basic elements or signal are
sparse enough, the sparse representation can be effectively
calculated by convex optimization [6], although commonly
it may be very difficult. In order to solve such problems,
the coefficients in linear combination are dealt with in
paper [6] and [10], instead of solving the problem of number
of non-zero coefficients(i.e., `0 − norm).
The initial purpose of sparse representation algorithm is

not to identify or classify, but to make the representation
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FIGURE 1. Hydroacoustic signal are converted into high-dimensional feature matrices by feature extraction, which
increases the processing time of classifier.

and compression of signal have a lower sampling rate than
Shannon-Nyquist. Therefore, the performance of the algo-
rithm needs to be measured according to the sparsity of the
representation and the fidelity of the original signal. The basic
elements in a data model-based dictionary do not have any
specific semantics. They are usually selected from standard
bases (e.g., Fourier, wavelet, discrete cosine transform and
Gabor) or generated from random matrices [11]. However,
the sparse representation is naturally different: in all basic
quantum sets, it chooses the most accurate input signal and
abandons the inaccurate sparse representation.

The function of feature extraction. In fact, the feature
extraction technology converts the original hydroacoustic sig-
nal into a high dimensional vector, thus causes the problem of
‘‘dimension disaster’’, also it can destroy the data structure of
the hydroacoustic signal, ignores the associative differences
and similarities of hydroacoustic signal of different modal
(dimension) (See Section III-B3), and dimensions disaster
is accompanied by small samples [12], both will reduce the
application performance of intelligent identification of under-
water objects [13].A large amount of studies focus on various
feature transformations based on data, which project high-
dimensional test samples into low-dimensional feature space:
spectral feature analysis, wavelet analysis, chaotic fractal
analysis, and Mel Frequency Cepstrum Coefficient (MFCC)
based on speech signal processing, etc. [14], [15]. In order to
solve the problem of ‘‘dimension disaster’’, an innovative fea-
ture weight estimation method was proposed in [16], called
dynamic representation and neighbor sparse reconstruction-
based Relief (DRNSR-Relief).DRNSR-Relief decomposes a
nonlinear problem into a set of locally linear ones through
local hyperplane with `1 regularization and then estimates
feature weights in a large margin framework, experimen-
tal results indicate that DRNSR-Relief is very promising.
However, under the framework of sparse representation and
classification proposed by us, the compressed sensing means
that the selection of feature space is no longer important,

and even the randomly selected features can contain enough
information for sparse expression, so as to correctly classify
hydroacoustic signal [17]. The key of Sparse Representa-
tion Classification(SRC) is that the feature space is large
enough and the sparse representation can be correctly calcu-
lated [18]. In order to improve performance, it is necessary to
increase the number of samples, resulting in increased storage
space and correspondingly algorithm complexity. As shown
in Fig. 1, the spectrum feature diagram generated by an under-
water object shows that the hydroacoustic signal extracted by
spectrum feature is absolutely a high-dimensional vector.

The robustness of hydroacoustic signal identification.
An algorithm of feature extraction may use original acoustic
signal. An underwater acoustic channel is characterized by
low bandwidth, long propagation delay, high errors proba-
bility, Doppler effect, multi-path effect and spatiotemporal
variation. Therefore, there are some errors in the hydroa-
coustic signal, such as signal loss or noise interference, and
it is difficult to extract features from high-standard under-
water acoustic signal. At the same time, the transmission,
storage and processing of hydroacoustic signal also face
many challenges. The errors caused by the above problems
are unpredictable, and lead to the decline of the identi-
fication accuracy [19]. However, a little amount of error
signal does not affect the sparse expression of the whole
signal, the errors of hydroacoustic signal is regarded as a
special kind of sparse representation, which will cause errors
classification [19], [20].

In this paper, we mainly propose the effective strategies
to solve the issues of underwater targets identification, and
propose a robust Sparse Representation Classification(SRC)
method to accurate the sparse representation and enhance
classification abilities.The main contributions are shown as:

1) We exploit the discriminative nature of sparse repre-
sentation to perform classification. Instead of using
a dictionary based on data model. A overcomplete
dictionary D whose base elements are the training
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samples themselves(See Section III-B). If each class
has enough training samples, overcomplete dictionary
D can be trained to represent the test samples of the
same class linearly. This representation is naturally
sparse and uses only a small part of the data in the
entire training sample. We believe that the key to using
sparse representation is how to use test samples to train
an appropriate overcomplete dictionary, so as to obtain
the precise sparse linear representation, and finally use
sparse representation to automatically classify various
classes in the training set.

2) Our classification algorithm based on sparse represen-
tation differs significantly from the traditional clas-
sification method based on feature extraction (e.g.,
SVM and Random Forest(RF)).In this paper, instead
of using sparsity to identify a related model or related
features and then using these features to classify all test
samples, the sparse representation of each individual
test sample is used directly for classification, and the
training sample that gives the most concise represen-
tation (See Section IV-A) is adaptively selected. Our
method strikes a balance among all possible classes,
and adaptively selects the minimum number of training
samples required to represent each test sample.

3) Signal loss and noise interference (i.e., The errors
of hydroacoustic signal) pose a significant obstacle
to robust real-world underwater targets identification,
which have been taken into account in the sparse rep-
resentation. When errors have a sparse representation,
it can be handled uniformly within our framework:
the basis in which the errors are sparse can be treated
as a special class of training samples. In experiments
with sparse representations of test samples based on
extended dictionary for signal loss and noise interfer-
ence(See Section IV-B), the theories of sparse repre-
sentations and compressed sensing characterize when
such source-and-error separation is possible, thus the
identification algorithm that determines how much sig-
nal loss and noise interference can tolerate these errors.

The structure of the article. Section II introduces forward-
looking research by many experts and scholars in the field
of sparse representation recognition, especially dictionary
learning, sparse expression in the field of picture and sound
wave recognition and detection. In Section III, sparse rep-
resentation is conducted to given hydroacoustic signal under
the framework of compressed sensing theory. In other words,
we discuss using `1 − norm optimization methods to make
the hydroacoustic signal expression as sparse as possible and
how it can be used to classify and validate any given test sam-
ples. Section IV shows two important problems in studying
target identification in water by using sparse identification
classification framework: feature extraction and robustness of
SRC of acoustic signal. In Section V, we verify the previous
conjecture with the existing data set of hydroacoustic signal.
In our experiment, the experimental results of SRC, SVM and
Random Forest(RF) are compared and discussed.

II. RELATED RESEARCH
In this section, we describe the related work on dictionary
learning and sparse representation in acoustic signal recogni-
tion and detection.

A. DICTIONARY LEARNING
Initially, the dictionary was obtained by using the basis func-
tion(e.g., discrete cosine domain), and then developed to
obtain the dictionary by iterative algorithm based on training
samples(e.g., `0−norm). However, the disadvantages of these
methods are that the training time is too long and it is not
easy to operate. Research on dictionary training algorithm
based on hydroacoustic signal features is an important direc-
tion to improve the recognition rate of sparse representation.
See [21], the author proposed a discriminative Fisher embed-
ding dictionary learning (DFEDL) algorithm that simultane-
ously establishes Fisher embedding models on learned atoms
and coefficients.See [22], Michal Aharon et al. proposed a
novel algorithm for adapting dictionaries in order to achieve
sparse signal representations, the K-SVD algorithm general-
izing the K-means clustering process. Experimental results
show that the K-SVD algorithm has achieved the expected
results.

B. PREPARATION FOR SPARSE REPRESENTATION
In order to apply the sparse theory to hydroacoustic signal
processing, there is an important problem to be solved. Since
the time domain and frequency domain data of the sound
signal are usually not sparse, some preprocessing must be
performed before extracting the acoustic features with signif-
icant sparsity. It is essential that these sparse acoustic signal
must have sufficient original information.

C. SPARSE REPRESENTATION IN ACOUSTIC SIGNAL
RECOGNITION
In recent years, sparse theory has been widely applied in
acoustic signal acquisition, compression, modeling, classi-
fication, matching and identification, and has become an
important branch in the field of acoustic signal processing.

Some sparse algorithm theories have been applied to music
and speech signal processing. Then, a dictionary shall be
learned by using all the processed frame data, and the dic-
tionary and the initial sparse coding shall be used to train
a fast decoder of sparse decomposition, so as to obtain the
sparse code of acoustic signal under the dictionary. Mikael
Henaff et al. proposed a fast encoder based on predictive
sparse decomposition (PSD), which can quickly obtain the
sparse representation of signal by known dictionary [23].
Music data shall be divided into several frames, and each
frame shall be pre-processed. Hui-HungWang et al. proposed
a dictionary learning method, called Paired Discriminative
K-SVD (PD-KSVD), to learn discriminative features for
visual recognition [24]. A.Lima et al. proposed the sparse ker-
nel function principal component analysis (SKPCA) method
and applied it to speech identification, achieving the desired
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goal [25], the research shows that, in some cases, the noise is
sparse, and the transcendental sparse feature can be used to
weaken the noise and enhance speech. Plumbley et al. used
sparse representation to solve signal processing tasks from
audio encoding, audio enhancement and audio transcription
to blind source separation [26].

D. APPLICATION OF ACOUSTIC DETECTION
In addition to using sonar to identify underwater objects,
many scholars have gradually detected objects using
P-wave or lamb wave recognition techniques. At present,
P wave morphology detection is widely used in the classi-
fication and identification of ECG diseases.Abed Al Raoof
Bsoul et al. proposed a P-wave detection method based on
multi-feature neural network input [27]. Eduardo de Azevedo
Botter et al.used neural networks to determine whether the
heart beat was P-wave [28], thereby improving the correct
detection rate of P-wave. Lamb wave detection has a wide
range of applications in the field of structural monitoring [29].
Due to the propagation characteristics of Lamb waves in
thin-plate structures, active Lambwave damage identification
techniques can be used to detect objects [30].

III. SPARSE REPRESENTATION CLASSIFICATION BASED
ON HYDROACOUSTIC SIGNAL
The basic problem of underwater targets identification is
to use d signal samples of different feature categories to
train the classifier and finally correctly identify the class of
the new test samples. Given ni training samples from the
ith class as column vector Di =

[
di,1, di,2, . . . , di,ni

]
∈

Rm×ni . Suppose that the value of each unit in the experimen-
tal data of underwater sound is the atomic vector d ∈ Rm of
sound signal of underwater object Di, and the column vector
of Di is the sound signal of class ith.

A. COMPRESSED SENSING THEORY
Donoho and Huo [31] and Candes [32] et al. proposed the
compressed sensing (CS) theory, the essence of which is
that sparse signal can contain enough information of signal
processing through a small number of random linear projec-
tions, that is, accurate signal representation can be obtained.
Similarly, the sparse representation of hydroacoustic signal
inevitably includes all feature information of signal. It is
theoretically feasible to use sparse representation as the fea-
ture of hydroacoustic signal, and it can reduce data pro-
cessing tasks.Along with the evolvement of data collection
technology, the dimension of data is now getting higher and
higher.For example, Dubit sound, high fidelity sound or high
redundancy underwater sound,etc.In general, when the data
dimension increases, the cost in storing, transmitting and
analyzing data will inevitably rise.What is more, the increase
in data dimension is actually much faster than the advance in
communication, storage and computation power.

If a signal is sparse, or a transform domain is sparse,
an observation matrix unrelated to the transform basis can
be used to ‘‘compress’’ the sparse high-dimensional signal

into low-dimensional signal, which directly perceives the
compressed data information and breaks the constraints of
Shannon-Nyquist theorem.Alternatively, given only the com-
pressed data and sensing matrix, the proposed method, row
space pursuit (RSP), recovers the authentic row space that
gives correct clustering results under certain conditions [33].

Convert analog signal into digital signal to obtain a lot
of sampling, resulting large data size. We obtain the corre-
sponding coefficient by transforming coefficient, then in the
process of signal encoding, make values of zero or close to
zero, extract only a small amount of coefficient. But these
coefficients can represent information of underwater objects
at maximum limit [34]. The sparse matrix could store a small
amount of values(sparse values) and their positions, and the
sparse representation of hydroacoustic signal is obtained.

Under compressed sensing theory, intelligent identification
of underwater targets means that the accurate choice of fea-
ture space is no longer important, but the dimension of the
feature space is enough big and sparse representation calcu-
lated precisely, namely the right information for the most part
keep the complete original signal information. Signal can be
restored by using repeatedly a small amount of information in
the subsequent processing, which can avoid the inefficienly
resulted by feature extraction and identification methods.
Therefore, sparse representation and compressed sensing are
ideal methods for effectively solving the identification of
underwater targets.

B. TEST SAMPLES ARE USED TO TRAIN AN ACCURATE
SPARSE LINEAR COMBINATIONS
Matrix structure Di has come up with all sorts of classifiers,
a joint subspace recovery and enhanced locality based robust
flexible label consistent dictionary learning method proposed
by Zhao Zhang et al.This discriminative dictionary learning
algorithm mainly improves the data representation and clas-
sification abilities by enhancing the robust property to sparse
errors and encoding the locality, reconstruction error and
label consistency more accurately. For the robustness to noise
and sparse errors in hydroacoustic signas, this algorithm helps
to improve recognition rate of error signal [35]. It is especially
sensitive to noise and interference subspace when identifying
underwater targets. In a typical environment, we first estab-
lish the linear subspace of the training sample of a single
class, and this subspace will be the only priori sample for
underwater targets identification.

Assume that there are sufficient training sample Di =[
di,1, di,2, . . . , di,ni

]
∈ Rm×ni in the ith class, any test sam-

ple y in the same class will be approximately located on the
linear subspace of the training samples related to class ith:

y = αi,1di,1 + αi,2di,2 + . . .+ αi,nidi,ni (1)

where the scalar ai,j ∈ R, j = 1, 2, . . . , n..
Since the test samples of the ith class are unknown at

the time of initialization, we define a new matrix D for the
entire training set, D = [D1,D2, . . . ,Di, . . . ,Dm]. D can
connect n single atom vector d tom training samples as shown
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TABLE 1. Partial matrix D is obtained according to SRC algorithm, results
are predicted according to the matrix, where ‘‘1’’ represents metal
cylinder and ‘‘0’’ represents rocks.

in Fig. 1. Table 1 shows the data samples of the matrix D
obtained by SRC algorithm in this experimental database, and
the prediction and identification of metal cylinder and rock in
two types of underwater objects are carried out.

D = [D1,D2, . . . ,Di, . . . ,Dm] =
[
d1,1, . . . , di,j, . . . , di,ni

]
(2)

Then the linear expression in equation (1) can be rewritten as:

y = Da0 ∈ R (3)

where, a0 =
[
0, . . . , 0, αi,1, αi,2, . . . , αi,ni , 0, . . . , 0

]T
∈ Rn

is a coefficient vector. All data items are 0 except those related
to the class ith.

Obviously, if m > n, according to the knowledge of linear
algebra, the solution of y = Da can be uniquely determined.
However, according to the sparse condition (i.e. m � n),
the solution of the coefficient vector a is usually unique.
We can find out the solution with the fewest non-zero ele-
ments from all feasible solutions, which satisfies the sparsity.
The following mathematical model can be obtained:(

l0
)

â0 = argmin‖a‖0 subject to Da = y (4)

where, ‖.‖ represents l0 − norm, the non-zero number in the
coefficient vector. In fact, If D is a non-orthogonal matrix,
for y = Da, when a < m/2, there is a non-zero solution,
and a is only sparse solution: â0 = a0 [36]. However, it is
hard to find the sparse solution of underdetermined linear
equations, or even to approximate [37]–[39]. That is to say,
there is no more significant and effective method than finding
solutions of y = Da to find the sparse solution.

1) FIND THE MOST SPARSE SOLUTION BY USING
`1 −minimization
According to the development of sparse representation and
compressed sensing theory, since the `0− or `1 − norm
constraint applied in most existing dictionary learning criteria
makes the training phase time consuming, to obtain the rep-
resentation coefficients, discriminative dictionary from the
given samples is calculated via minimizing a sparse approx-
imation term [40]–[44]. It is revealed that if the required
solution a0 is sparse enough, then `1−minimization problem
(4) is equivalent to solve the problem `1 − minimization:(

l1
)

â1 = argmin‖a‖1 subject to Da = y (5)

This problem can be solved in polynomial time by standard
linear programmingmethod [42].When the solution is known
to be very sparse, a more efficient approach can be used. For
example, homotopy algorithms recovers t solutions with non-
zero in time O

(
t3 + n

)
and is linear in the size of training

samples [43].

2) HANDLE SMALL AND DENSE NOISE
So far, we have assumed that equation (3) is completely valid,
but in real underwater acoustic signal, there is noise, which
may lead to the failure to completely represent test samples
as sparse superposition of training samples. By rewriting
formula (3) with (6), possible noise problems can be fully
considered.

y = Da+ z (6)

where, z ∈ Rm is a bounded normal form ‖z‖2 < ε. By solv-
ing the stable minimization problem, the sparse solution a can
still be approximated to:(

`1s

)
â1 = argmin‖a‖1 subject to ‖Da− y‖2 ≤ ε (7)

The above optimization problem can be solved by second-
order cone programming [42].The sparse solution D [43]is
guaranteed by `1s to be approximately obtained in the set
of random matrices. There are other solutions, for example,
Yulin Sun et al, propose a structured Robust Adaptive Dic-
tionary Pair Learning(RA-DPL)framework for the discrim-
inative sparse representation learning. To achieve powerful
representation ability of the available samples, the setting
of RA-DPL seamlessly integrates the robust projective dic-
tionary pair learning, locality-adaptive sparse representation
and discriminative coding coefficients learning into a unified
learning framework [45].

3) SIMILARITY CORRELATION OF ATOMIC VECTORS D
OF A SINGLE TRAINING SAMPLE
Coherence refers to the similarity correlation between differ-
ent atomic vectors di,ni in the training sample D. Firstly, it is
defined that the sets of different atomic vectors in the training
sample are normalized, and then the inner product is taken to
take the maximum absolute value of them, and the similarity
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correlation of training sample is defined as:

µ (D) = max
i6=j

∣∣〈di, dj〉∣∣ (8)

where di, dj represents two different atoms in a single training
sample D. To some extent, size of µ (D) can reflect the
similarity correlation among atoms in the training samples.
When the value of µ (D) is large, it means that the similarity
between atoms is strong, otherwise the similarity is weak.

C. SPARSE CLASSIFICATION
Given a test sample y, first calculate its sparse represen-
tation â1 by (5) or (7), and then calculate the correlation
µ (D) between different atoms in a single training sample D
by (8). Ideally, all non-zero items in â1 would be associated
with columns Di in a single object the ith class, and test sam-
ples y could easily be assigned to that class. However, noise
interference and modeling errors can cause non-zero terms
in multiple classes to be correlated, leading to classification
errors. In order tomake better use of the sparse linear features,
We use the coefficient a to reproduce y, which is the process
of classifying y.
For each class i, set δi : Rn

→ Rn an eigenfunction that
selects the coefficients associated with the class ith. For a ∈
Rn, δi (a) ∈ Rn is a new vector, its only non-zero atomic value
is the item associated a with the class i.Using coefficients
a associated with the class ith, the given test sample y can
be approximated to ŷi = Dδi

(
â1
)
, and we can achieve the

purpose of classifing y by assigning y to the class with the
smallest residuals between y and ŷi.

min
i
ri (y) =

∥∥y− Dδi (â1)∥∥2 (9)

The following algorithm provides a complete identification
process of sparse classification, we minimize `1 − norm by
implementing linear programming based on the original dual
algorithm [44], [46].

Algorithm 1 Sparse Representation-Based Classification
(SRC)

1) Input: a matrix of training samples Di =[
di,1, di,2, . . . , di,ni

]
∈ Rm×ni for ith classes, a test

sample y ∈ Rm,(and an optional error tolerance
ε > 0.)

2) Normalize the columns of D to have unit `1 − norm.
3) Solve the `1 − minimization problem:

â1 = argmin
a
‖a‖1subject to Da = y

(Or alternatively, slove:
â1 = argmin

a
‖a‖1subject to ‖y− Da‖2 ≤ ε)

4) Compute the residuals ri (y) =
∥∥y− Dδi (â1)∥∥2 for i =

1, 2, . . . , ni
5) Output: identity (y) = argmin

i
ri (y).

Experiment 1 (`1 − Minimization): To illustrate how
algorithm 1 works, we selected half of the 208 data sets in
the sonar database as the training set and the rest for testing.

FIGURE 2. The training samples calculated by algorithm 1 are sparse, and
the residual error is r = 4.6099e− 16.

In this experiment, we combine 60 underwater acoustic sam-
ples of objects in water into matrix columns D. Therefore,
the size of the matrix is 60 × 104, y = Da is underde-
termined. Fig. 2 shows the sparse coefficient distribution
restored by algorithm 1 for test underwater acoustic data. The
figure also shows the features and raw data corresponding
to the two maximum sparsity. Both maximum coefficients
are associated with training samples from the first class of
metal objects. With the 60 samples as the feature, algorithm 1
achieves the identification rate of 92.1% in the sonar data set.
(See Section V for details and performance of other identi-
fication algorithms (SVM and RF), as well as a comparison
between them.In addition, many researchers also generally
use regression analysis or Nearest Neighbor for classifica-
tion [47]. In order to further improve this experiment, we will
further elaborate in future experiments.)

D. VALIDATION BASED ON SPARSE REPRESENTATION
CLASSIFICATION
Before classifying a given test sample, we must first deter-
mine whether the test signal is a valid sample from a class
in the sonar data set. The ability to reject invalid test sam-
ples or ‘‘outliers’’ after detection is crucial to identification
systems that work in the real world. For example, the under-
water intelligent identification system cannot recognize non-
hydroacoustic signal and signal that are not in the experimen-
tal signal set.

The SVM classification method is to find the distance
from the test sample to the hyperplane and then determine
whether to accept or reject the test sample, while the decision
method of RF is to adopt a special bagging, which uses the
decision tree as the model in bagging [48]. Both traditional
classifiers classify and identify the test sample base on feature
extraction, this paper selects more general MFCC1 to extract
features of hydroacoustic signal.

In the experiment of sparse representation, according to a
certain class of hydroacoustic signal data, its characteristic

1MFCC:Mel Frequency Cepstrum Coefficient considers human auditory
characteristics, first maps the linear spectrum to the Mel nonlinear spectrum
based on auditory perception, and then transfers it to the Cepstrummel (f ) =
2595× log10

(
1+ f

/
700

)
where f is the frequency of the acoustical signal.
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FIGURE 3. (a) Sparsity tends to 0.01 and exceeds the normal sparse value range. (b) Distribution
map of corresponding sparse coefficient â1, where ‘‘0’’ indicates any underwater object that does
not belong to sparse classification.

coefficient â1 is applied to the sparse linear expression of
all relevant data, that is to say, the coefficient â1 can be
verified by using the joint distribution of its class. This has
better verification results than the SVM method of finding
the distance from the point to the hyperplane or the special
bagging method of RF. The optimization process can be
expressed in formula (10):

arg min
{di}{aj}

m∑
j=1

∥∥∥∥∥yj −
n∑
i=1

ajidi

∥∥∥∥∥
2

2

+ ε

m∑
j=1

n∑
i=1

∣∣∣aji∣∣∣ (10)

where, aj is the sparse representation vector of the j test
sample. k is number of non-zero terms of sparse vector a0,
which is also called sparsity 2

Experiment 2 (Sparsity of the Sparse Coefficient): we ran-
domly selected a hydroacoustic signal (which does not belong
to any category of hydroacoustic database) and sparsely rep-
resented it. As shown in Fig.3, Fig.3(a) represents the dis-
tribution diagram of the obtained sparsity k , while Fig.3(b)
represents the corresponding sparsity coefficient â1. Com-
pared with the sparsity of effective test samples in Fig.2, â1
here are not concentrated on any class, but evenly distributed.
Therefore, the distribution of sparsity coefficient â1 con-
tains important information about test samples. Effective test
samples should have sparse representation, and its non-zero
number k should be concentrated around a vector, while the
sparse coefficient of invalid hydroacoustic signal is scattered
over multiple vectors.

Different from SVM and RF, the SRC avoids the direct
use of spatial distance-based classification method which

2Sparsity: The maximum number of non-zero in matrix D. A zero value
indicates that it is less than a certain threshold and is marked as 0, otherwise
it is a non-zero value. Given a finite long water acoustic signal y, if the signal
y ∈ R has at most k non-zero elements, i.e. ‖y‖0 ≤ k , the signal y is said to
be a k sparse signal.

ignores the relevance of the internal features of water objects.
The SRC method in our study does not rely on statistics for
verification and identification, but separates the information
needed for classification and identification: identify residual
and verify sparsity. Identify residual refers to the approximate
degree between the sparse representation of acoustic signal
and test samples, and the sparsity refers to the sparse per-
formance of test samples belonging to this category. We will
prove that the sparse expression classification is better than
SVM [49] and RF method. Based on the experiment of this
database, it can be verified that the classification identifica-
tion rate is increased by about 10%.

IV. TWO TYPES OF PROBLEMS OF SPARSE
REPRESENTATION OF HYDROACOUSTIC SIGNAL
In this section, we study the two key influential factors of
common classifiers on underwater targets identification:

• selection of feature extraction
• robustness to hydroacoustic signal loss, error and noise
interference

Specifically, SRC for robust underwater targets identification
is a factor that must be considered in practical scenarios,
Underwater acoustic signal are lost or interfered, which usu-
ally severely reduces the recognition rate of SRC. To improve
the effectiveness of representation coding, some researchers
have adopted an error detection machine (EDM) with mul-
tiple error detectors (ED) in SRC, is proposed to detect and
remove destroyed features on a testing samples [50].

A. FUNCTION OF FEATURE EXTRACTION
For a long time, in order to improve the accuracy of under-
water targets identification, many experts and scholars from
different angles and application analyzed and studied original
signal of target radiated noise, extracted of a series of effective
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characteristic parameters, including the following categories:
auditory feature extraction methods (Loudness and MFCC
etc.), Visual feature extraction method, the multidimensional
feature fusion method and high dimensional feature dimen-
sion reduction method,etc. [15]. Although a large number of
features have been accumulated in the research on classifica-
tion and identification of objects in water, most of them may
be redundant and irrelevant to classification tasks in specific
applications. Although useful features can be picked out, this
can be a difficult and time-consuming task, especially when
the feature of acoustic data is unclear. It is not conducive
to discover learning rules to retain irrelevant features and
discard relevant features. In addition, irrelevant or redundant
features increase the amount of data and slow down the train-
ing process of classifier. In this section, we will re-examine
the role of feature extraction in the new sparse representation
for underwater targets identification.

The advange of feature extraction is that it extends the
proposed sparse representation framework and reduces data
dimensions and computational costs. For the original acoustic
signal data, the corresponding linear system y = Da is
very large.For example, if a training sample D is a matrix of
60× 104, the dimension n is about 60. Although algorithm 1
can use scalable methods such as linear programming, its
direct application to such high-dimensional acoustic signal
data is still beyond the capability of conventional computers.

Since linear operations are involved in most feature extrac-
tion algorithms (or roughly so), the projection from the orig-
inal hydroacoustic signal space to the feature space can be
expressed as a matrix R ∈ Rm×k , where k � n. Apply R to
both sides of (3):

ỹ = Ry = RDa0 ∈ Rm (11)

In fact, the dimension k of the feature space is usually
chosen to be much smaller than ni. In this case, the system
ỹ = RDa ∈ Rk is underdetermined in the unknown a ∈ Rn.
In order to get the sparse solutions a0, we solved the problem
by reducing `1 − minimization:(
`1r

)
â1 = argmin‖a‖1 subject to ‖RDa− ỹ‖2 ≤ ε (12)

For a given fault tolerance rate ε > 0, in algorithm 1,
the training sample matrix D is replaced by the matrix RD ∈
Rm×k of k dimensional features, and the test sample y is
replaced by its features ỹ

Existing hydroacoustic signal identification experiments
show that increasing the dimension k of feature space can
improve the identification rate of underwater targets. As long
as the distribution of features RDi is not degenerate [51].
Degeneracy is not a problem for the `1−minimization which
should be in or near the range of ỹ, it does not depend on
6i = DTi R

TRDi, it’s not singular in classical discriminant
analysis. The stable version `1 − minimization (7) or (12) is
called Lasso [10] in statistical literature. When the solution is
sparse, it effectively standardizes the highly underdetermined
linear regression.

For SRC, we want to understand how the choice of
feature extraction affects the correct sparse solution (12).
In Section V, our experimental results will validate
`1 − minimization, in particular, the performance of stable
version (12). As long as the sparse solution a0 can be correctly
obtained, algorithm 1 will always give the same classifi-
cation result, regardless of which feature is actually used.
In other words, the identification performance of algorithm 1
with different features rapidly converges, and the selection
of ‘‘optimal’’ feature transformation is no longer the key
point. This will be confirmed by the experimental results in
Section V.

B. ROBUSTNESS OF DESTROYED HYDROACOUSTIC
SIGNAL
Hydroacoustic signal loss and noise interferencemay result in
the challage for intelligent identification in underwater envi-
ronment. This is due to the unpredictability of errors caused
by the destruction of hydroacoustic signal: A damaged signal
may be an important part, which has a significant impact
on the intelligent identification of underwater objects [52].
However, the damaged signal is usually only a small part
of the signal, which rarely appears on the entire underwa-
ter acoustic signal. When the hydroacoustic signal has such
sparse representation, the sparse representation can be used
for unified processing. In this case, the linear expression (3)
can be rewritten as:

y = y0 + e0 = Da0 + e0 (13)

where e0 ∈ Rm is the vector of error, a few of items from
the vector e0 is non-zero. e0 indicates the signal is dam-
aged or lost. Test sound signal are different, damage may be
different [53]. These errors may be uncontrollable, so they
cannot be ignored or treated as traditional methods for small
noise, as shown in Section III-B2.

The basic principle of coding theory [54] points out that
redundant data is crucial for detecting and correcting serious
errors. When there is redundancy in underwater acoustic
signal, the data amount of hydroacoustic signal is much larger
than that used to identify objects. In this case, even if a
small number of hydroacoustic signal are damaged or lost,
the remaining signal can still be used for identification. At the
same time, the selection of feature extraction of hydroacous-
tic signal mentioned in the previous section will help to alle-
viate the side effects caused by the loss of signal. From this
point of view, no method is more useful than the information
from the redundant hydroacoustic signal. Therefore, when the
signal is destroyed or lost, redundant data with high quality
can ensure a good performance of the sparse expression
algorithm.

The redundant signal is useless without efficient computa-
tion. Next is how to deal with the redundant signal by deliv-
ering a linear sparse codes auto-extractor and a multi-class
classifier by simultaneously minimizing the sparse recon-
struction, discriminative sparse-code, code approximation
and classification errors. The auto-extractor is characterized
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with a projection that bridgesUnderwater acoustic signal with
sparse codes by learning special features from input signals
for characterizing sparse codes [55]. It is assumed that the
damaged acoustic signal is a small part of the overall acoustic
signal, as the sparse vector a0, the error vector e0 also has
sparse characteristics. Since y0 = Da0, we can rewrite (13)
as:

y = [D I ]
[
a0
e0

]
= Bω0 (14)

Set B = [D I ] ∈ Rm×(n+m), y = Bω0 is underdeter-
mined, and ω0 has no unique solution. However, from the
sparsity of a0 and e0 discussed above, ω0 = [a0 e0]T has
at most ni + ρm non-zero solution, ρ is the dimension of e0.
Therefore, ω0 is the most sparse solution of sparse expression
y = Bω. In fact, if B is a non-orthogonal matrix, as long as
y = Bω̃, for some nonzero value ω̃ less thanm

/
2, ω̃ is the only

sparse solution. Therefore, if the loss e0 is less thanm− ni
/
2,

the sparse solution ω̃ is the classifier, ω0 = [a0 e0]T .
More generally, it can be assumed that the loss error e0

has representation based on De ∈ Rm×ρ , that is, for some
sparse vectors b0 ∈ Rm, e0 = Deb0 is satisfied. Assuming
that De = I ∈ Rm×m, the acoustic signal is sparse relative to
the original one, simply add De to D to redefine the matrix B
to find the sparse solution ω0:

y = Bω with B = [D De] ∈ Rm×(n+ρ) (15)

In this way, the same formula can be used to deal with more
common damaged signal.

As mentioned above, we solve the sparse problem by solv-
ing the expanded `1 − minimization:(

`1e

)
ω̂1 = argmin‖ω‖1 subject to Bω = y (16)

So, in algorithm 1, we replaceDwith an extended matrix B =
[D I ], replace a with ω = [a e]T .
According to Experiments 2, only when the noise inter-

ference and loss of e0 are not taken into account in the sparse
identification and classification system, equation (7) can be
available. However, when we use B = [D I ] to illustrate
the total error, `1−minimization (16) of Bω = ywith precise
limits can still achieve well in classification under medium
noise conditions, as shown in Fig.4.

After the sparse solution ω̂1 =
[
â1 ê1

]T is calculated,
set yr = y − ê1 to represent the complete underwater object
signal after the signal is destroyed or lost. We modified the
residual ri (y) in algorithm 1, and calculated according to the
compensated acoustic signal yr :

ri (y) =
∥∥y− Dδi (â1)∥∥2 = ∥∥y− ê1 − Dδi (â1)∥∥2 (17)

V. EXPERIMENTAL VERIFICATION ON INTELLIGENT
UNDERWATER IDENTIFICATION
In this section, we conduct experiments based on publicly
available underwater hydroacoustic databases. The experi-
ments can not only prove the effectiveness of the proposed
classification algorithm, but also verify the model mentioned

FIGURE 4. Classification of two types of hydroacoustic signal.

in the previous chapters. We first investigate the role of fea-
ture extraction in our framework, compare the performance of
different feature spaces and feature dimensions with several
popular classifiers. Then we demonstrate the robustness of
the proposed algorithm in case of the hydroacoustic signal is
destroyed or lost. Finally, we verify that SRC can effectively
classify test samples and study the robustness of classifica-
tion recognition in underwater acoustic signal loss and noise
interference environments.

A. FEATURE EXTRACTION AND CLASSIFICATION
We use MFCC (Mel frequency cepher coefficient) to verify
our classification algorithm.Mel frequency is proposed based
on the hearing characteristics of the human ear, which has a
nonlinear correspondence with Hz frequency. By using rela-
tion between them, the Hz spectrum features are calculated.
We use this feature extraction algorithm, compare SVM, RF
and SRC classifier in low-dimensional space, testing the opti-
mization problem with errors ε = 0.05 in the process (12).
SRC, SVM and RF are running on Matlab 2017a. All algo-
rithms are implemented on a Core i3 2.40GHz with 4G RAM
desktop, which will be verified within a tolerable time.

B. HYDROACOUSTIC DATABASE
The data set was contributed into the benchmark collection
by Terry Sejnowski, who is at the Salk Institute and the
University of California at San Deigo. The data set was
developed in collaboration with R. Paul Gorman of Allied-
Signal Aerospace Technology Center. The file ‘‘sonar.mines’’
contains 111 patterns obtained by bouncing sonar signal off a
metal cylinder at various angles and under various conditions.
The file ‘‘sonar.rocks’’ contains 97 patterns obtained from
rocks under similar conditions. The transmitted sonar signal
is a frequency-modulated chirp, rising in frequency. The data
set contains signal obtained from a variety of different aspect
angles, spanning 90 degrees for the cylinder and 180 degrees
for the rock. As shown in Fig.5.

Each pattern is a set of 60 numbers in the range 0.0
to 1.0. Each number represents the energy within a particular
frequency band, integrated over a certain period of time.
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FIGURE 5. Two types of underwater hydroacoustic signal graphs of sonar
data set.

The integration aperture for higher frequencies occur later in
time, since these frequencies are transmitted later during the
chirp.

The label associated with each record contains the letter
‘‘R’’ if the object is a rock and ‘‘M’’ if it is a mine (metal
cylinder). The numbers in the labels are in increasing order
of aspect angle, but they do not encode the angle directly.

104 hydroacoustic signal in this database were selected as
training samples, including 52 metal cylinder and 52 rock,
and the two types of samples were randomly distributed. The
remaining 104 mixed samples were used as test sample sets.

According to the database of hydroacoustic signal, Fig.6
shows the identification rate3 of this experiment, the best
performance of SRC and SVM in each feature dimension
always exceeds the best performance of RF. That is to say,
the best identification rate of SRC is 92.1%, and that of
SVM is 90.8%, the rate using RF is up to 81%, but it is
observed that the performance of SVM and RF changes with
the choice of feature space, the two classifiers depends greatly
on the performance of ‘‘optimal’’ feature of low feature space
dimension, as the ‘‘optimal’’ feature dimensions increase,
classifier algorithm is not in convergence.

Here is a brief introduction of RF classifier, which compre-
hensively analyzes the training results of the base classifier
and generates several training samples. Then, each training
sample constructs a decision tree. When the node splits, some
features are randomly selected to maximize the index (such
as information gain), the optimal solution is found in the
middle of the extracted features, applied to the node, split

3Identification rate:Number of test sets C and number of correctly identi-
fied test samples c η(%) = c/C

TABLE 2. Recognition rate obtained by random forest (RF).

TABLE 3. Recognition rate of SRC, SVM and RF in different signal loss
percentages.

again [48], [56]. Table 2 is identification rate of classification
of hydroacoustic database by using RF.

C. IDENTIFICATION OF LOSS OF HYDROACOUSTIC SIGNAL
In the second experiment, we artificially intercept some sig-
nal from the hydroacoustic database to simulate the loss of
signal caused by damage during underwater transmission,
as shown in Fig.7. The training and test samples in this
experiment are the same as Section V-B. For these three types
of classifiers, training sample is m, m = 104 is larger than
the dimension of n = 60, so as to ensure that the linear
equation (11) have a definite solution. However, the sparse
approximate solution a can still be solved by solving problem
(12) ε− relaxed `1−minimization (here ε = 4.9390e− 16).
The results in table 3 show that the proposed SRC algorithm
achieves better identification rate than SVM and RF. These
experiments demonstrate the scalability of the algorithm
when dealing with more than 104 dimensional features.

D. IDENTIFICATION OF HYDROACOUSTIC SIGNAL AFTER
NOISE INTERFERENCE
SRC has better robustness in case of noise interference. Since
SRC algorithm actually makes use of the linear correlation
among samples of the same category, it can be assumed that
these samples of the same category exist in the same feature
subspace and can be represented by linear combination with
each other. The identification method based on sparse rep-
resentation constructs a dictionary based on global features,
which solves all feature representations of the sample to be
detected, but ignore local features between the same samples.
However, when the number of training samples of each class
is small, sparse decomposition is carried out for the tested
hydroacoustic signal, and the sparse representation coeffi-
cients a obtained may correspond to multiple categories,
resulting in inaccurate classification results.

In this experiment, we test a robust version of SRC.
It uses database in Section V-B to solve the problem of
`1 − minimization (16). In order to simulate the error of
hydroacoustic signal, we artificially and randomly modified
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FIGURE 6. Classification results calculated by SRC, SVM and RF classifiers. Where, (a) represents the classification
calculated under normal circumstances; (b) is the distribution range of sparse coefficient; (c) represents the
classification results of three classifiers under the loss of hydroacoustic signal; (d) represents the classification
results generated by noise signal line.

FIGURE 7. In order to visualize the missing signal of the underwater acoustic data set, we use the dashed box to indicate the missing
part of the signal, which accounts for 10%, 20%, 30% of the underwater acoustic signal, respectively.

the signal, and the algorithm could not determine the modifi-
cation of the signal, so we set the error rate by the proportion
of 10% to 60%. In this extreme case, identification rate of
SRC, SVM and RF classification algorithms are tested. Sim-
ilarly, the training samples and test samples in this experiment
are the same as SectionV-B. Fig.8 describes the identification
performance of the three classification algorithms. It can be
seen that although the identification rate of SRC algorithm is
much lower than the correct hydroacoustic signal, it still has a
good performance compared with SVM and RF, See table 4,
from error rate of between 10% to 60%, SRC is almost able to

distinguish two types of underwater objects. When the error
rate reaches 60%, SRC can achieve the identification rate
of 35.2% while the other two classification algorithms does
not exceed 10%.At the same time, although the recognition
rate of support vector machine classifiers has also decreased
significantly after noise interference, its recognition rate is
still better than that caused by RF. Because SVM classifier
has two very important parameters: C and gamma. Where
C is the penalty coefficient, (i.e., the tolerance of error).By
optimizing penalty parameter C and selecting the best param-
eter, we can reduce the samples noise of underwater acoustic
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FIGURE 8. In order to visualize the underwater acoustic data set under noise interference, we use the blue acoustic signal to indicate the
interference of the tested hydroacoustic signal. The interference signal interferes with the proportion of the entire sonar signal by
10%, 20%, 30%, 40%, 50%, 60% respectively.

TABLE 4. Identification rate of SRC, SVM and RF in different signal
interference percentages.

signal.However, when the loss ratio of underwater acoustic
signal is too large, the optimization of penalty parameter C
is easy to lead to over fitting, on the contrary, it reduces the
recognition rate [57].

E. CONCLUSION AND DISCUSSION
In this paper, We have investigated the underwater target
recognition problem with signal sparsity characteristics, and
exploit the discriminative properties of sparse representation
to classify. Our approach takes into account all possible
support (either within a class or across multiple classes) and
adaptively selects the minimum number of training samples
required to represent each test sample.

We verify theoretically and experimentally that the use
of sparsity is crucial for high-performance classification of
high-dimensional data.With proper sparsity, feature selection
becomes less important than the number of features used.
A robust SRC algorithm and its extended version (consider-
ing errors and robustness) have good performance in under-
water targets identification experiments, especially when the
number of features is large. At the same time, it can also
be seen from experiments that SVM and RF classification
are highly dependent on the selection of feature extraction.
When there is serious noise interference or signal loss(often
occurs in underwater environment), the performance of SVM

and RF algorithm is unstable. There are still some shortcom-
ings in this experiment.It is a future interesting question for
robust SRC algorithms, due to the unpredictable nature of
the error incurred by signal loss and noise interference: it
may affect any part of the underwater acoustic signal and
may be arbitrarily large in magnitude. The experiment cannot
simulate the real situation, and different experiment database
may have inconsistent identification rate, causes conservative
result. Next, we will deal with this kind of problems for
further research.

APPENDIX
The main SRC, SVM and RF codes are presented in the
appendix. All code can be run and get experimental results

ACKNOWLEDGMENT
The authors would like to thank reviewers for their insightful
comments, making our manuscript a higher standard.

REFERENCES
[1] P. L. Nielsen, L. Muzi, and M. Siderius, ‘‘Seabed characterization

from ambient noise using short arrays and autonomous vehicles,’’ IEEE
J. Ocean. Eng., vol. 42, no. 4, pp. 1094–1101, Oct. 2017.

[2] A. Purser, Y. Marcon, S. Dreutter, U. Hoge, B. Sablotny, L. Hehemann,
J. Lemburg, B. Dorschel, H. Biebow, and A. Boetius, ‘‘Ocean floor
observation and bathymetry system (ofobs): A new towed camera/sonar
system for deep-sea habitat surveys,’’ IEEE J. Ocean. Eng., vol. 44, no. 1,
pp. 87–99, Jan. 2018.

[3] T. Praczyk, ‘‘Neural collision avoidance system for biomimetic
autonomous underwater vehicle,’’ in Soft Computing—A Fusion of
Foundations Methodologies and Applications. 2019.

[4] D. Bryner, F. Huffer, A. Srivastava, and J. D. Tucker, ‘‘Underwater mine-
field detection in clutter data using spatial point-process models,’’ IEEE
J. Ocean. Eng., vol. 41, no. 3, pp. 670–681, Jul. 2016.

[5] V. Vapnik and R. Izmailov, ‘‘Rethinking statistical learning theory: Learn-
ing using statistical invariants,’’ Mach. Learn., vol. 108, no. 1, pp. 1–43,
2018.

226 VOLUME 8, 2020



L. Yao, X. Du: Identification of Underwater Targets Based on Sparse Representation

[6] K. Lee, Y.Wu, andY. Bresler, ‘‘Near-optimal compressed sensing of a class
of sparse low-rank matrices via sparse power factorization,’’ IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1666–1698, Mar. 2018.

[7] E. J. Candés, J. K. Romberg, and T. Tao, ‘‘Stable signal recovery from
incomplete and inaccurate measurements,’’ Commun. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, 2006.

[8] E. J. Candès and T. Tao, ‘‘Near-optimal signal recovery from random
projections: Universal encoding strategies?’’ IEEE Trans. Inf. Theory,
vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

[9] Z. Y. Algamal and M. H. Lee, ‘‘A two-stage sparse logistic regression
for optimal gene selection in high-dimensional microarray data classifi-
cation,’’ Adv. Data Anal. Classification, vol. 13, no. 4, pp. 1–19, 2019.

[10] S. Li, T. Quan, C. Xu, Q. Huang, H. Kang, Y. Chen, A. Li, L. Fu, Q. Luo,
and H. A. Gong, ‘‘Optimization of traced neuron skeleton using lasso-
based model,’’ Frontiers Neuroanatomy, vol. 13, p. 18, Feb. 2019.

[11] M. Abavisani and V. M. Patel, ‘‘Deep sparse representation-based classifi-
cation,’’ IEEE Signal Process. Lett., vol. 26, no. 6, pp. 948–952, Jun. 2019.

[12] S. Tucker and G. J. Brown, ‘‘Classification of transient sonar sounds using
perceptually motivated features,’’ IEEE J. Ocean. Eng., vol. 30, no. 3,
pp. 588–600, Jul. 2005.

[13] A. Macgillivray, ‘‘Underwater noise from pile driving of conductor casing
at a deep-water oil platform,’’ J. Acoust. Soc. Amer., vol. 143, no. 1,
pp. 450–459, 2018.

[14] F. Abramovich, T. C. Bailey, and T. Sapatinas, ‘‘Wavelet analysis and its
statistical applications,’’ J. Roy. Stat. Soc., Ser. D, Statistician, vol. 49,
no. 1, pp. 1–29, 2010.

[15] E. Jokinen, R. Saeidi, T. Kinnunen, and P. Alku, ‘‘Vocal effort compen-
sation for mfcc feature extraction in a shouted versus normal speaker
recognition task,’’ Comput. Speech & Lang., vol. 53, pp. 1–11, Jan. 2019.

[16] X. Huang, L. Zhang, B.Wang, Z. Zhang, and F. Li, ‘‘Feature weight estima-
tion based on dynamic representation and neighbor sparse reconstruction,’’
Pattern Recognit., vol. 81, pp. 388–403, Sep. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320318301031

[17] S. T. Hasson and H. A. Khudhair, ‘‘Multi objective optimization model for
coverage and connectivity in wireless sensor networks,’’ J. Comput. Theor.
Nanosci., vol. 16, no. 3, pp. 831–837, 2019.

[18] Y. Ming, Z. Wu, D. Shi, J. Gao, and S. Xie, ‘‘Locally adaptive sparse
representation on Riemannian manifolds for robust classification,’’ Neu-
rocomputing, vol. 310, pp. 69–76, Oct. 2018.

[19] H. Wang and T. Celik, ‘‘Sparse representation-based hyperspectral image
classification,’’ Signal Image Video Process., vol. 12, no. 5, pp. 1009–1017,
2018.

[20] D. Q.Mayne, S. V. Raković, R. Findeisen, and F. Allgöwer, ‘‘Robust output
feedback model predictive control of constrained linear systems: Time
varying case,’’ Automatica, vol. 45, no. 9, pp. 2082–2087, 2009.

[21] Z. Li, Z. Zhang, J. Qin, Z. Zhang, and L. Shao, ‘‘Discriminative Fisher
embedding dictionary learning algorithm for object recognition,’’ IEEE
Trans. Neural Netw. Learn. Syst., to be published.

[22] M. Aharon, M. Elad, and A. Bruckstein, ‘‘K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,’’ IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[23] M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, ‘‘Unsupervised
learning of sparse features for scalable audio classification,’’ Proc. ISMIR,
vol. 11, no. 445, p. 2011, 2011.

[24] H. H. Wang, C. W. Tu, and C. K. Chiang, ‘‘Sparse representation for image
classification via paired dictionary learning,’’ Multimedia Tools Appl.,
vol. 78, no. 12, pp. 16945–16963, 2019.

[25] A. Lima, H. Zen, Y. Nankaku, K. Tokuda, T. Kitamura, and F. G. Resende,
‘‘Sparse kpca for feature extraction in speech recognition,’’ in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., vol. 1. Mar. 2005,
pp. I/353–I/356.

[26] M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, and
M. E. Davies, ‘‘Sparse representations in audio and music: From coding to
source separation,’’ Proc. IEEE, vol. 98, no. 6, pp. 995–1005, Jun. 2010.

[27] A. A. R. Bsoul, S. Y. Ji, K. Ward, and K. Najarian, ‘‘Detection of p, qrs,
and t components of ecg using wavelet transformation,’’ in Proc. Icme Int.
Conf. Complex Med. Eng., 2009.

[28] E. D. A. Botter, C. L. Nascimento, and T. Yoneyama, ‘‘A neural network
with asymmetric basis functions for feature extraction of ECG P waves,’’
IEEE Trans. Neural Netw., vol. 12, no. 5, pp. 1252–1255, Sep. 2001.

[29] S. V. Kuznetsov, ‘‘Abnormal dispersion of flexural Lamb waves in func-
tionally graded plates,’’ Zeitschrift für angewandteMathematik und Physik,
vol. 70, no. 3, p. 89, 2019.

[30] A. Ghadami, M. Behzad, and H. R. Mirdamadi, ‘‘Damage identification
in multi-step waveguides using Lamb waves and scattering coefficients,’’
Arch. Appl. Mech., vol. 88, no. 4, pp. 1–18, 2018.

[31] D. L. Donoho and X. Huo, ‘‘Uncertainty principles and ideal atomic
decomposition,’’ IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2845–2862,
Nov. 2001.

[32] E. J. Candès, ‘‘Compressive sampling,’’ in Proc. Int. Congr. Math., vol. 3,
Madrid, Spain, 2006, pp. 1433–1452.

[33] G. Liu, Z. Zhang, Q. Liu, and H. Xiong, ‘‘Robust subspace clustering
with compressed data,’’ IEEE Trans. Image Process., vol. 28, no. 10,
pp. 5161–5170, Oct. 2019.

[34] D. Donoho, H. Kakavand, and J. Mammen, ‘‘The simplest solution to an
underdetermined system of linear equations,’’ in Proc. IEEE Int. Symp. Inf.
Theory, Jul. 2006, pp. 1924–1928.

[35] Z. Zhang, J. Ren, W. Jiang, Z. Zhang, R. Hong, S. Yan, and M. Wang,
‘‘Joint subspace recovery and enhanced locality driven robust flexible
discriminative dictionary learning,’’ 2019, arXiv:1906.04598. [Online].
Available: https://arxiv.org/abs/1906.04598

[36] D. L. Donoho and M. Elad, ‘‘Optimally sparse representation in gen-
eral (nonorthogonal) dictionaries via l1 minimization,’’ Proc. Nat. Acad.
Sci. USA, vol. 100, no. 5, pp. 2197–2202, 2003.

[37] J. A. Tropp, ‘‘Greed is good: Algorithmic results for sparse approx-
imation,’’ IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242,
Oct. 2004.

[38] J. A. Tropp, ‘‘Just relax: Convex programming methods for identify-
ing sparse signals in noise,’’ IEEE Trans. Inf. Theory, vol. 52, no. 3,
pp. 1030–1051, Mar. 2006.

[39] E. Amaldi and V. Kann, ‘‘On the approximability of minimizing nonzero
variables or unsatisfied relations in linear systems,’’ Theor. Comput. Sci.,
vol. 209, nos. 1–2, pp. 237–260, 1998.

[40] Z. Zhang, W. Jiang, J. Qin, L. Zhang, and S. Yan, ‘‘Jointly learning struc-
tured analysis discriminative dictionary and analysis multiclass classifier,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 8, pp. 3798–3814,
Aug. 2018.

[41] D. Donoho, H. Kakavand, and J. Mammen, ‘‘The simplest solution to an
underdetermined system of linear equations,’’ Commun. Pure Appl. Math.,
vol. 59, no. 6, pp. 797–829, 2010.

[42] S. S. Chen, D. L. Donoho, and M. A. Saunders, ‘‘Atomic decomposition
by basis pursuit,’’ SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.

[43] D. L. Donoho and Y. Tsaig, ‘‘Fast solution of `1-norm minimization
problems when the solution May be sparse,’’ IEEE Trans. Inf. Theory,
vol. 54, no. 11, pp. 4789–4812, Nov. 2008.

[44] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[45] Y. Sun, Z. Zhang, W. Jiang, Z. Zhang, L. Zhang, S. Yan, and M. Wang,
‘‘Discriminative local sparse representation by robust adaptive dictionary
pair learning,’’ Tech. Rep., 2019.

[46] E. Candes and J. Romberg. (Apr. 14, 2005). `1-Magic: Recovery of Sparse
Signals Via Convex Programming. [Online]. Available: www. acm. caltech.
edu/l1magic/downloads/l1magic.pdf

[47] J. Yang, L. Luo, J. Qian, Y. Tai, F. Zhang, and Y. Xu, ‘‘Nuclear norm based
matrix regression with applications to face recognition with occlusion and
illumination changes,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 1, pp. 156–171, Jan. 2017.

[48] A. Lim, L. Breiman, and A. Cutler. (2014). Bigrf: Big Random Forests:
Classification and Regression Forests For LargeData Sets. [Online]. Avail-
able: http://CRAN. R-project. org/package=bigrf.R package version

[49] T. Jie, S. H. Xue, H. N. Huang, and C. H. Zhang, ‘‘Classification of
underwater still objects based on multi-field features and svm,’’ J. Marine
Sci. Appl., vol. 6, no. 1, pp. 36–40, 2007.

[50] T. Liu, J.-X. Mi, Y. Liu, and C. Li, ‘‘Robust face recognition via
sparse boosting representation,’’ Neurocomputing, vol. 214, pp. 944–957,
Nov. 2016.

[51] C. Liu, ‘‘Capitalize on dimensionality increasing techniques for improving
face recognition grand challenge performance,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 28, no. 5, pp. 725–737, May 2006.

[52] F. A. Cuzzola, J. C. Geromel, and M. Morari, ‘‘An improved approach for
constrained robust model predictive control,’’ Automatica, vol. 38, no. 7,
pp. 1183–1189, 2002.

[53] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne,
‘‘Invariant approximations of the minimal robust positively Invari-
ant set,’’ IEEE Trans. Autom. Control, vol. 50, no. 3, pp. 406–410,
Mar. 2005.

VOLUME 8, 2020 227



L. Yao, X. Du: Identification of Underwater Targets Based on Sparse Representation

[54] S. Schibisch, S. Cammerer, S. Dörner, J. Hoydis, and S. T. Brink, ‘‘Online
label recovery for deep learning-based communication through error cor-
recting codes,’’ in Proc. 15th Int. Symp. Wireless Commun. Syst. (ISWCS),
Aug. 2018, pp. 1–5.

[55] Z. Zhang, F. Li, T. W. S. Chow, L. Zhang, and S. Yan, ‘‘Sparse codes
auto-extractor for classification: A joint embedding and dictionary learning
framework for representation,’’ IEEE Trans. Signal Process., vol. 64,
no. 14, pp. 3790–3805, Jul. 2016.

[56] E. Vigneau, P. Courcoux, R. Symoneaux, L. Guérin, and A. Villière, ‘‘Ran-
dom forests: A machine learning methodology to highlight the volatile
organic compounds involved in olfactory perception,’’ Food Qual. Pref-
erence, vol. 68, pp. 135–145, Sep. 2018.

[57] M. Yang, L. Zhang, J. Yang, and D. Zhang, ‘‘Regularized robust cod-
ing for face recognition,’’ IEEE Trans. Image Process., vol. 22, no. 5,
pp. 1753–1766, May 2013.

LU YAO was born in Shangqiu, China, in 1988. He
received the degree in computer science and tech-
nology from Shangqiu Teachers College, in 2012,
and the master’s degree in computer system struc-
ture from Qinghai Normal University, in 2015,
where he is currently pursuing the Ph.D. degree.
In 2017, he went to study at the University of
Tsukuba, Japan. He has published two articles
in Chinese core journals. His research interest
includes underwater wireless sensor networks. He

became an Assistant Researcher with the Provincial Key Laboratory of the
Internet of Things.

XIUJUAN DU received the M.S. degree in
radio physics from Lanzhou University, Lanzhou,
China, and the Ph.D. degree in computer applica-
tion technology from Tianjin University, Tianjin,
China. She is currently a Professor with the Provin-
cial Key Laboratory of the Internet of Things,
Qinghai Normal University, Xining, China. Her
research interests include network and information
security, mobile ad hoc networks, and underwa-
ter sensor networks, including network modeling,

network protocol design, performance evaluation, optimization algorithms,
and distributed computing and their applications. She has received the New
Century Excellent Talent from Education Ministry, China, in 2011.

228 VOLUME 8, 2020


