
Received December 9, 2019, accepted December 17, 2019, date of publication December 24, 2019, date of current version January 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962101

Generalized Meet in the Middle Cryptanalysis of
Block Ciphers With an Automated Search
Algorithm
SIAVASH AHMADI AND MOHAMMAD REZA AREF
Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

Corresponding author: Siavash Ahmadi (s_ahmadi@ee.sharif.edu)

This work was supported in part by the Iranian National Science Foundation (INSF) under Contract 96.53979, and in part by the INSF
Cryptography Chair.

ABSTRACT Meet in the middle (MITM) attack is one of the most important and applicable methods for
cryptanalysis of block ciphers. In this paper, a more generalized method for MITM attack is considered.
For this purpose, a notion, namely cut-set, is utilized by which several numbers of MITM attacks can
be performed. However, manual investigation on these cases is time-consuming and sometimes not error-
free. Therefore, a new search algorithm is also provided to obtain proper attacks in a timely manner. For
examination, this new search algorithm, which could make an automated attack along with some certain
ideas, is applied on HIGHT, Piccolo-128, CRAFT and AES-128 block ciphers. The least time complexities
which are obtained by generalized MITM attack on full HIGHT, Piccolo-128, CRAFT and AES-128 are
2125.08, 2126.78, 2123.25 and 2125.53, respectively. The results on full-round CRAFT are, to the best of our
knowledge, the first cryptanalysis results in the single-key model except the designers’ investigations.
In addition, the results show some improvements for complexities of all the attacks, especially on HIGHT.

INDEX TERMS Automated attack, cryptanalysis, cut-set, meet in the middle.

I. INTRODUCTION
Block ciphers are usually the main primitive used for secur-
ing communications in various technologies such as cel-
lular networks, internet of things, and so on. Therefore,
their security evaluation remains as an important concentera-
tion point of the cryptanalysts. One of the generic methods
which is always applied for security evaluation of block
ciphers is MITM attack. The basic method was first intro-
duced in [1] for cryptanalysis of DES block cipher, and
then many variants and improvement techniques for MITM
attack were proposed. The basic MITM attack begins from
a pair of plaintext/ciphetext, say starting states, and is com-
pleted by a matching technique at the middle of a target
block cipher, say ending internal/intermediate state. However,
some of enhanced versions of MITM attack have focused
on improving the basic attack by choosing different start-
ing states or promotion of attack structure such as 3-subset
MITM [2], splice-and-cut [3], and biclique [4], [5] attacks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Verticale .

Some ideas also have concentrated on improvements of the
matching technique at the ending internal/intermediate state
of MITM attack such as early abort [6], sieve in the mid-
dle [7] or indirect partial matching [3] techniques.

Recently, automation of cryptanalysismethods has become
a new important approach for two below reasons:

1) From the designers’ point of view, it quickly gives the
ability to ensure the security of a newly designed block
cipher against various automated attacks;

2) For attackers, it rapidly gives a proper way for analyz-
ing a target block cipher against such attacks.

The MITM attack is also not an exception. As a literature
review, there are various works on proposing automation
procedures for different types of attacks on block ciphers,
such as linear [8], [9], differential [8]–[11], impossible differ-
ential [12], [13], MITM [13], [14], biclique [15], and division
property-based [16] attacks. The automation usually per-
forms by an exhibition of a framework inwhich a block cipher
should be defined and then it will automatically analyze the
cipher and return the results. Each framework has beenmostly
designed for a specific attack and it does not often perform

2284 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8801-337X
https://orcid.org/0000-0001-7508-9706

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

TABLE 1. Results comparison of generalized MITM attack on various
block ciphers with the best previous ones.

the whole attack procedure, but it usually tries to compute the
attack complexities by some different or innovative methods.

A. CONTRIBUTIONS
The purpose of this paper is to express a generalized MITM
attack, which can be considered as a general form of some
previous attacks, in a way that it could be implemented by an
automated search method. This is proposed by enjoying the
notion of cut-set which was defined in [17]. Firstly, it should
be cleared that how the notion of cut-set can be utilized in
an attack and what its benefits are. Secondly, it should be
illustrated that how the procedure of computing complexities
for the attack can be automatically performed. Finally, some
targetted block ciphers should be checked by the automated
generalized MITM to show its performance. Although the
generalized MITM attack is not limitted to any class of
block ciphers, in this paper HIGHT [18], Piccolo-128 [19],
CRAFT [20] and AES-128 [21] block ciphers are chosen as
its targets. The results and comparisons are shown in Table 1.
As it can be seen in Table 1, the lowest time complexity is for
generalizedMITM attack in all cases. Also, it should be noted
that all complexities obtained for HIGHT block cipher are
less than or equal to the previous best result. Recently, some
cryptanalysis results for CRAFT are presented [25]–[27],
however, they are not on the full-round version of CRAFT
and single-key model as ours.

B. RELATED WORKS
There are many related works to MITM attack on block
ciphers such as [2]–[4], [13]–[15], [17], but, only some of
them have automation approach just like generalized MITM
attack. One of them is Bouillaguet’s work [28], which has
concentrated on proposing efficient basic MITM attacks on
(mostly reduced-round) AES-based primitives by proposing
an automatic search for recursive combinations of solvers.
However, the most important one is Derbez’s work [13]
which helped matching part of basic MITM attack to be
quickly implemented. The main idea of [13] for MITM
attack is to find an equation for matching part with the
lowest independent variables from the both plaintext-side and
ciphertext-side.With these equations from each side, the extra
computations can be omitted and the required computations

can be extracted. This only works for the matching part of a
basic MITM attack.

Most of the other works have focused on proposing new
attacks rather than introducing search algorithms to obtain the
most efficient attack.

C. OUTLINE
The rest of the paper is organized as follows: generalized
MITM attack is introduced in Section II. Then, it is shown
in Section III that the generalized MITM attack can cover
some traditional versions of MITM attacks. In Section IV,
the exact automation procedure for generalized MITM attack
is explained. Afterwards, some experimental results are also
provided in Section V. Finally, the conclusion is given in
Section VI.

II. GENERALIZED MITM ATTACK
A. BASIC ATTACK
The basic MITM attack starts from one known plain-
text/ciphertext pair (P,C) and a chosen matching variable
V often with the smallest size of operations in the cipher
(e.g. a bit, nibble, byte or etc., say word). Then according
to the partial matching technique, the matching variable V
has to be computed by effective subkeys from P and C ,
in forward and backward directions, respectively. Therefore,
suppose that the master key bits have been partitioned into
three parts of common (K c), forward (K f) and backward (K b)
bits in such a way that partial encryption from P to V only
requires (K c,K f) bits, and partial decryption from C to V
only requires (K c,K b) bits. Assuming a fixed value for K c,
forward and backward computations for calculation of the
matching variable V are independent from each other. So,
they should be computed and stored in a sorted format, sep-
arately. Finaly, any guessed value for master key bits with
common value of matching variable from both side can be
considered as a condidate for the master key.

LetCf andCb be the time complexity of the partial encryp-
tion and decryption, respectively. Then the upper bounds of
time and memory complexity of the basic MITM attack are
equal to 2|K

c
|(2|K

f
|Cf + 2|K

b
|Cb) and 2|K

f
|
+ 2|K

b
|, respec-

tively. In order to calculate more accurate time complexity,
summation of each S-box complexity could be considered.
The involved computational complexity for each S-box in
the attack is equal to the number of guessed keys before
computing that S-box. Hence, considering the complexity of
non-linear parts as the dominant complexity, time complexity
of the attack should be approximately equal to summation of
each S-box complexity which should be normalized to the
total number of S-boxes in the encryption algorithm.

B. PROPOSING GENERALIZED ATTACK
For a MITM attack, it is not mandatory to start from a
plaintext or ciphertext to find the value of a matching variable
in both directions. More precisely, any internal states can also
be used as the starting state of the attack, while it may result

VOLUME 8, 2020 2285

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

FIGURE 1. An example of cut-set in a 4-branch generalized Feistel
structure.

in a more data complexity due to various plaintext/ciphertext
pairs involved in the attack. In [17], the notion of cut-set has
been defined which can be considered as a new starting state
forMITMattack. Definition of cut-set is reminded as follows:
Definition 1 (Cut-set): Let b be the block size of a block

cipher. A b-bit part of the intermediate states of the cipher
from which the plaintext (or the ciphertext) can be calculated
completely, provided that the cipher key is known, is called a
cut-set.

An example of cut-set for a 4-branch generalized Feistel
structure with nibble-wise computations is shown in Fig-
ure 1. Assuming that all the sub-keys k ij (in which i is
round number and 1 ≤ j ≤ 4) are known and the internal
state of round i input is shown by X i = (x i1, x

i
2, . . . , x

i
8)

(in which x ij , 1 ≤ j ≤ 8 has 4-bit length), the set of
C = (x15 , x

1
6 , x

2
1 , x

2
6 , x

3
1 , x

3
2 , x

3
6 , x

4
6) can form a cut-set. One

can easily check that all the intermediate states of x ij can be
computed by C members.

Now, according to the idea of using cut-sets, one can
choose a random cut-set as the starting state of the basic
MITM attack. Naturally, any pair of plaintext/ciphertext can
also be considered as an starting/ending cut-set of a block
cipher. The procedure of choosing the matching variable
is the same as basic MITM attack. Hence, it can be seen
that in this new setting, namely generalized MITM attack,
the total number of possible attacks increases approximately
with the number of possible cut-sets multiples by the number
of possible matching variables.

Considering a cut-set as a starting state relaxes some lim-
itations of basic MITM attack and let an adversary take the
diffusion weaknesses of the block cipher and key schedule
into accout. In the other words, the chosen cut-set can be
found in such a way that the associated subkeys in forward
and backward directions (between the cut-set and the match-
ing variable) result in lower time complexity.

Generalized MITM attack can be expressed in four main
steps as follows:
Step 1 (Initial Selection):

1-1. Choose a random cut-set C with an arbitrary fixed
value by the intermediate states of the cipher.

1-2. Choose a proper matching variable V , clearly not
in the same place with any part of the chosen cut-
set C.

Step 2 (Pre-Processing):

2-1. Remove all the extra computations from both sides
of the matching variable V which are not required
for computing V from the cut-set C in forward and
backward directions.

Step 3 (C to V Propagation (Perform for all Guessed Keys)):

3-1. For a chosen value of master key, perform partial
encryption in forward direction from the cut-set
C until computing the matching variable V as the
pre-computations. If the computation of ciphertext
is required, then the proper query should be sent to
obtain the corresponding plaintext and then con-
tinue until the matching variable is computed. For
the other guessed master keys, the recomputation
technique must be used for each required bit of
master key, step by step.

3-2. Perform partial decryption in backward direction
from the cut-set C until computing the matching
variable V similar to the forward direction.

Step 4 (Checking the guessed keys):

4-1. The matching variable values from both sides
should be the same. Therefore, any guessedmaster
key for which the matching variable values are the
same for both side computations can be considered
as a candidate for the correct master key. Else,
the guessed key must be omitted.

It should be noted that it is possible to include the key
schedule in the attack. This is usually necessary if the key
schedule is not as simple as a permutation. In this scenario,
first a random cut-set K with fixed value must be chosen
from key schedule intermediate states as the master key K .
Next, it should be propagated in both forward and backward
directions of key schedule algorithm to compute all the states
of key schedule or equivalently subkeys of the cipher (so in
the propagation procedure, it will be obetained that which
parts of the cut-set K have influenced on each subkeys; this
will be used in the recomputation technique to calculate the
computational complexities). Then the above procedure for
generalized MITM attack can be performed.

2286 VOLUME 8, 2020

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

FIGURE 2. Generalized MITM attack on a toy cipher with 4-nibble block and 4-bit key sizes.

The time, memory and data complexities of generalized
MITM attack can be obtained as follows:
• Time complexity: it is approximately equal to the sum-
mation of each S-box computation multiple by number
of guessed master key involved in that computation,
normalized to the total number of S-boxes in the cipher.

• Memory complexity: it is equal to the summation of
each should-be-stored computation multiple by number
of guessed directly involved bits on that computation.

• Data complexity: it is equal to the number of all the
different queries during the attack.

The memory complexity of the attack can be improved
for each specific attack according to the conditions
and the cipher and key schedule algorithms. Moreover,
min(2mini{#K

i
→P}, 2mini{#K

i
→C}) in which #Ki

→ P (resp.
#Ki

→ C) is the number of activated plaintext (resp.
ciphertext) bits by ith bit of cut-setK, can be considered as the
lower bound for data complexity of the generalized MITM
attack. As an example, the total procedure of generalized
MITM attack on a toy cipher with simple fixed subkeys is
depicted in Figure 2. In this figure, cut-set C is shown by
complete black squares and matching variable V is shown by
a complete black circle. Each rectangle shows an 4×4 S-box
combined with a subkey bit. The gray parts are the eliminated
intermediate S-boxes and states. In the left-side of each S-
box the amount of its computations is shown. The influences
of subkeys on some intermediate nibbles are also shown in
braces.

In combination with some other ideas like early abort
[6], sieve in the middle [7] or indirect partial matching [3]
techniques, thematching part of the generalizedMITM attack
can be more improved. Here, the focus is on partial matching

and it is assumed that the attacker will use these ideas after
choosing the proper condition (i.e. the cut-set and the match-
ing variable) for the attack.

C. GENERALIZED MITM ATTACK DETAILS
The approach of generalized MITM attack is to automati-
cally obtain the best forward and backward key bits during
the attack procedure, whereas in basic MITM or biclique
attack, the attacker tries to partition the master key at the
beginning. That’s why the initial selection step in general-
ized MITM attack doesn’t contain the key partitioning like
biclique attack. Clarifying how to perform pre-computations
and recomputations in step 3, how to obtain the forward and
backward key bits, and also how to execute key recovery in
step 4 of generalized MITM attack are the aim of this section.

Suppose that both cut-sets of K and C, and also the match-
ing variable V are chosen and fixed. Also, all extra com-
putations are removed in pre-processing step. Now, attacker
wants to perform the step 3. Therefore, she does the pre-
computations by an arbitrary chosen value for n-bit master
key K = {k1, k2, . . . , kn} (which is equivalent to cut-set K).
After that, the recomputations should be performed operation
by operation (e.g. S-box, XOR, etc.). Starting from C to calcu-
late matching variableV , attacker will face various operations
(no matter what the direction is). For each operation, assume
that:

• all the input values are pre-computed and stored;
• all bits of master key K which have influenced on the
inputs are known (K in

= {ki1 , ki2 , . . . , kia});
• there are K o1 = {kj1 , kj2 , . . . , kjb} bits of master key K
which have influenced on inside, and also computational
complexity of the operation;

VOLUME 8, 2020 2287

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

• there are K o2 = {kl1 , kl2 , . . . , klc} bits of master key K
which have influenced on inside, but not computational
complexity of the operation.

Then, computational complexity of the operation is equal to
2#(K

in
∪Ko1) (in which ∪ means union of the two set), and all

bits of master key K which have influenced on the output of
the operation are K out

= (K in
∪ K o1 ∪ K o2). Afterwards,

all the 2#K
out

output values along with values of K out bits
should be stored as pre-computations for the other operations.
This procedure continues until the matching variable V will
be obtained. Now, K op

= (K in
∪ K o1) for each active

operation op from cut-set C to matching variable V in both
forward and backward direction has been found. By defining
all active non-linear operations as set OP , and total number
of non-linear operations of the targeted block cipher as N ,
the normalized time complexity of the attack is equal to the
following equation:

Ctime =
6opi∈OP {2#K

opi
}

N
(1)

In the calculation of Ctime, the operations with higher m .
=

#K op are dominant. In order to reduce memory complexity,
the pre-computations can be started from exactly before these
dominant operations. Therefore, it is necessary to choose a
proper M to divide the operations into dominant (with m ≥
M) and non-dominant (with m < M) segments. The proper
M has negligible effect on time complexity while it leads to
huge reduction in memory complexity.

Let OP f
m and OPb

m be sets of operations with #K op
=

m in forward and backward direction, respectively (i.e.
OP f

m = {op ∈ OP|1 ≤ m ≤ n&#K op
=

m&op is in forward direction}; respectively OPb
m for back-

ward direction). In addition, let K op∗ be the complementary
form of K op (i.e. K op∗

= K − K op). Then, forward (K f) and
backward (K b) key bits for generalized MITM attack can be
extracted according to the below:
• K f

= ∪op∈OPfM−1
{K op∗

}

• K b
= ∪op∈OPbM−1

{K op∗
}

Normally but not necessary, M should be equal to n or n− l
(in which l is the smallest word size of the block cipher) to
obtain the best result. When OPfM−1 (resp. OP

b
M−1) is empty,

then the non-empty set of OPfm (resp. OPbm) with greatest m
andm < M should be considered. After obtainingK f andK b,
key partitioning into four segment will be a straightforward
procedure as follows:
• Group bits: KG

= K − {K f
∪ K b
}

• Common key bits: KC
= K f

∩ K b

• Forward key bits: KF
= K f

− KC

• Backward key bits: KB
= K b

− KC

When generalized MITM attack can turn into a biclique
attack (as it is mentioned in the next section), then the key
partitioning for biclique attack will be K g

= KG
∪ KC ,

K f
= KB, andK b

= KF . It should bementioned that as in the
biclique attack, forward and backward keys are considered in

the biclique part (and not in thematching part), the definitions
of forward and backward keys are reverse for biclique attack
in comparison to generalized MITM attack.
When themaster key bits are partitioned into four segments

ofK = (KG,KC ,KF ,KB), an attacker can extract the correct
master key as below:

• Perform the followings for all possible values of
(KG,KC) bits.

• For each value of KB bits, perform partial encryption
from cut-set C to obtain matching variable V in forward
direction by using pre-computation and recomputation
technique on KF bits.

• For each value of KF bits, perform partial decryption
from cut-set C to obtain matching variable V in back-
ward direction by using pre-computation and recompu-
tation technique on KB bits.

• Compare the values of V in forward and backward direc-
tion for a fixed values of KF and KB to filter out the
wrong keys.

• Exhaustive search on the remaining keys to obtain the
correct master key.

The memory complexity of the attack is equal to 2#(K
F ,KB)−1

as the pre-computations in forward and backward directions
should be done until the last part of KF and KB, respectively.
It should be noticed that if the smallest word-size of the target
block cipher is bigger than a bit, all the above mentioned in
this section can be repeated with replacing bit by word and
also some additional slight modifications. Consideration of
words instead of bits can dramatically speed up the whole
procedure.

III. COMPARISON WITH CONVENTIONAL VERSIONS OF
MITM ATTACKS
In this section, it will be discussed that the generalizedMITM
attack can cover some previous improved versions of MITM
attacks and also provides some new cases, by the following
claims.
Claim 1: Any basic MITM, 3-subset MITM, splice-and-

cut, or biclique attack is also a generalized MITM attack.
For the sake of the mentioned claim, some descriptions for

each attack are provided one by one as follows (see Figure 3
for more details):

• Basic MITM attack: let C be equal to P (or equivalently
C) and V equal to the matching variable of the basic
MITM attack. Now, the generalized MITM attack and
the basic MITM attack are exactly the same.

• 3-subset MITM attack: generally, the 3-subset MITM
attack removes restrictions on the choice of key bits
compared to the basic MITM attack. Therefore, there is
no change in the main procedure, and the description
provided for the basic MITM attack works for the 3-
subset MITM attack too.

• Splice-and-cut attack: considering the internal state of
splice-and-cut as cut-set C, the remaining parts of both

2288 VOLUME 8, 2020

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

FIGURE 3. Comparison of basic MITM, 3-subset MITM, splice-and-cut,
biclique, and generalized MITM attacks.

splice-and-cut and generalized MITM attack are the
same.

• Biclique attack: according to [17] for any biclique attack,
a cut-set, namely root cut-set, can be found in the
biclique part which has not been affected by both for-
ward and backward differentials. Considering that cut-
set equal to C and similar matching variable for a gen-
eralized MITM attack as the biclique attack, then the
biclique attack can be completely the same as the gener-
alized MITM attack.

Claim 2: There are some cases which can be covered by
the generalized MITM attack, but not by the previous MITM
attacks

It must be shown that not any generalizedMITM attack can
be presented by one of the previous MITM attacks. Choosing
the cut-set C in a way that its variables be in more than one
internal state leads to a new case which cannot be covered
by basic MITM, 3-subset MITM, and splice-and-cut attacks.
Considering such a cut-set, the generalized MITM attack can
be applied with any cut-set as the starting state regardless of
its position, while in biclique attack as the biclique part is
always in the first or last rounds of the cipher, the root cut-
set of biclique cannot be anywhere. In addition, the biclique
is always between two round states, but using generalized
MITM attack, this condition is removed and actually the
biclique can be between two cut-sets. Therefore, generalized
MITM attack can cover some new cases in comparison to the
previous MITM attack variants (see Figure 3).

It can be concluded from the above claims (III and III) that
providing security against generalized MITM attack ensures
the security against the other mentioned MITM attacks. Also

it should bementioned that the generalizedMITMattack does
not rely on what the method of wrong keys filtering in the
matching part is. Hence, it is clearly possible to use any idea
such as early abort, sieve in the middle or indirect partial
matching techniques instead of simple matching variable
check to have more effective attacks.

IV. AUTOMATION OF GENERALIZED MITM ATTACK
Generalized MITM attack provides a lot of cases which
should be investigated to find the best one. Clearly, the total
number of possible generalized MITM attacks is more than
the ability of a cryptanalyst to check them all manually.
Hence, an automated method for searching around all these
attacks and providing the best one is required. In this section,
the goal is to introduce the exact search algorithms required
for this automation. So, first a method for defining a block
cipher with emphasis on its diffusion property is provided in
the following sub-section, and then algorithms required for
total procedure of generalized MITM attack are presented.

A. BLOCK CIPHER DIFFUSION
Diffusion of block cipher and key schedule algorithms has a
key role on measuring the effectiveness of generalizedMITM
attack. Therefore, providing a proper model for analysis of
diffusion in these algorithms shed light on how to automate
the total procedure of generalized MITM attack. Any block
cipher (or key schedule) algorithm can be considered as a set
of internal states along with relations between these internal
states. More precisely, suppose that a block cipher algorithm
consists of srow internal states, each with scol words, and
also its corresponding key schedule has krow internal states,
each with keysize words (the variables are shown in the
italic form; scol and keysize are equivalent to block and key
sizes, respectively). In the diffusion perspective, one should
know which of the previous or next internal state words are
required to compute a current state word in forward and back-
ward direction, respectively. Hence, the following knowl-
edges about relations between current internal state words and
previous/next internal state words should be determined:

• Properties of the operations (or intermediate round func-
tions) between internal states in forward and backward
directions

• Direct effect of chosen master key bits on performance
of each operation in forward and backward direction
(only for block cipher algorithm)

These knowledge can be accurately obtained and stored in the
following arrays:

1) CFP(1 : srow − 1, 1 : scol, 1 : 9): a 3-dimensional
(srow − 1) × scol × 9 array to show the place of each
operation and its nine parameters; consists of length
(greater than 0 for each operation), total complexity
(between 0 and 1; 0 for linear operations and 1 for non-
linear operations), subkey words (according to values
of this parameter, the subkey words are chosen from
the current internal state of the key schedule), update

VOLUME 8, 2020 2289

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

FIGURE 4. Toy block cipher and Left Feistel S-box reconsideration.

flag (0 means the selected internal state of the key
schedule must not be updated; 1 means it must be
updated), effects of subkey words on computational
complexity (between 0 and 1), computational complex-
ity of input/output words calculation (between 0 and
1), and calculation effects of input/output words on
computational complexity (between 0 and 1). As an
example, CFP array elemets for a Left Feistel S-box
operation are shown in the Figure 4. This operation
is placed between 5th and 6th internal state and it
has two-word length started from word 1. Therefore,
CFP(5, 1, 1) should be equal to 2 which means that
in the corresponding place, there is an operation with
length 2. Also, the total complexity of this operation
is equal to 1 S-box operation. Subkey words are {4, 0}
which means that the first subkey word is 4th word of
current internal state of key schedule and the second
one is empty (or equivalently, this subkey has only
one word). Update flag is 0, because Toy block cipher
in Figure 4 has not key schedule. The one-word corre-
sponding subkey directly affects on S-box calculation.
Therefore, CFP(5, 1 : 2, 5) should be equal to {1, 0}.
Also, the subkey only affects on the left word of output
and input in both forward and backward direction,
respectively. So, CFP(5, 1 : 2, 6) and CFP(5, 1 : 2, 7)
are both equal to {1, 0}. In addition, the left input and
output words of the operation have not effect on S-box

calculation, while the right input and output words can
directly activate the S-box. Therefore, CFP(5, 1 : 2, 8)
and CFP(5, 1 : 2, 9) should be both equal to {0, 1}.

2) CF(1 : srow − 1, 1 : scol, 1 : scol, 1 : 4): Four 3-
dimensional (srow − 1) × scol × scol boolean arrays
to show the effects of input words on output words of
an operation and vice versa, and also effects of subkey
words on output and input words of that operation,
respectively. In fact,CF simulate the diffusion property
of each operation in block cipher. For example, when
the second word of ith internal state has affect on the
first word of (i+ 1)th internal state in forward direction,
then CF(i, 1, 2, 1) is equal to 1. In Figure 4, these four
arrays for a two-word Left Feistel S-box are shown.

3) Similar arrays with CFP and CF for key schedule,
namely KFP and KF , respectively. For KFP array,
the elements related to subkey words, update flag and
subkey effects are all zero.

4) CFK (1 : srow − 1, 1 : scol, 1 : keysize):
a 3- dimensional (srow − 1) × scol × keysize boolean
array to show the master key words which have influ-
enced on the operations of the cipher. More precisely,
the place of subkey words in the current internal
state of key schedule for each operation is stored by
CFP(i, j, 3) in which 1 ≤ i ≤ srow − 1, 1 ≤
j ≤ scol, and the set of master key words which
have influence on each subkey word is provided by

2290 VOLUME 8, 2020

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

CFK (i, j : j+CFP(i, j, 1)−1, 1 : keysize). In Figure 4,
with i = 5, j = 1, CFP(5, 1, 1) = 2 and keysize = 4,
the value of CFK (5, 1 : 2, 1 : 4) for a Left Feistel
S-box is shown.

5) K_Marked(1 : krow): a boolean array to show which
internal states of the key schedule must be used for
extracting the subkeys. Hence, CFK is calculated from
key schedule internal states (i.e. KSK in the follow-
ing) with update flags and K_Marked . At the begin-
ning, the first internal state of key schedule with true
K_Marked is considered as the current state for key
schedule. Then CFK for each operation should be
obtained from this state until the update flag of an
operationwill be true. In this situation, before obtaining
CFK for the next operation, the next internal state of
key schedule with true K_Marked should be consid-
ered. This procedure will continue until all operations
obtain their subkeys. More precisely, it can be said
that CFK (i, j : j + CFP(i, j, 1) − 1, 1 : keysize)
is exactly equal to KSK (selected_Krow,CFP(i, j :
j + CFP(i, j, 1) − 1, 3), 1 : keysize) in which the
selected_Krow should be obtained by consideration of
update flags (i.e. CFP(., ., 4)) and K_Marked .

The above knowledge are important to define a block cipher
for the automation of generalized MITM attack. However,
some additional knowledge are required to perform the
attack. These knowledges which should have initial values
and be updated during the attack procedure, are as below:

• The active words in each internal states
• Effect of each master key word on each internal state
word

• Direction of activation for each operation

They can be defined and stored accurately as follows:

1) CS(1 : srow, 1 : scol): a 2-dimensional srow × scol
array to show the situation of all the internal state words
of block cipher algorithm or equivalently input/output
words of each operation (0 means it is not activated,
1 means it is activated, and -1 means it is eliminated).
The initial values for whole of CS array elements are 0,
and at the end of generalizedMITM attack, all elements
should be 1 or −1. In Figure 4, CS elements for a Left
Feistel S-box are shown.

2) CSK (1 : srow, 1 : scol, 1 : keysize): a 3-dimensional
srow × scol × keysize boolean array to show which
master key words (from 1 to keysize) have influenced
on the cipher intermediate states. Again, the initial
values for all CSK array elements are 0 and they will
be updated during the attack procedure.

3) CDir(1 : srow − 1, 1 : scol): a 2-dimensional
(srow − 1) × scol boolean array to indicate activation
direction for each operation (1 for forward, -1 for back-
ward, and 0 for inactivation or initial value)

4) Similar arrays with CS, CSK and CDir for key sched-
ule, namely KS, KSK and KDir , respectively.

To summarize the procedure of a generalized MITM attack
with the above arrays, the following steps should be per-
formed:

0) Block cipher definition:
a) Provide CFP, CF , KFP, KF and K_Marked for

a block cipher.
b) Provide CS, CSK , KS, KSK , CDir and KDir with

initial values.
1) Initial selection:

a) Choose a proper cut-set K from key schedule as
the master key and calculate KS, KSK , KDir and
CFK .

b) Choose a proper cut-set C from intermediate
states of the block cipher and set the correspond-
ing elements in CS equal to 1.

c) Choose a proper matching variable V .
2) Pre-processing:

a) Remove extra intermediate states of partial
matching in CS by setting value of −1 for each
corresponding word.

3) C to V propagation:
a) Calculate all elements of CS and CSK in forward

and backward directions.
b) Calculate attack complexities with the final states

of these arrays.
4) Checking the guessed keys: similar to Section II-C.

In the following section, the automation method for general-
ized MITM attack on a target block cipher by the mentioned
arrays is provided.

B. ALGORITHMS FOR TOTAL PROCEDURE
In order to automate the generalized MITM attack, the fol-
lowing steps should be considered, respectively:
Step 1 (Initial Selection):
• Providing the notion of point and independent points in
block ciphers.

• Introducing the approach of constructing cut-sets by
independent points.

• Proposing Exhaustive Recursive Search (ERS) to find
cut-sets of a block cipher.

• Choosing a point as the matching variable V .
Step 2 (Pre-Processing):
• Presenting Elimination Algorithm to remove all the
extra computations in the matching part.

Step 3 (C to V Propagation):
• Providing the propagation algorithm to obtain the effects
of master key words on each intermediate variable and
operation between C and V .

• Presenting an algorithm for calculating the complexities
(time, memory and data).

It should be emphasized that the target of automation is
calculating the attack complexities, not implementing the
attack. Hence, the last step of generazlied MITM attack

VOLUME 8, 2020 2291

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

(i.e. checking the guessed keys) is not necessary for automa-
tion. Of course, an attacker can utilize the corresponding
parameters of the best attack to perform the key recovery
according to Section II-C.

1) INITIAL SELECTION
Considering all of the smallest intermediate variables (or
words) for finding cut-sets of a block cipher makes extra
complexity and redundancy, while it has no gain for this goal.
For example, input and output word of a permutation have
the same property, and there is no difference between them
to select for a cut-set. Therefore, notion of point is provided
to remove these extra cases and present unique answers,
as follows:
Definition 2 (Point): A set of all the smallest intermediate

variables or words (i.e. indexes of CS) with the exact same
values in the cipher is called a point. Therefore, all the
indexes in a point have always the same CS and CSK values.

As an example, I2 = CS(5, 2) and O2 = CS(6, 2) are in
one point in Figure 4, while I1 = CS(5, 1) andO1 = CS(6, 1)
are in different points. It can be seen that a point is a union
of words, each can be obtained from the others by at most a
permutation. The toy cipher which is shown in Figure 4 has
the following 20 points:

P2i−1 = (CS(2i− 1, 1), CS(2i− 2, 2), CS(2i− 3, 2),

CS(2i− 4, 3)), 1 ≤ i ≤ 10;

P2i = (CS(2i, 1), CS(2i+ 1, 4), CS(2i+ 2, 4),

CS(2i+ 3, 3)), 1 ≤ i ≤ 10.

By reminding Definition 1, if any two bits (or equivalently
two words) of a cut-set be on one point, then they can be
calculated from each other. This has contradiction with the
notion of cut-set which choose the lowest possible words
in order to perform encryption/decryption assumed that the
master key is given. Therefore, any two words of a chosen
cut-set must be in different points. Hence, without loss of
generality, it can be said that any cut-set with b words can
be shown by b distinctive points. This opens new insights in
obtaining cut-sets of a cipher. Firstly, it omits many identical
cut-sets which include the same points but different interme-
diate variables. Secondly, it shows a determinestic method
for acceptance or rejection of any given set of b distinctive
points as a cut-set. More precisely, if all the given b points
are independet from each other, then they must construct a
cut-set. Independency of two points is defined as follows:
Definition 3 (Independency of Two Points P and Q): P

and Q are independent points in a block cipher, if and only if
Q ∈ Independent(P), which is described below:
1. In forward (resp. backward) direction, find all variables

(not points) required for calculating P by CF(.) and
mark them all.

2. Repeat marking for newly marked variables until the
ciphertext (resp. plaintext);

3. Return the smallest set of points containing all the
unmarked variables as Independent(P)

It can be easily checked that if Q ∈ Independent(P)
then P ∈ Independent(Q). As an example of independent
points, consider point P8 in the Toy cipher of Figure 4, then
Independent(P8) = {P4,P5,P6,P9,P10,P11,P12,P13,P14}.
With considering more than two points, the independency of
these points can be interpreted as independency of all chosen
pairs of them. Therefore, in order to find all cut-sets of a
block cipher, one method can be finding of all possible b
independent points in it. This is done by a proposed recursive
algorithm (namely ERS) starting from basic input points
(for example all points involved in block cipher) which is
provided in Algorithm 1. The main procedure of ERS is as
follows:

1. Choose a new point P from a set of InputPoints;
2. Add P to a set of points C;
3. If C has b member, then provide C as a cut-set, and

remove P from it;
4. Else set InputPoints = Independent(P) and repeat the

procedure.

Algorithm 1 can be more accelerated with some middle
checks. These checks come from the inherent fact that all
common points of a chosen cut-set with input or output points
of an intermediate function, must not breach the indepen-
dency condition for that intermediate function. Therefore,
during the search for cut-sets, this independency condition
can be checked for all relevant intermediate functions and
wrong cut-sets can be dropped more quickly. This checking
algorithm which should be used in the place of optional
checks in ERS algorithm (i.e. Algorithm 1), is provided in
Algorithm 2.

Hence, cut-sets of a determined block cipher can be found
by combination of Algorithms 1 and 2. In addition, as the
matching variable V description can also be modified to the
matching point PV , all possible matching points are equiva-
lent to all points of the block cipher.

These proposed algorithms can also be performed on key
schedule to extract its cut-sets. Clearly, any cut-set of key
schedule can be considered as the master key words. Then,
according to this chosen master key and key schedule algo-
rithm, the effects of master key on subkey words should be
found and inserted into the block cipher.

2) PRE-PROCESSING
The elimination procedure for removing extra intermediate
variables and functions of partial matching can be provided
as follows:

• In forward (resp. backward) direction, find all points
required for calculating the PV by CF(.) and mark them
all.

• Repeat marking for newly marked points until the
ciphertext (resp. plaintext);

• Return all the unmarked points as Elimination(PV)

Hence, Elimination(PV) indicates the points which should
be removed. Considering a cut-set as b independent points,
it can be easily checked that there are only two cut-sets

2292 VOLUME 8, 2020

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

Algorithm 1 ERS Algorithm
1: Find all points of the cipher with top-down and left-right order and save them into Points
2: Set a global array CS(1 : srow, 1 : scol) = 0
3: Set global variables cutsetnumber = 0 and cutsets empty
4: Call cutset = ERS(Points, 1, empty)
5: **
6: procedure cutset=ERS(Points, value, cutset)
7: Set m = 0
8: Set Rec empty
9: while m < Length(Points) do
10: Set m = m+ 1 and then P = Points(m)
11: Set CS(P) = value F All CS(i, j) with {i, j} ∈ P must be set to value.
12: Set all {Q|Q ∈ Points,Q /∈ Independent(P),CS(Q) = 0} to value+ scol
13: Add P to cutset
14: Do an optional check for extracting the flag (the default flag is zero)
15: if (flag == 0) then
16: if (value < scol) then
17: Set NewPoints = Independent(P)
18: if (Length(NewPoints) >= scol − value) then
19: cutset = ERS(NewPoints, value+ 1, cutset)
20: end if
21: else
22: Set cutsetnumber = cutsetnumber + 1
23: Add cutset into cutsets
24: end if
25: end if
26: Remove P from cutset
27: ∀{Q|CS(Q) = value+ scol}, set CS(Q) back to 0
28: Add P to Rec
29: Set CS(P) = −value
30: Repeat the optional check to extract a new flag (the default flag is zero)
31: if (flag == 1) then
32: m = Length(Points)
33: end if
34: end while
35: ∀X ∈ Rec Set CS(X) = 0
36: end procedure

constructed by unremoved points containing matching point
PV , namely CP and CC , in the plaintext-side and ciphertext-
side of PV , respectively (see matching part of Figure 2 as
an example). These cut-sets will be used in the propagation
procedure.

3) C TO V PROPAGATION
The procedure of finding the number of effective mas-
ter key words on each intermediate function and variable,
starting from a chosen cut-set C to another arbitrary cut-
set C2 in forward or backward direction, is called prop-
agation. After choosing a matching PV , two cut-sets of
CP and CC are obtained. Hence, C to V propagation refer
to union of propagations from C to CP and CC , in for-
ward and backward direction, respectively. It is a direct
procedure with the simple algorithm as Algorithm 3 for

forward direction. Though Algorithm 3 is presented for a
block cipher algorithm in forward direction, it can also be
used directly on the key schedule (of course, there is not any
match point in the key schedule). For the backward direction,
the general procedure is similar to forward direction.

If Algorithm 3 is performed on the key schedule, it must
not continue after reaching the first or last key schedule state,
while for performing on the cipher, it should continue until
all intermediate functions/operations in foward (or backward)
direction are considered. After performing propagation algo-
rithm, all the arrays are ready to compute the time complexity
which is presented in Algorithm 4.

It should be mentioned that the time complexity of the
key schedule in Algorithm 4 can be obtained with the same
procedure of Algorithm 4 but on the key schedule. In addition,
the lower bound for data complexity can be achieved by

VOLUME 8, 2020 2293

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

Algorithm 2 Checking Algorithm
1: Consider CS(1 : srow, 1 : scol) as a global array
2: procedure flag = check(Point,Dir,flag)
3: flag = 0
4: Find the next intermediate function F includes the Point in Dir direction
5: Set A as all outputs of F which require the Point to be calculated in Dir direction
6: Set Xpass = 0, and Xin = 0
7: for x ∈ A do
8: Set B as all the inputs of F which have effect on x in Dir direction
9: Set X0 = number of B input elements with values of greater equal than zero
10: if X0 == length(B) then
11: Set Xpass = Xpass+ 1
12: end if
13: end for
14: Set C as all inputs of F which have effect on at least one member of A
15: Set Xin = number of C input elements with values of greater equal than zero
16: if (Xin > Xpass && C has at least one input element with positive value) then
17: flag=1
18: end if
19: end procedure

Algorithm 3 Propagation in Forward Direction
1: Global inputs: (CS,CSK ,CF,CFP,CFK), srow, scol, keysize, cut-set C, PV
2: Assumed that CS(Elimination(PV)) = −1
3: Assumed that CS(C) = 1
4: for i = 1 to srow− 1 do
5: Set j = 1
6: while j <= scol do
7: if CS(i, j) == 1 then
8: Set A = every CS(i+ 1, .) index which is influenced by CS(i, j)
9: for a ∈ A which CS(i+ 1, a) == 0 do
10: if all required CS(i, .) for calculation of CS(i+ 1, a) are equal to 1 then
11: Set CS(P) = 1 in which CS(i+ 1, a) ∈ point P
12: Set CSK (P, .) according to CF , CFK , and CSK
13: end if
14: end for
15: end if
16: if All the inputs of the intermediate function is 1 then
17: Set CDir of the intermediate function in CFP(.) (1 for forward direction)
18: j = end of internal function
19: end if
20: Set j = j+ 1
21: end while
22: end for
23: if CS(ciphertext) == 1 && CS(plaintext) == 0 then
24: Set CS(plaintext) = 1
25: Repeat the above procedure again
26: end if

the minimum number of activated plaintext/ciphertext words
when all the master key words are considered one by one
(see Figure 2 as an example). There is an additional input in
Algorithm 4, namely Vector . It is leveraged for separation of
pre-determined key words from unknown ones. So, it can be

used for not considering some pre-determined key words in
the attack complexity with the assumption that they should
be guessed before. These pre-determined key words can be
group or common key bits, defined in Section II-C. Hence,
by arrangement of Vector for some key words with fewest

2294 VOLUME 8, 2020

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

Algorithm 4 Computational Complexity Calculation
1: Global inputs:CS,CSK ,CF,CFP,CFK ,KS,KSK ,Usize, keysize,Vector,CK FUsize is theword size;Vector is a boolean

array with keysize length; CK is complexity of the key schedule.
2: CC = 0, SBOX = 0, NZ = 6(Vector − 1)× (−1)
3: for each intermediate function IF according to CFP do
4: Get CDir , UC , and TC from CFP F Unit and Total Complexities of the IF
5: if Dir is not 0 then F It means if the IF is activated.
6: SBOX = SBOX + TC
7: W = min(TC, 6Len

i=1UC(Dir))
8: Keys = all key words involved in IF computations
9: SUM = Keys� Vector F Inner product
10: CC = CC +W × 2Usize×(SUM+NZ)

11: end if
12: end for
13: Complexity = log2((CK + CC)/SBOX)

Algorithm 5 Fully Automated Generalized MITM Attack
1: Global inputs: CP, CF, CFK, KS, KSK
2: Find all points of the cipher and store them in Points
3: Choose a random cut-set in key schedule as the main key bits and calculate all the subkeys with performing the propagation

algorithm on the key schedule
4: Find all cut-sets of the cipher according to Algorithms 1 and 2 and store them in cutsets
5: for PV ∈ Points do
6: Set extra_points = Elimination(PV)
7: for C ∈ cutsets do
8: if C has not any common points with extra_points and PV then
9: Set CS(.) = 0
10: Set CS(extra_points) = −1
11: Set CS(C) = 1
12: Propagate C in both directions until PV using Algorithm 3
13: Calculate computational complexity by Algorithm 4
14: Save the results
15: end if
16: end for
17: end for

S-box activation in forward and backward direction between
cut-set C and point PV , the attack time and data complexities
can be exactly re-calculated while the memory complexity of
the attack can also be obtained from total number of chosen
forward and backward key words minus one. For purpose of
finding lower time complexity bound, Vector should be set as
a total one array with keysize length.

4) AUTOMATION PROCEDURE
According to the all above mentioned algorithms, the gener-
alized MITM attack can be proposed by a fully automated
procedure as Algorithm 5.

V. EXPERIMENTAL RESULTS
In this section, the results of automated generalized
MITM attack on various block ciphers are presented.
The targeted ciphers are HIGHT [18] and Piccolo-128
[19] as Feistel block ciphers, and CRAFT [20], and

AES-128 [21] as SPN block ciphers. The block size of
HIGHT, Piccolo-128 and CRAFT are 64-bit length, while
AES-128 has 128-bit block length. On the other hand,
HIGHT, Piccolo-128 and AES-128 have byte-wise calcula-
tions (8-bit word size), while CRAFT has nibble-wise calcu-
lations (4-bit word size). All the block ciphers have a 128-bit
master key shown by K = (K 0,K 1, . . . ,K i−1) in which i =

128
wordsize

− 1. More details of these block ciphers including

key schedules are provided in [18]–[21], and, the overall
schematics along with internal layers of them are depicted
in Figure 5.

A. HIGHT
1) GENERALIZED MITM ATTACK ON HIGHT
Applying generalized MITM attack on full HIGHT results in
the followings:

VOLUME 8, 2020 2295

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

FIGURE 5. Schematics and internal layers of HIGHT, Piccolo-128, CRAFT and AES-128.

FIGURE 6. Time complexity of all generalized MITM attacks on HIGHT;
vertical axis shows logarithm of the time complexity, and horizontal axis
shows the attack number.

• According to its simple key schedule, any random cho-
sen cut-set in the key schedule has the same results.
Therefore, without loss of generality, the master key is
chosen for that cut-set.

FIGURE 7. Time complexity of all generalized MITM attacks on
Piccolo-128; vertical axis shows logarithm of the time complexity, and
horizontal axis shows the attack number.

• There are 144 points, 6162 cut-sets, and 601928 possi-
ble attacks (considering all acceptable combination of
matching points and cut-sets).

2296 VOLUME 8, 2020

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

FIGURE 8. Time complexity of all generalized MITM attacks on CRAFT;
vertical axis shows logarithm of the time complexity, and horizontal axis
shows the attack number.

FIGURE 9. Time complexity of all generalized MITM attacks on AES-128;
vertical axis shows logarithm of the time complexity, and horizontal axis
shows the attack number.

• Minimum time complexity of these attacks is equal to
2125.3947 (see Figure 6), which is obtained by C1 =
(X2

18,X
0
20,X

2
20,X

2
22,X

6
22,X

2
24,X

4
24,X

2
26) and V1 = X6

50.
• By C1 and V1, an attack A1 with time, memory and data
complexities of 2125.399, 232 and 264 can be obtained by
(K 7,K 8) and (K 3,K 9,K 10) as forward and backward
subkeys, respectively. It should be emphasized that the
best known time complexity for full HIGHT was 2125.67

before [22].
• Considering cut-set C2 = (X1

1 ,X
7
1 ,X

0
2 ,X

2
2 ,X

6
2 ,X

2
4 ,

X4
4 ,X

2
6) and matching variable V2 = X4

32, another
attack A2 with attack number of 294740 can be obtained
by (K 2,K 3,K 10) and (K 4,K 7) as forward and back-
ward subkeys, respectively. The time, memory and data
complexities of the attack are equal to 2125.4658, 232

and 232, respectively. The details of attack A2 are also

depicted in Figure 10. In this figure, the more thicker
line, the more subkeys affected. The influence of cho-
sen forward and backward subkeys on F-functions are
shown on the top of eachF-function. The light gray lines
and functions are also removed in the attack procedure.

2) ENHANCEMENT OF PARTIAL MATCHING ON HIGHT
ALGORITHM
By some improvements in the matching part, the attack
results can be more enhanced. More precisely, the computa-
tion parts which are surrounded by dashed lines in Figure 10
can be performed in a bit-wise manner, from the least signif-
icant bit (LSB) to the most significant bit (MSB). This early
abort idea makes filtering out the wrong keys faster by drop-
ping them at the first time which a bit of matching variable is
not matched from the both side. As the computation of each
bit of the matching variable requires only one output bit of
the all F-functions which have influenced on the dashed line
parts, the complexity of computing this output bit of each
F-function is only 2−3 F-function, referring to F-functions
details in [18]. Therefore, according to early abort technique,
the computational complexity of these F-functions should be
2−3(1+ 2−1+ · · ·+ 2−7) < 2−2 instead of 1 for each attack.
This technique can be applied on matching part of all

generalized MITM attacks on HIGHT. The results for attack
A1 and A2 are as follows:
• As there are 5 F-functions involved in bit-wise match-
ing part of A1 which activated by all subkeys, con-
sidering the bit-wise matching part results in reducing
5× (1− 2−2)

128
2128 = 2122.907 of A1 time complexity.

Therefore, the time complexity of attackA1 will be equal
to 2125.399 − 2122.907 = 2125.116.

• It can be seen in Figure 10 that there are 7 F-functions
involved in bit-wise matching part of A2 which acti-
vated by all subkeys. Therefore, considering the bit-wise

matching part results in reducing
7× (1− 2−2)

128
2128 =

2123.392 of A2 time complexity. Therefore, A2 time com-
plexity will be equal to 2125.4658 − 2123.392 = 2125.075.
Surprizingly, the final time and data complexities of
attack A2 after considering bit-wised matching part are
less than attack A1. In addition, considering 4-MSB
of chosen subkeys in forward and backward directions
(similar to [17]) leads to lower data and memory com-
plexities of 224 and 216 for attack A2 while the new time
complexity will be 2125.2.

B. PICCOLO-128
1) GENERALIZED MITM ATTACK ON PICCOLO-128
Applying generalized MITM attack on Piccolo-128 results in
the followings:
• According to its simple key schedule, any random cho-
sen cut-set in the key schedule has the same results.
Therefore, without loss of generality, the master key is
chosen for that cut-set.

VOLUME 8, 2020 2297

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

• There are 140 points, 1461 cut-sets, and 175156 possible
attacks for Piccolo-128 block cipher algorithm.

• Minimum time complexity of these attacks is equal to
2126.8795 (see Figure 7), which is obtained by V1 = X2

4
and C1 = (X6

24,X
7
24,X

2
26,X

3
26,X

6
26,X

7
26,X

6
28,X

7
28).

• With the above cut-set C1 and matching variable V1,
an attack A1 with memory of 224 can be obtained by
(K 10,K 11) = (k5L , k

5
R) and (K 12,K 13) = (k6L , k

6
R) as

forward and backward subkeys, respectively. The time
and data complexities of attack A1 are also equal to
2126.8795 and 264, respectively. It should be emphasized
that the best known time complexity for full Piccolo-
128 was 2127.12 before [17]. Considering 4-MSB of
chosen subkeys in forward and backward directions and
going through details of Piccolo-128 F-function com-
putations as in [17] leads to approximately reduction of
two dominant F-functions computations and new time,
memory and data complexities of 2126.78, 212 and 264 for
attack A1, respectively.

• By choosing cut-set C2 = (X2
56,X

3
56,X

2
58,X

3
58,X

6
58,

X7
58,X

2
60,X

3
60) and matching variable V2 = X2

12, another
attack A2 with attack number of 35302 can be obtained
with (k6L , k

6
R) and (k

3
L , k

3
R) as forward and backward sub-

keys, respectively (see Figure 7). The time, memory and
data complexities of the attack A2 are equal to 2127.0689,
224 and 248, respectively. Similar to attack A1, consider-
ing 4-MSB of chosen subkeys and going through details
of Piccolo-128 F-function computations leads to new
time, memory and data complexities of 2127, 212 and 240

for attack A2, respectively.
• Trying to find attacks with data complexity of equal to
28 or less results in some attacks with the same com-
plexities which one of them is exactly the one in [17].
This shows that the algorithm of ‘‘low data complexity
biclique cryptanalysis of block cipher’’ in [17] and the
algorithm of ‘‘generalized MITM attack’’ with the con-
dition of low data complexity on Piccolo-128 have the
same results.

C. CRAFT
1) GENERALIZED MITM ATTACK ON CRAFT
Applying generalized MITM attack on CRAFT results in the
followings:

• Due to its simple key schedule, the master key is chosen
for key schedule cut-set.

• There are 784 different points in CRAFT block cipher
algorithm. This high number of different points results
inmore thanmillions of cut-sets whichmakes difficult to
check all the attacks. Here by combining the successive
points, which each one can be computed from any other
of them assuming that the subkeys are known, in to one
point, the total number of different points is reduced
to 272. There are still millions of cut-sets which can
be made by these 272 points. One way for reducing
the number of these cut-sets can be choosing only the

cut-sets which have acceptable computational complex-
ity for exhaustive search in both direction without partial
matching (just like computing computational complex-
ity of a plaintext P to its corresponding ciphertext C ,
and vice versa). Applying this idea on cut-set finder
(ERS) algorithm results in 347194 different cut-sets for
CRAFT.

• With these 272 different points and 347194 cut-sets,
there are 1464915 possible attacks for CRAFT.

• Minimum time complexity of these attacks is equal to
2126.3683 (see Figure 8), which is obtained by V1 =

X1
21 and C1 = (X9

61,X
1
613,X

0
65,X

12
65 ,X

0
69,X

4
69,X

8
69,X

12
69 ,

X1
73,X

4
73,X

5
73,X

8
73,X

9
73,X

13
73 ,X

1
77,X

5
77).

• With cut-set C1 and matching variable V1, an attack A1
with time, memory and data complexities of 2126.3692,
228 and 264 can be obtained by (K 6,K 10,K 18,K 23) and
(K 1,K 2,K 13,K 14) as forward and backward subkeys,
respectively.

• By choosing cut-set C2 = (X3
0 ,X

6
0 ,X

10
0 ,X

15
0 ,X

4
1 ,X

5
1 ,

X8
1 ,X

9
1 ,X

8
5 ,X

12
5 ,X

0
9 ,X

1
9 ,X

12
9 ,X13

9 ,X
9
13,X

13
13) and

matching variable V2 = X1
61, another attack A2

with attack number of 640476 can be obtained with
(K 2,K 14,K 26,K 30) and (K 6,K 10,K 17,K 21) as for-
ward and backward subkeys, respectively (see Figure 8).
The time, memory and data complexities of attackA2 are
equal to 2126.53,228 and 248, respectively.

• Due to the tweakable design of CRAFT, a method for
2−4 reduction in time complexity of exhaustive search
is introduced in [20]. Combining this method with
generalized MITM attack is possible. In this scenario,
the computations from ciphertext to the matching point
(or cut-set CC) and also data complexity should be
increased by multiplication in 24. Hence, the match-
ing point should be selected near the ciphertext as
much as possible. As an example, by choosing cut-set
C3 = (X2

0 ,X
11
0 ,X

14
0 ,X

0
1 ,X

12
1 ,X

13
1 ,X

0
5 ,X

4
5 ,X

4
9 ,X

5
9 ,X

8
9 ,

X9
9 ,X

1
13,X

5
13,X

8
13,X

1
17) and matching variable V3 =

X1
121, another attack A3 with attack number of 1335048

can be obtained with (K 6,K 10,K 18,K 26) and (φ) as for-
ward and backward subkeys, respectively (see Figure 8).
Time, memory and data complexities of A3 are equal
to 2127.18, 212 and 252, respectively. There are only one
active S-box from ciphertext to matching variable V3.
Hence, using the same method introduced in [20] results

in 2−4 reduction plus more
1× (24 − 1)

512
× 2124 =

2118.91 in time complexity, and 24 times data complexity.
Therefore, the final time, memory and data complexities
will be 2127.18 × 2−4 + 2118.91 = 2123.25, 212 and
252 × 24 = 256, respectively.

D. AES-128
1) GENERALIZED MITM ATTACK ON AES-128
Applying generalizedMITMattack onAES-128 results in the
followings:

2298 VOLUME 8, 2020

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

FIGURE 10. The details of generalized MITM attack on HIGHT (attack A2).

• AES key schedule is not as simple as key schedule
of previous block ciphers and any cut-set in it can be
considered as the master key with different effects on

subkeys. When the cut-set of sixth 128-bit subkey (K6)
is considered as the master key, there is no activated
S-box by all bytes of this subkey in the key schedule.

VOLUME 8, 2020 2299

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

Hence, it can be a good choice for generalized MITM
attack as the computational complexity of key schedule
can be ignored in this situation.

• There are 336 different points in AES-128 block cipher
algorithm. However, there are millions of cut-sets which
can be made by these points. Therefore, a similar
method as CRAFT is used for sieving these cut-sets.
Applying this idea on cut-set finder algorithm results
in 267 different cut-sets and 60256 possible attacks for
AES-128 block cipher algorithm.

• Minimum time complexity of these attacks is equal to
2125.5295 (see Figure 9), which is obtained by V1 =

X0
4 and C1 = (X0

20,X
4
20,X

12
20 ,X

1
21,X

3
21,X

5
21,X

6
21,X

9
21,

X10
21 ,X

11
21 ,X

14
21 ,X

15
21 ,X

8
24,X

9
25,X

10
25 ,X

11
25). This complex-

ity is less than what has been found before in [23].
• Using C1 and V1, an attack A1 with time, memory
and data complexities of 2125.5696, 232 and 2128 can be
obtained by (K 9

6 ,K
10
6 ,K

11
6) and (K 0

6 ,K
12
6) as forward

and backward subkeys, respectively.

VI. CONCLUSION
In this paper, the generalized MITM attack is proposed and
automated by searching around cut-sets of a block cipher.
Then, it is applied on four different block cipher, HIGHT
and Piccolo-128 with Feistel structure, and CRAFT and AES
with SPN structure. The results show some improvements in
comparison to previous works. As an example, generalized
MITM attack along with bit-wised matching part on HIGHT
has found an attack with time, memory and data complexities
of 2125.2, 216 and 224, which has less time and data com-
plexities than the previous work on full-round HIGHT [22],
with time, memory and data complexities of 2125.67, 216 and
242, respectively. In addition, generalized MITM attack on
Piccolo-128 has found the same result as [17] when data com-
plexity limitation is applied on the attack. Also, generalized
MITM attack on AES-128 approved possibility of finding out
an attack with less time complexity than the attack mentioned
in [23].

Generalized MITM attack on block ciphers can be per-
formed along with some other ideas such as early abort,
sieve in the middle, or innovative techniques to improve
the attack results. As an example, in the attack on full
HIGHT, considering the idea of bit-wised matching part
along with 4-MSB bits of subkeys leads to a new attack
with interesting results in which all the complexities of the
attack are lower than or equal to the best previous known
attack. Another example is in the attack on CRAFT which
is a tweakable block cipher. Generalized MITM attack on
CRAFT along with improved exhaustive search introduced
in [20] leads to a new attack with lower time complexity
of 2123.25 in comparsion to 2124 of designer’s analysis.
It should be highlighted that the genealized MITM attack can
cover almost all previous versions of MITM attack including
biclique attack. Therefore, providing security against gener-
alized MITM attack can confirm the security against these
previous versions. Another advantage of generalized MITM

attack is automatic key partitioning during the attack
procedure.

ACKNOWLEDGMENT
The authors would like to thank Information Security and
Systems Lab (ISSL) members, specially J. Alizade, consid-
erable and valuable comments.

REFERENCES
[1] W. Diffie, andM. E. Hellman, ‘‘Special feature exhaustive cryptanalysis of

the NBS data encryption standard,’’ Computer, vol. 10, no. 6, pp. 74–84,
1977.

[2] A. Bogdanov and C. Rechberger, ‘‘A 3-subset meet-in-the-middle attack:
Cryptanalysis of the lightweight block cipher KTANTAN,’’ in Selected
Areas in Cryptography (Lecture Notes in Computer Science), vol. 6544,
A. Biryukov, G. Gong, and D. Stinson, Eds. Berlin, Germany: Springer,
2010, pp. 229–240.

[3] L. Wei, C. Rechberger, J. Guo, H. Wu, H. Wang, and S. Ling, ‘‘Improved
meet-in-the-middle cryptanalysis of KTANTAN (poster),’’ in Proc.
Australas. Conf. Inf. Secur. Privacy. Berlin, Germany: Springer, 2011,
pp. 433–438.

[4] A. Bogdanov, D. Khovratovich, C. Rechberger, Biclique Cryptanalysis
of the Full AES, (Lecture Notes in Computer Science), vol. 7073.
Heidelberg, Germany: Springer, 2011, pp. 344–371.

[5] G. Han, H. Zhao, and C. Zhao, ‘‘Unbalanced Biclique cryptanalysis
of full-round GIFT,’’ IEEE Access, vol. 7, pp. 144425–144432, 2019,
doi: 10.1109/ACCESS.2019.2945006.

[6] J. Lu, J. Kim, N. Keller, and O. Dunkelman, ‘‘Improving the efficiency of
impossible differential cryptanalysis of reduced camellia and MISTY1,’’
in Proc. Cryptographers Track RSA Conf., San Francisco, CA, USA,
Apr. 2008.

[7] J. Lu, J. Kim, N. Keller, and O. Dunkelman ‘‘Sieve-in-the-middle:
Improved MITM attacks,’’ in Topics in Cryptology—CT-RSA (Lecture
Notes in Computer Science), vol. 8042, R. Canetti and J. Garay, Eds.
Berlin, Germany: Springer, 2008, pp. 222–240.

[8] K. Fu, M. Wang, Y. Guo, S. Sun, and L. Hu, ‘‘MILP-based automatic
search algorithms for differential and linear trails for speck,’’ in Proc. Int.
Conf. Fast Softw. Encryption, vol. 21, 2016, p. 27.

[9] S. Siwei, ‘‘Towards finding the best characteristics of some bit-oriented
block ciphers and automatic enumeration of (related-key) differential and
linear characteristics with predefined properties,’’ Cryptol. ePrint Arch.,
Tech. Rep. 2014/747, 2014.

[10] J. Chen, J. Teh, Z. Liu, C. Su, A. Samsudin, and Y. Xiang, ‘‘Towards
accurate statistical analysis of security margins: New searching
strategies for differential attacks,’’ IEEE Trans. Comput., vol. 66,
no. 10, pp. 1763–1777, Oct. 2017.

[11] L. Song, Z. Huang, and Q. Yang, ‘‘Automatic differential analysis of
ARX block ciphers with application to SPECK and LEA,’’ in Information
Security and Privacy (Lecture Notes in Computer Science), vol. 9723,
J. K. Liu and R. Steinfeld, Eds. Cham, Switzerland: Springer, 2016,
pp. 379–394.

[12] S. Wu and M. Wang, ‘‘Automatic search of truncated impossible
differentials for word-oriented block ciphers,’’ in Proc. Int. Conf. Cryptol.
India, 2012, pp. 283–302.

[13] D. Patrick, and P.-A. Fouque, ‘‘Automatic search of meet-in-the middle
and impossible differential attacks,’’ in Proc. Annu. Int. Cryptol. Conf.,
Berlin, Germany: Springer, 2016.

[14] L. Lin, W. Wu, and Y. Zheng, ‘‘Automatic search for key-bridging
technique: Applications to LBlock and TWINE,’’ in Proc. Int. Conf. Fast
Softw. Encryption, 2016, pp. 247–267.

[15] A. Farzaneh, ‘‘A framework for automated independent-biclique
cryptanalysis,’’ in Proc. Int. Workshop Fast Softw. Encryption, Berlin,
Germany: Springer, 2013.

[16] H. Kai, and M. Wang, ‘‘Automatic search for a variant of division
property using three subsets,’’ in Proc. Cryptographers Track RSA Conf.,
Cham, Switzerland, Springer, 2019.

[17] S. Ahmadi, Z. Ahmadian, J. Mohajeri, and M. R. Aref. ‘‘Low-data
complexity biclique cryptanalysis of block ciphers with application to
piccolo and hight,’’ IEEE Trans. Inf. Forensics Security, vol. 9, no. 10,
pp. 1641–1652, Oct. 2014.

2300 VOLUME 8, 2020

http://dx.doi.org/10.1109/ACCESS.2019.2945006

S. Ahmadi, M. R. Aref: Generalized MITM Cryptanalysis of Block Ciphers With an Automated Search Algorithm

[18] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang,
J. Lee, K. Jeong, H. Kim, J. Kim, and S. Chee, HIGHT: A New Block
Cipher Suitable For low-Resource Device. Cryptographic Hardware and
Embedded Systems-CHES. Lecture Notes in Computer Science, vol. 4249,
Berlin, Germany: Springer, pp. 46–59, 2006.

[19] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T Shirai,
Piccolo: An Ultra-Lightweight Blockcipher (Lecture Notes in Computer
Science), vol. 6917. Heidelberg, Germany: Springer, 2011, pp. 342–357.

[20] B. Christof, ‘‘CRAFT: Lightweight tweakable block cipher with efficient
protection against DFA Attacks,’’ IACR Trans. Symmetric Cryptol.,
vol. 2019, no. 1, pp. 5–45, 2019.

[21] J. Daemen and V. Rijmen, The Design of Rijndael: AES—The Advanced
Encryption Standard (Information Security and Cryptography). Berlin,
Germany: Springer, 2002.

[22] S. A. Azimi, S. Ahmadi, Z. Ahmadian, J. Mohajeri, and M. R. Aref,
‘‘Improved impossible differential and biclique cryptanalysis of hight,’’
Int. J. Commun. Syst., vol. 31, no. 1, p. e3382, 2018.

[23] B. Andrey, ‘‘Bicliques with minimal data and time complexity for AES,’’
in Proc. Int. Conf. Inf. Secur. Cryptol., Cham, Switzerland: Springer,
2014.

[24] B. Tao andH.Wu, ‘‘Improving the biclique cryptanalysis of AES,’’ inProc.
Australas. Conf. Inf. Secur. Privacy. Cham, Switzerland: Springer, 2015.

[25] A. E. Moghaddam and Z. Ahmadian, ‘‘New automatic search method
for truncated-differential characteristics: Application to Midori and
SKINNY,’’ IACR Cryptol. ePrint Archive Tech. Rep., 2019, p. 126.

[26] H. Hadipour, S. Sadeghi, M.M. Niknam, and N. Bagheri. ‘‘Comprehensive
security analysis of CRAFT,’’ Cryptology ePrint Archive,
Tech. Rep. 2019/741, 2019.

[27] M. ElSheikh, and A. M. Youssef, ‘‘Related-key differential cryptanalysis
of full round CRAFT,’’ IACR Cryptol. ePrint Archive Tech. Rep., 2019,
p. 932.

[28] C. Bouillaguet, P. Derbez, and P.-A. Fouque, ‘‘Automatic search of attacks
on round-reduced AES and applications,’’ in Proc. Annu. Cryptol. Conf.,
Berlin, Germany: Springer, 2011.

SIAVASH AHMADI received the B.S. and
M.S. degrees in electrical engineering from the
Sharif University of Technology, Tehran, Iran,
in 2012 and 2014, respectively, where he is cur-
rently pursuing the Ph.D. degree in electrical
engineering (communication systems and secu-
rity). His special fields of interest include cryp-
tology and wireless security, with emphasis on
cryptanalysis.

MOHAMMAD REZA AREF received the B.S.
degree from the University of Tehran, Iran,
in 1975, and the M.Sc. and Ph.D. degrees
from Stanford University, Stanford, CA, USA,
in 1976 and 1980, respectively, all in electrical
engineering. He returned to Iran, in 1980 and was
actively engaged in academic affairs. He was a
Faculty Member with the Isfahan University of
Technology, from 1982 to 1995. He has been a
Professor of electrical engineering with the Sharif

University of Technology, Tehran, since 1995. He has published more than
290 technical articles in communication and information theory and cryp-
tography in international journals and conferences proceedings. His current
research interests include areas of communication theory, information theory,
and cryptography.

VOLUME 8, 2020 2301

	INTRODUCTION
	CONTRIBUTIONS
	RELATED WORKS
	OUTLINE

	GENERALIZED MITM ATTACK
	BASIC ATTACK
	PROPOSING GENERALIZED ATTACK
	GENERALIZED MITM ATTACK DETAILS

	COMPARISON WITH CONVENTIONAL VERSIONS OF MITM ATTACKS
	AUTOMATION OF GENERALIZED MITM ATTACK
	BLOCK CIPHER DIFFUSION
	ALGORITHMS FOR TOTAL PROCEDURE
	INITIAL SELECTION
	PRE-PROCESSING
	C TO V PROPAGATION
	AUTOMATION PROCEDURE

	EXPERIMENTAL RESULTS
	HIGHT
	GENERALIZED MITM ATTACK ON HIGHT
	ENHANCEMENT OF PARTIAL MATCHING ON HIGHT ALGORITHM

	PICCOLO-128
	GENERALIZED MITM ATTACK ON PICCOLO-128

	CRAFT
	GENERALIZED MITM ATTACK ON CRAFT

	AES-128
	GENERALIZED MITM ATTACK ON AES-128

	CONCLUSION
	REFERENCES
	Biographies
	SIAVASH AHMADI
	MOHAMMAD REZA AREF

