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ABSTRACT Magnetic detection electrical impedance tomography (MDEIT) is a novel imaging technique
that aims to reconstruct the conductivity distribution with electrical current injection and the external
magnetic flux density measurement by magnetic sensors. Aiming at improving the resolution and accuracy
of MDEIT and providing an efficient imaging method for breast cancer diagnosis, a new algorithm based
on stacked auto-encoder (SAE) neural network is proposed. Both numerical simulation and phantom
experiments are done to verify its feasibility. In the numerical simulation, an amount of sample data with
different conductivity distribution are calculated. Then a neural network model is established and trained by
training these samples. Finally, the conductivity distribution of an imaging target with the anomaly location
can be reconstructed by the network model. The reconstruction result of the SAE algorithm is compared
with the reconstruction results of the traditional sensitivity matrix (SM) algorithm and the back propagation
(BP) neural network algorithm. Under the noise of 30dB, the relative errors of BP algorithm, SM algorithm
and SAE algorithm are 137.19%, 24.90% and 15.28% respectively. Result shows by the SAE algorithm,
the location of anomalies is reconstructed more accurately, the conductivity value is more closely to the
real one and the anti-noise performance is more robust. At last, a breast phantom experiment by self-made
platforms is completed to verify the application feasibility of the new algorithm. The relative reconstruction
error of conductivity by proposed SAE algorithm can be reduced to 14.56%. The results show that by SAE
algorithm, MDEIT can be a promising approach in clinical diagnosis of breast cancer, and it also provide
more potential application prospect for the extensive application of MDEIT.

INDEX TERMS Breast cancer diagnosis, inverse problem, magnetic detection electrical impedance tomog-
raphy, stacked auto-encoder.

I. INTRODUCTION

Breast cancer is one of the most common cancers among
women in the world [1]. High precision of medical imag-
ing modalities is required to discriminate tumors in early
time diagnosis for breast cancer. It will avert the unnec-
essary biopsy, ameliorate the cancer treatment strategy and
boost the patient’s survival rate. Currently breast cancer test-
ing has been studied in a variety of imaging modalities.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.
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Traditional imaging methods for breast cancer involve mam-
mography [2], B-ultrasonic imaging [3], magnetic resonance
imaging [4], and so on. None of them is ideal because of
radiation, low resolution or high cost. Magnetic detection
electrical impedance tomography (MDEIT) is a novel imag-
ing modality to reconstruct the conductivity distribution by
measuring the magnetic flux density surrounding the imaging
object [5], [6]. Considering that the measurement of magnetic
flux density does not require surface contact, the sensor fix-
ing problems of tradition Electrical impedance tomography
(EIT) [7] is eliminated in MDEIT and a great number of
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measurements can be recorded with precise detector posi-
tions [8]. Therefore, compared to the traditional EIT, MDEIT
has the advantages of non-contact sensing, less electrodes,
and extensive application domains [9], [10]. In the medical
engineering, we can use MDEIT to monitor the physiological
state and pathological information of the human body by
reconstructing the electrical property information using pairs
of excitation electrodes and a number of magnetic induction
coils placed around the imaging target [11]. In the energy
and electricity field, the topology and breakpoints of the
grounding grid can be detected by MDEIT [12]. However,
although the reconstruction can be improved a lot compared
with traditional EIT, there is still problems pending further
development in MDEIT such as the spatial and temporal
image resolution [13].

The inverse problem of MDEIT is ill-posed. Sensitivity
matrix algorithm (SM algorithm) [14] with regularization
techniques has been used to solve the conductivity recon-
struction in MDEIT such as total variation (TV) meth-
ods [15], [16], joint L-1 and TV regularization methods [17]
et al. Although regularized reconstruction methods have
been shown to be effective in dealing with simple imaging
tasks, their limited capability may cause difficulties in cop-
ing with more complicated imaging targets. Recently, deep
learning is widely used in many fields such as fault detec-
tion [18]-[20], image processing [21], emotion recognition
[22], and so on. Some scholars also tried to applied deep
learning models to the reconstruction of inverse problems
[23], [24]. Convolutional neural network (CNN) is proposed
to solve inverse problem of the electrical resistance tomogra-
phy (ERT), the accuracy of reconstructed image is improved
and the reconstruction time is shortened [25]. Artificial neural
network (ANN) is proposed to improve the resolution of
reconstructed images [26]. The conductivity value of the
three-dimensional human brain is accurately reconstructed
by radial basis neural network (RBFNN) [27]. According
to the previous research, a multi-input multi-output MDEIT
imaging algorithm based on stacked auto-encoder (SAE) neu-
ral network is proposed to solve the reconstruction of the
inverse problem. The main purpose of the proposed SAE
neural network algorithm is to significantly improve the
quality of the image and the speed of reconstruction. Both
numerical simulation and phantom experiment results show
the effectiveness of the algorithm. The advantages of the
algorithm in reconstruction accuracy, anti-noise performance
and reconstruction speed are verified by comparing the recon-
struction image with the reconstruction results of back prop-
agation (BP) neural network algorithm and sensitivity matrix
(SM) algorithm. With the SAE neural network algorithm,
the value of conductivity can be accurately reconstructed
and the position of the anomaly can be determined. The
SAE algorithm effectively improves the ill-posed of MDEIT
inverse problem. It provides a new and promising approach
for MDEIT image reconstruction. It also provides a fast and
high-precision imaging method for the diagnosis of breast
tumors.
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FIGURE 1. Principle of magnetic detection electrical impedance
tomography.

Il. BASIC AND KEY TECHNOLOGIES

There are two main aspects in MDEIT: forward problem
and inverse problem. The forward problem computes the
distributions of voltage, current density within an electrically
conducting domain and magnetic flux density surrounding
the object from the known conductivity distribution according
to the boundary value problem and Biot-Savart law. The
inverse problem uses the measured magnetic flux density data
to reconstruct the conductivity distribution.

A. FORWARD PROBLEM IN MDEIT
Under the stimulation of the excitation current with low-
frequency, the capacitive characteristic of biological tissue
can be neglected, and only the conductivity characteristic can
be considered so that the imaging object can be approximated
as an ionic conductor in this case [28]. Fig. 1 shows the
principle of MDEIT. With an excitation current injected into
the imaging body, the external magnetic induction intensity
can be measured by coils.

Assume the conductivity of the imaging object is o, with a
current injection I g, the voltage ¢, and current density distri-
bution J are produced in the imaging body. From Maxwell
equations and Ohm’s law, we can formulate the Laplace
equation, as show in (1).

V-0Vep=0 (1)
It meets the Newman boundary conditions, as shown in (2).
]
a2 =] @
an

where n is the normal unit vector at the boundary, and J, is the
current density at the boundary with the current injection. The
electrical potential can be obtained by solving the equation
above with the Finite Element Method (FEM). Then the
current density can be obtained by:

J=-0Vyp 3)

Finally, according to Biot-Savart’s law, the magnetic induc-
tion intensity of the imaging area can be obtained by:

Ko r—r
Bpy=— [ Jp) X ———5dQ 4
(") 47tf9 (r) |r_r,|3 “)

where ug is the permeability of vacuum and also nonmagnetic
objects, B is the external magnetic flux density of the
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imaging object, r = (x,y) is the position vector of the
measurement point, and r=(x, y, is the position vector
of the source of current density.

In summary, since the external magnetic flux density of the
imaging object reflects the conductivity distribution inside
the imaging body, we can obtain the conductivity distribution
of an object by inverse algorithms.

B. SENSITIVITY MATRIX ALGORITHM FOR INVERSR
PROBLEM

SM algorithm is mainly based on linearization of the variation
of a magnetic flux density due to conductivity perturbations.
It initially assumes a uniform conductivity distribution and
calculates a current density distribution with the finite ele-
ment method (FEM) the same with the forward problem of
conventional EIT. Next, the magnetic flux density Bg can be
described according to the Biot-Savart law. Then, suppose
there is a conductivity perturbation Ao in the imaging region
around the uniform values, then the current density change
correspondingly causes an increment of magnetic flux den-
sity as AB [29]. According to the SM algorithm, define the
sensitivity matrix as S, then the total matrix equation can be
represented as:

AB = SAc¢ &)

Once the sensitivity matrix S is obtained, the conductivity
perturbation Ag causing variation of the magnetic flux den-
sity AB can be solved by (5). Then, the course can be iterated
by replacing o g with o9+ Ao until the termination condition
is satisfied [30]. In this paper, the termination condition is
defined as whether the norm of AB is larger than the previous
iteration.

C. BP NEURAL NETWORK ALGORITHM FOR INVERSE
PROBLEM

In order to reconstruct the conductivity distribution through
the magnetic field measurement data, this paper uses the BP
algorithm based on Scaled Conjugate Gradient (SCG) [31]
to train the BP network parameters and apply it to solve the
MDEIT inverse problem.

The neural network has three layers of neurons, the first
layer is the input layer, through which the neurons input the
magnetic induction value B to the neural network; the second
layer is the hidden layer; the third layer is the output layer,
which outputs the conductivity inside the imaged body. The
process of training the neural network includes: propagating
the training data forwardly to establish a neural network and
then backpropagation update the weight matrix. The con-
ductivity was reconstructed using a trained neural network.
Fig. 2 is a basic structure diagram of the BP neural network.

D. SAE ALGORITHM FOR INVERSE PROBLEM

In order to realize the reconstruction of conductivity distri-
bution by the magnetic field measurement data, this paper
proposes a SAE neural network algorithm connected with
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FIGURE 2. Basic structure diagram of BP Neural Network.
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FIGURE 3. A basic schema of an auto-encoder.

softmax classifier to solve the inverse problem of MDEIT.
The stacked auto-encoder neural network, referred to as SAE
in this paper, is a feedback neural network model consisting
of a series of multi-layer auto-encoders (AE) [32]. AE is
an unsupervised feature learning method, and the softmax
classifier is a supervised learning algorithm, the SAE model
combines the advantages of unsupervised and supervised
together [33], [34].

A typical AE is a neural network consisting of three fully
connected layers: the input layer, the hidden layer, and the
output layer. The neurons between layers are entirely inter
connected, as shown in Fig. 3. Given a set of training sample
B = {b1,b2,b3, ...,b,} (mis the number of training sam-
ples) as the input parameter x, where the i input layer neuron
can be represented by b;. The number of neurons in the hidden
layer is n, the jth hidden layer neuron can be represented by
;. The weight matrix between the input layer and the hidden
layer in this paper is as (6):

w11 cee wlj
(6)

wi1 o o Wij

where w;;i = 1,2,3...m;j = 1,2,3...n) represents the
weight of the it input layer neuron to the jth hidden layer
neuron. The auto-encoder uses the first layer of the neural

VOLUME 8, 2020



R. Chen et al.: Stacked Autoencoder Neural Network Algorithm for Breast Cancer Diagnosis With MDEIT

IEEE Access

network to convert the input vector into a hidden vector using
an activation function. In this study we used the logistic
sigmoid function as (7):
1
FO=1 @)
The process from the input layer to the output of hidden
layer neurons, called encoding, is obtained by:

y=r@ =1 (3 wixi+b) ®)

where bj is the bias of the 7 hidden layer neuron. The process
of converting the hidden layer data into the output layer data
is called decoding, and the output data can be obtained as (9):

xi=f (Z;II wgyj + b;) )

where b;- is the bias of the i’ input layer neuron. The param-
eters of this neural network are optimized to minimize the
average reconstruction error J (w, b):

Jw,b) = All YL (x®.2%) (10)

where L is a loss function. The Gradient Descent method
is used to update the weight matrices and the bias vectors
according to (11)-(13).

AL (x,%)
wW=w—oa— (11
ow
JdL (x,Xx)
b=b—a—— 12
x— (12)
’ ’ aL ’N
b =b —q LD (13)
ab

where « represents the learning rate.

The deep neural network model based on SAE used in
this study is constructed by two auto-encoder layers, with the
output of the encoder in the previous layer as the input to the
encoder of the subsequent layer [35]. The weight matrices of
the neural network include a feature extraction matrix, feature
coding matrix, and classification reconstruction matrix [36],
[37]. Each hidden layer of the neural network is the higher
abstraction of the previous layer, so the last hidden layer,
softmax classifier, contains the high-level structure and rep-
resentative information of the imaging object’s conductivity
distribution. The basic structure of SAE is shown in Fig. 4.

The feature extraction matrix extracts the feature of input
magnetic flux density distribution, and highlights the fea-
ture information. Feature information is encoded by the fea-
ture coding matrix. The classification reconstruction matrix
located between the second hidden layer and the output layer
classified the coding features to obtain an n-type label, and
the conductivity distribution information is carried in this
n-type label.

In this algorithm, we put magnetic flux density to the
input data and get the conductivity as the output. SAE clas-
sifier can extract and analyze the characteristics between the
magnetic flux density and the conductivity distribution. With
the optimization process mentioned above, the conductivity
parameter can be reconstructed.
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FIGURE 5. A uniform simulation model (a) and a simulation model
(b) with an anomaly.

IlIl. EXPERIMENT

A. SIMULATION EXPERIMENT

In order to test the SAE algorithm, numerical simulation
experiment is completed. We compare the numerical solution
using the new algorithm with the SM algorithm and BP
algorithm. A circular imaging body is used to simulate the
two-dimensional section of human breast. Fig. 5(a) shows
the simulation model. In order to enrich the information of
the magnetic field distribution and improve the quality of con-
ductivity image reconstruction, are injected independently in
the experiment. The specific description is as follows:

a) The excitation electrodes contain two pairs of sliced
electrodes with negligible thickness. Current can flow into
the imaging body from the downside to the upside, or from
left to right.

b) The excitation current is 1A, although the amplitude is
beyond the human safety limit. Considering the magnetic flux
density has multiple relationships with the current amplitude,
before modelling and simulation by SAE, normalized the
magnetic flux density, the amplitude of current will not affect
the reconstruction result.

¢) The sensors are located around the imaging object with
equally spaced three circles, and here we put 100 sensors for
each circle. The radius of the three circles of sensors’ location
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are 5.25 cm, 5.5 cm, and 5.75 cm. The sensors can measure
the magnetic flux density surrounding the imaging body in a
tangent direction.

In order to obtain the training samples of the neural net-
work, the finite element method (FEM) is used to solve the
forward problem of MDEIT. The circular imaging object
with a radius of 5 cm is divided into 486 triangular elements
by finite element method. Add an anomaly that occupies
20 triangle elements at random locations within the imaging
body, as shown in Fig. 5 (b).

In the simulation experiment, the conductivity of the back-
ground tissue is set to 1 S/m, and the conductivity of the
anomaly is 2 S/m. Surface electrodes inject the current from
the left to right sides (hereinafter referred to as x-direction
current), and the anomaly traversed through 486 meshed
elements of the imaging body to obtain 486 sets of modelling
data. Then, the imaging object is excited by electrodes on the
lower and upper sides (hereinafter referred to as y-direction
current), and the anomaly traversed through 486 elements
of the imaging body to obtain 486 sets of data. In sum-
mary, we combine two sets of magnetic induction values
corresponding to the same conductivity distribution into one
column and obtain a dataset of a total of 486 different conduc-
tivity distribution and their corresponding external magnetic
induction intensity distribution of the imaging body. There
are a total of 600 magnetic induction values and 486 conduc-
tivity values for each set of data.

In order to evaluate the universality of the SAE algorithm
to solve the MDEIT image reconstruction problem and the
overall performance of the evaluation method, 400 sets of
samples were randomly selected as the training data of the
neural network, and the remaining 86 samples were used as
the prediction data of the neural network. MDEIT using SAE
neural network contains two steps: unsupervised training and
fine-tuning of supervised parameters. X = {xl, x2, cee X™}
is the input data used to train the neural network model,
where m represents the number of training samples, x*(k =
1,2,3...m) represents the combination of two sets of
independent magnetic induction components detected by
300 sensors under different electrode excitation conditions.
0 = {o!,02,...,0"} is the output data used to train the
neural network model, where m represents the number of
training samples, ok(k = 1,2,3...m) represents the con-
ductivity of 486 independent meshed elements. The structure
of test data is the same as the training data.

The SAE neural network used in this study uses a 4-layer
structure. As shown in Fig. 6, the number of neurons for each
layer is set as {600, 559, 521, 486}. The learning rate of each
layer in the training phase is 0.1, the training epochs are 3000,
and the batchsize is 10. In the fine-tuning parameter phase,
the learning rate is 0.1, the training epochs are 3000, and the
batch-size is 10. The input vector (magnetic induction value)
of the test set is used to reconstruct the conductivity distribu-
tion of the imaging body by this network. The SAE network
training is completed on the computer with Intel i5-8400
CPU, 16GB RAM and NVIDIA GeForce GTX 1060 3GB.
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FIGURE 6. Neural network structure used in this study.

TABLE 1. Training time and prediction time of the two neural networks.

prediction

training time/hours .
g time/seconds

BP algorithm 1 0.2

SAE algorithm 12 0.01

The running time of the two neural networks is shown
in Table 1, while the calculation time of SM algorithm is
3.5 hours. Although the training time is relatively long for
training, once the network is obtained, it takes no more than
0.01s to reconstruct the conductivity image by SAE algo-
rithm. It is fast enough for a dynamic function monitor ing.

B. NOISE EXPERIMENT

Considering there will be noises in real measurement exper-
iment, in order to verify the anti-noise performance of the
algorithm, Gaussian white noise with different magnitude
levels is added to the magnetic flux density data. Then the
noised magnetic flux density data are used to reconstruct the
conductivity distribution by the network trained in Experi-
ment A.

C. PHANTOM EXPERIMENT
In order to evaluate the superiority and feasibility of the
proposed SAE neural network for breast cancer diagnosis by
MDEIT, a phantom experiment is completed. The MDEIT
experimental system is mainly composed of a space scanning
platform, magnetic induction detection coil, SR7280 Lock-
in Amplifier and a motor driver. The detecting coil is used to
measure the magnetic induction intensity B outside the imag-
ing body, the motor driver is used to rotate the spatial scanning
platform to change the measuring position of the detecting
coil and the Lock-in Amplifier is used to measure and record
the magnetic induction intensity values. The experimental
system is shown in Fig. 7.

A hemispherical container made of acrylic with the radius
of 10 cm was used to be the phantom. Two pairs of sliced
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FIGURE 7. Breast phantom experiment.

FIGURE 8. The phantom used in this experiment.
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FIGURE 9. Simulation data reconstruction result. (a) represents the true
conductivity, (b) represents the reconstruction results of the SM
algorithm, (c) represents the reconstruction results of the BP algorithm
and (d) represents the reconstruction results of the SAE algorithm.

electrodes are used as the excitation electrodes. The phantom
is composed of NaCl, agar, water and an aluminum rod.
Mixture of NaCl with a concentration of 9 g/ and agar
of 30 g/L is mixed up in a container and heated, after the agar
is gradually dissolved and fully compatible with water, it is
placed in a phantom container. An aluminum rod with the
radius of 2cm is inserted as the anomaly in the phantom. The
phantom is shown in Fig. 8.
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FIGURE 10. Comparison of the size and shape of anomaly conductivity in
reconstruction result. Cross section plot (a) in X and cross section plot
(b) in Y.

As shown in Fig. 5(b), the magnetic induction intensity
sensors are located with a distance of 10.5 cm, 11cm, and
11.5 cm from the center of phantom. When the Space scan-
ning platform rotates one circle, 100 magnetic induction val-
ues are collected. In each experiment, the scanning platform
space was rotated along 3 circles and a total of 300 magnetic
induction intensity values are obtained. In the case of two
pairs of electrode excitation, a total of 600 magnetic induc-
tion values are obtained by MDEIT experimental system.
600 magnetic flux density values are used for conductivity
reconstruction. Both BP and SAE algorithms are used in the
reconstruction.

IV. RESULTS

A. SIMULATION EXPERIMENT RESULTS

In order to evaluate the advantages of SAE neural network
for solving MDEIT image reconstruction problem, the recon-
struction results of BP algorithm, SM algorithm and SAE
algorithm are compared. Fig. 9 is a comparison of anomaly
localization effects in reconstructed images of BP algorithm,
SM algorithm and SAE algorithm. Each row represents a
different location of the anomaly in the imaging body. In
Fig. 9, Fig. 11 and Fig. 13, the red circle does not represent
the outline of the anomaly but markers help to read. The
results show that by the SAE algorithm, the anomalies at
different positions can be accurately located in the imaging
body. The reconstructed results show a poor positioning effect
on the anomaly center by the SM algorithm and the BP
algorithm. Only the approximate region of the anomaly can
be determined by the BP algorithm. The anomaly cannot
be reconstructed by the SM algorithm. Therefore, the SAE
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FIGURE 11. Comparison of anti-noise performance between three
algorithms. (a) represents true conductivity distribution of the imaging
body. Each row in (b) represents the reconstruction results of the SM
algorithm, BP algorithm, and SAE algorithm respectively after adding
70dB, 50dB, and 30dB noise.

algorithm is superior to the SM algorithm and BP algorithm
in the localization performance of anomalies.

Fig. 10 is a comparison of the magnitude and shape of
anomaly conductivity in reconstructed images of BP algo-
rithm, SM algorithm, and SAE algorithm. The cross-sectional
view shows the distribution of the conductivity on a straight
line in a two-dimensional image. It visually compares the
size and shape of anomalies reconstructed by the three algo-
rithms at different positions. The values in Table 2 are the
full widths of the half maxima (FWHM) in the X and Y
directions calculated from the cross-sectional view in Fig. 10,
it represents a comparison of the reconstruction anomalies
reconstructed by the three algorithms at different positions.
As for the SM algorithm, the FWHM cannot be calculated
since the reconstructed conductivity of the anomaly conduc-
tivity is close to the background conductivity value. With the
BP algorithm, the conductivity values and the shape of the
anomaly is different from the reality. Only the approximate
position of the anomaly can be determined. However, by the
SAE algorithm, the anomaly can be reconstructed correctly.
The results show that the SAE algorithm is superior to the
SM algorithm and the BP algorithm in the reconstruction
performance of anomaly’s conductivity and shape.

B. NOISE EXPERIMENT RESULTS

Fig. 11 is a comparison of the noise immunity among
three algorithms. Fig. 11(a) shows the exact conductivity
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TABLE 2. Comparison of reconstruction profiles corresponding to three
algorithms with different anomaly locations.

FHWM in FHWM in
Peak the X the X
direction direction
True value 2 4.5 3.5
. SM 1.2 1 1
Posotionl
BP 1.3 3.5 4
SAE 2 4 3.5
True value 2 4 4
. SM 1.2 / /
Posotion2
BP 1.3 5.5 3.5
SAE 2 4 4.5
True value 35 35 3.5
. SM / / /
Posotion3
BP 3 3 1.5
SAE 35 3.5 3.5
True value 2 1.5 2
. SM 1.2 / /
Posotion4
BP 1.6 3 2.5
SAE 2 2.5 1
140
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FIGURE 12. Comparison of relative errors of three algorithms with
different SNR levels.

distribution of the image to be reconstructed, and each col-
umn of Fig. 11(b) represents different signal-to-noise ratio
(SNR) levels of the measurement. The SNR is calculated as
shown in (14).

sigPower

SNR = 10 x log (14)

noisePower

where sigpower represents the power of original signal and
noisepower represents the power of noise.

Fig. 12 is a comparison of the reconstruction error curves
of three algorithms at different SNR levels. The relative error
of reconstruction is calculated as shows in (15).

|0 Reconstruction — O Actuat |

R= x100% (15)

lo Actuat
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FIGURE 13. Reconstruction image and real conductivity distribution.
(a) represents the true conductivity distribution, (b) represents the
reconstruction conductivity distribution of the BP algorithm, and

(c) represents the reconstruction conductivity distribution of the SAE
algorithm.

where 0 Reconstruction T€PrEsents the reconstruction conductiv-
ity vector and o g¢mrar Tepresents the real conductivity vector.

The experimental results show that the relative error of
the SAE algorithm is still significantly lower than the other
two algorithms with the increase of noise level. When the
signal-to-noise ratio is 30 dB, the relative error of the SAE
algorithm is 15.28%, and the location of the anomaly can still
be determined. The relative errors of BP algorithm and SM
algorithm are 137.19% and 24.90%, respectively. No matter
by SM algorithm or BP algorithm, the location and shapes
of the anomaly can’t be reconstructed correctly. Therefore,
the SAE algorithm is significantly more robust to noises than
the other two algorithms.

C. PHANTOM EXPERIMENT RESULTS

The results of the phantom experiment are shown in Fig. 13.
Fig. 13(a) is the exact conductivity distribution of the phan-
tom used in the experiment, Fig. 13(b) is the reconstruction
result of the BP algorithm, and Fig. 13(c) is the reconstruction
result of the SAE algorithm. It can be seen that the position
of the anomaly in Fig. 13(c) is consistent with the position
of the real anomaly. In Fig. 13(b), the anomaly couldn’t
be reconstructed and the background of the image is not
uniform. According to (15), the BP algorithm reconstruction
error is 246.17%, and the SAE algorithm reconstruction error
is 14.56%. It shows the promising application of the SAE
algorithm for breast cancer diagnosis with MDEIT.

V. DISSCUSSION
In order to improve radiation, resolution and other issues of
breast cancer detection technology, a stacked autoencoder
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neural network algorithm for breast cancer diagnosis with
MDEIT is proposed. In order to evaluate the reconstruc-
tion performance of the algorithm, the reconstruction result
of the SAE algorithm, BP algorithm and SM algorithm is
compared by simulation and phantom experiment. In order
to test its feasibility in real measurement environment, the
anti-noise performance of the three algorithms is also ana-
lyzed with the low noise. It shows that by SAE algorithm
the conductivity can be reconstructed more closely to real
ones, and the location and shapes of the anomaly can be
reconstructed more accurately. Both simulation and phantom
experiments show that the reconstruction of SAE algorithm
is superior to the other two algorithms. The proposed algo-
rithm improves the accuracy of the reconstruction images.
In addition, compared with the other two algorithms, the SAE
algorithm has a shorter prediction reconstruction time. The
experiments preliminarily verify the feasibility of SAE algo-
rithm for MDEIT. It also provides a non-invasive, fast and
high accuracy method for breast cancer diagnosis. However,
this algorithm still has limitations that need to be improved.
Though the prediction time is quite short, the training time
is long. And the number of meshing elements will affect the
reconstruction accuracy and reconstruction speed. A large
number of samples will cause the SAE neural network train-
ing time to become long. So in the future research, the rela-
tionship between reconstruction accuracy and training time
should be balanced, and more realistic experiments needs to
be done.

VI. CONCLUSION

In this paper, a new algorithm based on stacked autoencoder
neural network is proposed for breast cancer diagnosis by
MDEIT. Both simulation and phantom experiments show that
by the SAE algorithm, the internal conductivity distribution
of the imaging body can be reconstructed correctly using
the magnetic flux density surrounding the body. The con-
tour of the anomaly is reconstructed clearly and the location
of the anomaly is reconstructed accurately. The proposed
SAE algorithm is of great significance to the development
of MDEIT and lays the foundation of electrical impedance
tomography to clinical application of breast cancer diagnosis.
It can also provide a support for the other applications of
MDEIT technology.
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