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ABSTRACT In this paper, the problems of finite-time stability and stabilization for switched positive linear
time-delay systems under mode-dependent average dwell time (MDADT) are investigated. By proposing a
novel multiple piecewise copositive Lyapunov-Krasovskii functional, new results on the sufficient conditions
of finite-time stability are obtained. In order to solve the limitation of the multiple piecewise copositive
Lyapunov-Krasovskii functional on designing controllers, a novel linear combinatorial copositive Lyapunov-
Krasovskii functional is constructed, this provides a possibility for the numerical construction of the
controller. Then by using state feedback controller, the finite-time stabilization is achieved. Finally, some
simulation results are given to show the advantages of our methods.

INDEX TERMS Switched positive systems, finite-time stability, linear programming, mode-dependent
average dwell time, time delay.

I. INTRODUCTION
Switched systems consist of several subsystems described by
differential or difference equations and a switching signal
orchestrating the switching among these subsystems. Due
to the importance of switched systems in theoretical devel-
opment and practical application, switched systems have
attracted much attention from scholars [1]–[6], [7]. When the
initial condition is non-negative, the state is always limited
to non-negative. Such system is called a positive system.
In recent decades, switched positive systems have attracted
the wide interest of scholars because switching signals deter-
mine the switching rules amongmultiple positive subsystems.
And the study of such systems does meet the practical needs
of different fields, such as ecology, industrial engineering,
communications and so on [8]–[10]. [11] and [12] have
studied the stability problem for continuous-time switched
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positive systems by proposing a weak common copositive
Lyapunov function approach and a discretized copositive
Lyapunov function, respectively. [13] has dealt with the sta-
bilization problem of positive switched linear system with
disturbance in both continuous-time case and discrete-time
case by introducing a class of weak common linear copositive
Lyapunov functions. A state feedback controller has been
designed for singular positive Markov jump systems with
partly known transition rates in [14]. In the above literature,
linear copositive Lyapunov function and linear programming
(LP) are considered to be an effective combination of tools to
solve the problems of switching positive systems.

In practical applications, time delay phenomenon is
widespread in the dynamic systems. Although many achieve-
ments have been made in time delay systems, due to the
coupling relationship between the complexity of time delay
and the particularity of switched positive systems, there are
few research achievements on the stability of switched posi-
tive linear time-delay systems (SPLTSs) [15]–[18]. In [19],
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by developing a novel multiple discontinuous co-positive
Lyapunov-Krasovskii functional approach, the conditions of
stability are established for switched positive linear time-
delay systems by linear programming approach under mode-
dependent average dwell time switching. And exponential
stability, L1-gain performance and controller design problems
have been investigated for a class of switched positive sys-
tems with time-varying delays in [20]. [21] has discussed
the problem of finite-time L1 control for a class of switched
positive linear systems with time-varying delays. And [22]
showed that the proposed weak excitation condition for the
delay-free case was also sufficient for the asymptotic stabil-
ity of the switched positive linear system under unbounded
time-varying delays. In [23], the problem of exponential L1
output tracking control has been addressed for switched pos-
itive linear systems with time-varying delays under average
dwell time (ADT) switching. [9] has designed an multi-mode
observer for a class of switched positive linear time-delay
systems. The finite-time control has been discussed for a class
of discrete impulsive switched positive time-delay systems
under asynchronous switching in [24]. [25] has investigated
the problem of static output-feedback L1 finite-time control
for switched positive systems with time-varying delays. And
then [26] has considered the problems of exponential stability
and L1-gain analysis for positive time-delay Markovian jump
systems with switching transition rates. ThenH∞ control has
been investigated for positive time-delay systems with semi-
Markov process and the control scheme has been applied for
communication network model in [27].

Stability is a hot topic in the field of switched positive
systems. However, most of the literatures study the traditional
Lyapunov stability. Different from the Lyapunov stability,
finite-time stability focuses on the transient behavior of a
system response.More specifically, if once the time interval is
fixed, the state of the system does not exceed a certain bound
during this time interval, the system is said to be finite-time
stable. In normal conditions, Lyapunov asymptotical stability
is enough for practical applications. But there are some cases
where large values of the state are not acceptable. For exam-
ple, in chemical process, temperature, pressure or some other
quantities require a fall back to the specified range within
a fixed- time interval. Thus, introducing such a stability
concept is really essential because of its wide applications
in practice. Especially in the control of nonlinear dynamics,
it needs to keep the states in a certain bound during a finite-
time interval to avoid the saturations or the excitations, etc.
Therefore, in this context, the study of finite- time stabil-
ity is crucial. Some related results have been reported in
references [4], [28]–[31]. In [10] the concept of finite-time
stability was extended to switched positive linear systems and
two sufficient conditions were given by using LP technique.
Following [10], some results on finite time stability of switch-
ing positive linear systems were reported in references [21],
[24], [25], [32]–[34]. But as mentioned earlier, time delay
usually deteriorates the behavior of the system and even leads
to the instability of the system, few literatures dealt with the

finite-time stability for SPLTSs. And in the above literatures,
only [21], [24], [25] dealt with the related issues of finite-
time stability for SPLTSs. Since Zhao et al. first proposed
a multi-discontinuous Lyapunov function method in [35],
few scholars have used this method to design controllers.
Although a time-delay controller is designed for switched
positive systems in [36], this study is only limited to the
analysis of systems without time delay. For SPLTSs, how
to apply this method presented in [35] to the design the
controllers based on linear programming technique is an issue
worthy of further study. To the best knowledge of the authors,
there has no research reported.

Motivated by the above illustrations, this article consid-
ers the problems of finite-time stability and stabilization for
SPLTSs under MDADT switching. First, sufficient condi-
tions are developed for the finite-time stability of SPLTSs
underMDADT switching by using LP approach. By introduc-
ing a novel multiple piecewise copositive Lyapunov function,
where each copositive Lyapunov function is allowed to have
multiple segments during the run time of each subsystem
being activated, a smaller lower bound on MDADT can be
achieved. This means that more parameters can be adjusted
for the MDADT. Then, finite-time stabilization conditions
are presented for SPLTSs under a state-feedback controller.
In this paper, the controller design is set as a linear pro-
gramming problem. By designing a numerical construction
of controllers, the controllers can be solved explicitly. For
switched positive linear time-delay systems, how to design
a numerical construction of controller by using multiple
piecewise copositive Lyapunov-Krasovskii functional is an
intersting and worthwhile issue. By proposing a novel linear
combinatorial copositive Lyapunov-Krasovskii functional,
a numerical construction approach of controller is proposed
explicitly. And the construction idea of this linear combi-
natorial copositive Lyapunov-Krasovskii functional method
can also be extended to the construction of linear combi-
natorial copositive Lyapunov function, so as to solve the
problems such as the numerical construction forms of con-
trollers or observers. In addition, compared with the existing
iterative method in [21], [37]–[40] based on linear matrix
inequalities, the numerical construction method of controller
presented in this paper has lower complexity and is easier to
calculate.

This paper is organized as follows. Section II gives some
necessary concepts and definitions of SPLTSs. In Section III,
new results on finite-time stability and stabilization are devel-
oped for SPLTSs with MDADT switching. Two numerical
examples are given in Section IV to show the efficiency of
our proposed methods. Finally, the paper is concluded in
Section V.
Notations: For a real matrix A, AT denotes its transpose,

A � 0(A � 0) means that all elements of matrix A are positive
(i.e. aij > 0)(non-negative, i.e. aij ≥ 0). R, Rn and Rn×n

denote the filed of real numbers, n-dimensional Euclidean
space, and the space of n × n matrix with real entries,
respectively. Rn

+ stands for the non-negative orthant in Rn.
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Denote by N and K the sets of non-negative numbers and
natural numbers, respectively. I denotes identity matrix with
an appropriate dimension. Let 1n = (1, . . . , 1)T with n entries
and 1(i)n = (0, . . . , 0, 1, 0, . . . , 0)T with the ith entry being 1.
For t ∈ [ti, ti+1),<σ (ti) = {0, 1, . . . ,Gσ (ti)−1},Gσ (ti) denotes
the number of segments of each Lyapunov function during the
operation time on each activated subsystem.

II. SYSTEM DESCRIPTION AND PRELIMINARIES
Consider the following switched linear time-delay system:

x(t + 1) = Aσ (t)x(t)+ Adσ (t)x(t − h)+ Bσ (t)u(t),

x(θ ) = φ(θ ) ∈ Rn
+, ∀θ ∈ [−h,−h+ 1, . . . , 0], (1)

where x(t) ∈ Rn and u(t) ∈ Rr are the system state and con-
trol input, respectively, φ(θ ) is the initial condition, h denotes
the time delay. Aσ (t) ∈ Rn×n, Adσ (t) ∈ Rn×n and Bσ (t) ∈
Rn×r are system matrices. σ (t) denotes switching signal of
system and takes values in a finite set S = {1, 2, . . . , J}.
As commonly assumed in the literature, σ (t) is continuous
from the right everywhere for a switching sequence 0 = t0 ≤
t1 ≤ t2 ≤ . . . . The σ (ti)th subsystem is said to be activated
when t ∈ [ti, ti+1), i ∈ N. The system state does not jump at
the switching instant.

First, some definitions and lemmas are given as follows.
Definition 1: [15] Given any initial conditions φ(θ ) ∈

Rn
+, θ ∈ [−h,−h+ 1, . . . , 0] and any switching signal σ (t),

if for any non-negative initial condition, the corresponding
trajectory x(t) ∈ Rn

+ and all u(t) ≥ 0 at all non-negative
integers t , then system (1) is said to be a switched positive
linear time-delay system.
Definition 2: [32] The time delay system (1) is a switched

positive linear system under any switching signals if and only
if Ap � 0, ∀p ∈ S, Adp � 0, ∀p ∈ S and Bp � 0, ∀p ∈ S.
Definition 3: [21] Given positive constants c1, c2 with

c1 < c2, Tf ∈ K, and two vectors δ � ε � 0 and a switching
signal σ (t). If it holds that

maxt∈[−h,−h+1,...,0]φ(t)T δ ≤ c1 ⇒ x(t)T ε < c2,

t = 1, 2, . . . ,Tf , (2)

where φ(t) is a vector-valued initial function defined on
[−h,−h + 1, . . . , 0], then the switched positive linear time-
delay system (1) with u(t) ≡ 0 is finite-time stable with
respect to (c1, c2, δ, ε, Tf , h, σ (t)).
Definition 4: [5] For any time interval [t1, t2](t2 > t1 >

t0), Nσp(t2, t1) represents the total switching times when
subsystem p is activated, and Tp(t2, t1) represents the total
running time of subsystem p, p ∈ S. If for any given constants
N0p > 0 and τap > 0, we have

Nσp(t2, t1) ≤ N0p + Tp(t2, t1)/τap, (3)

then τap and N0p are called MDADT and the chatter bound.
Without loss of generality, as shown inmost references, we let
N0p = 0 and t0 = 0.

III. MAIN RESULTS
In this paper, we aim to establish finite-time stability condi-
tions for system (1). Based on the multiple piecewise copos-
itive Lyapunov-Krasovskii functional (MPCLKF) approach
proposed in [36], we first analyze the problem of finite-time
stability and then we establish the stabilization conditions for
system (1).

A. FINITE-TIME STABILITY
This section will focus on the problem of finite-time stabil-
ity for switched positive linear time-delay system (1) with
u(t) ≡ 0.
Theorem 1: Consider system (1) with u(t) ≡ 0, for a given

time constant Tf , h > 0, λp > 0, 0 < ηp ≤ 1, µ̄p > 1
satisfying µ̄pη

Gp−1
p > 1, and two vectors δ � ε � 0, if there

exist positive vectors υ ip, µ
i
p, %

i
p, i ∈ <p, p ∈ S and positive

constants ξ1, ξ2, ξ3, ξ4, such that i ∈ <p, ∀(p,m) ∈ (S ×
S), p 6= m, the following inequalities hold,

ATdpυ
i
p − e

−λphIµip − e
−λphI%ip ≺ 0, (4a)

ATp υ
i
p − e

−λp Iυ ip + Iµ
i
p + hI%

i
p ≺ 0, (4b)

υ ip � ηpυ
i−1
p , i 6= 0, (4c)

υ0p � µ̄pυ
Gm−1
m , (4d)

µip � ηpµ
i−1
p , i 6= 0, (4e)

µ0
p � µ̄pµ

Gm−1
m , (4f)

%ip � ηp%
i−1
p , i 6= 0, (4g)

%0p � µ̄p%
Gm−1
m , (4h)

c1η
G(0)−1
σ (0) (ξ2 + ξ3 + ξ4(h− 1)) < c2ξ1eλpKf , (4i)

ξ1ε ≺ υ
i
p ≺ ξ2δ, µip ≺ ξ3δ, %

i
p ≺ ξ4δ, (4j)

then under MDADT

τap > τ ∗ap = Tf ln(µ̄pη
Gp−1
p )/[ln(c2ξ1eλpTf )

− ln(c1η
G(0)−1
σ (0) )− ln(ξ2 + ξ3 + ξ4(h− 1))],

(5)

the system is finite-time stablewith respect to (c1, c2, δ, ε, Tf ,
h, σ (t)).
Proof: For given Tf > 0 and t0 = 0, suppose we denote

the switching sequence as 0 ≤ t1 ≤ · · · ≤ tl ≤ tl+1 ≤ · · · ≤
tNσ (Tf ,t0) on time interval [t0,Tf ) with

∑
p∈S Nσp(Tf , t0) =

Nσ (Tf ,t0). Choose the following MPCLKF for SPLTS (1):

Vσ (t)(t, xt ) =V 1
σ (t)(t, xt )+ V

2
σ (t)(t, xt )+ V

3
σ (t)(t, xt ), (6)

where

V 1
σ (t)(t, xt ) = xT (t)υ ip,

V 2
σ (t)(t, xt ) =

t−1∑
j=t−h

eλp(j−t+1)xT (j)µip,

V 3
σ (t)(t, xt ) =

0∑
q=−h+1

t−1∑
j=t+q−1

eλp(j−t+1)xT (j)%ip.
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By defining 1V (t, xt ) = V (t, xt+1) − e−λpV (t, xt ), for any
σ (t) = p ∈ S,

1Vp(t, xt ) ≤ xT (t)(ATp υ
i
p − e

−λpυ ip + Iµ
i
p + hI%

i
p)

+ xT (t − h)(ATdpυ
i
p − e

−λphIµip
− e−λphI%ip). (7)

From (4a) - (4b), it arrives at

Vp(t, xt+1) ≤ e−λpVp(t, x(t)). (8)

From (8), for any t ∈ L iσ (tl ), we get that

V i
σ (tl )(t) ≤ e

−λσ (tl )(t−(tl+J
i
σ (tl )

))V i
σ (tl )(tl + J

i
σ (tl )). (9)

Then it follows from (4c), (4e), (4g) and (9) that

V
Gσ (tl )−1
σ (tl )

(tl+1 − 1) ≤ e−λσ (tl )(tl+1−1−(tl+J
Gσ (tl )

−1

σ (tl )
))

×V
Gσ (tl )−1
σ (tl )

(tl + J
Gσ (tl )−1
σ (tl )

)

≤ e−λσ (tl )(tl+1−1−(tl+J
Gσ (tl )

−1

σ (tl )
))
ησ (tl )

×V
Gσ (tl )−2
σ (tl )

(tl + J
Gσ (tl )−1
σ (tl )

)

≤ ησ (tl )e
−λσ (tl )(tl+1−1−(tl+J

Gσ (tl )
−2

σ (tl )
))

×V
Gσ (tl )−2
σ (tl )

(tl + J
Gσ (tl )−2
σ (tl )

)

. . .

≤ η
Gσ (tl )−1
σ (tl )

e−λσ (tl )(tl+1−1−(tl+J
0
σ (tl )

))

×V 0
σ (tl )(tl + J

0
σ (tl )). (10)

Through continuous integrations, for T ∈ [0,Tf ), (10) can be
rewritten as

Vδ(T )(T ) ≤
∏
p∈S

(µ̄pη
Gp−1
p )Nσpη

Gσ (0)−1
σ (0) e−λpTV 0

σ (0)(x(0)).

(11)

Noting that µ̄pη
Gp−1
p > 1, by Definition 4, one can obtain

that

Vδ(T )(T ) ≤ exp{
∏

p∈S N0pln(µ̄pη
Gp−1
p )}

×exp{maxp∈S [
ln(µ̄pη

Gp−1
p )

τap
− λp]× Tf }

×η
Gσ (0)−1
σ (0) V 0

σ (0)(x(0)). (12)

Given two vectors δ � ε � 0, from (4j) and (6), it follows
that

Vσ (T )(T ) ≥ ξ1xT (T )ε. (13)

V 0
σ (0)(0) ≤ ξ2x

T (0)δ + ξ3
−1∑
j=−h

sup−h≤θ≤0{xT (0+ θ )δ}

+ ξ4

−1∑
j=−h

(j− k + h)

× sup−h≤θ≤0{xT (0+ θ )δ}. (14)

Combine (12) with (13)-(14), by Definition 3, it leads to

xT (T )ε ≤
1
ξ1
η
G(0)−1
σ (0) e

{maxp∈S [
lnµ̄pη

Gp−1
p
τap

−λp]Tf }(ξ2 + ξ3

+ ξ4(h− 1))× sup−h≤θ≤0{xT (0+ θ )δ}

≤
c1
ξ1
η
G(0)−1
σ (0) e

maxp∈S [
ln µ̄pη

Gp−1
p

τap
Tf−λpTf ]

×eln(ξ2+ξ3+ξ4(h−1)). (15)

Substituting (5) into (15), we obtain

xT (T )ε < c2. (16)

According to Definition 3, we can conclude that the switched
positive system (1) is finite-time stable with respect to
(c1, c2, δ, ε, Tf , h, σ (t)). This proof is completed. �
Remark 1: In Theorem 1, i ∈ <p is introduced. Just illus-

trated in Section Notation, for p ∈ S, <p = {0, 1, . . . ,Gp −
1}, Gp denotes the number of segments of each Lyapunov
function during the operation time on each activated sub-
system. Due to the piecewise continuity of each Lyapunov
function required in MPCLKF during the operation time on
each activated subsystem, thus i may not be limited to 1 in
Theorem 1. Different from the classical multiple copositive
Lyapunov function, by using MPCLKF approach, two addi-
tional degrees of freedom can be gained when the MDADT is
obtained, namely ηp andGp. Thus, we can adjust these param-
eters arbitrarily according to actual engineering requirements
so that we can get lower bounds of small dwell time for each
subsystem.

B. FINITE-TIME STABILIZATION
In this section, we consider the synchronous switching
between the controller and the subsystem, and do not consider
the delay between the controller and the subsystem, so the
control occurs in the case of no delay.

In the sequel, we design a feedback controller for system
(1) as follows:

up(t) = Kpx(t), (17)

where Kp ∈ Rr×n is the controller gain designed in the form
of
∑r

i=1 1
(i)
r zTi /(1

T
r B

T
p υ

)
p where υp and zi, i = {1, 2, . . . , r}

are variables to be determined.
The following theorem provide sufficient conditions for the

stabilization of system (1).
Theorem 2: Consider system (1), for a given time constant

Tf , h > 0, λp > 0, 0 < ηp ≤ 1, µ̄p > 1 satisfying µ̄pη
Gp−1
p >

1, and two vectors δ � ε � 0, if there exist positive vectors
υp, µip, %

i
p, i ∈ <p, p ∈ S, vectors zi ∈ Rn, (i = 1, 2, . . . , r)

and z ∈ Rn, and positive constants ξ1, ξ2, ξ3, ξ4 such that
∀i ∈ <p, ∀(p,m) ∈ (S × S), p 6= q, inequalities (4a) - (4e)
and the following inequalities hold,

ATp υp + z− e
−λp Iυp + Iµip + hI%

i
p ≺ 0, (18a)

ATdpυp − e
−λphIµip − e

−λphI%ip ≺ 0, (18b)

zi � z, (18c)
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1Tr B
T
p υpAp + Bp

r∑
i=1

1(i)r z
T
i � 0, (18d)

ξ1ε ≺ υp ≺ ξ2δ, µ
i
p ≺ ξ3δ, %

i
p ≺ ξ4δ, (18e)

then under the state feedback controller (17), the closed-
loop system (1) is finite-time stable with respect to
(c1, c2, δ, ε, Tf , h, σ (t)) for the switching signal σ (t) with
MDADT (5).

Proof: Similar to the proof the Theorem 1, for given Tf > 0
and t0 = 0, we denote the switching sequence as 0 ≤ t1 ≤
· · · ≤ tl ≤ tl+1 ≤ · · · ≤ tNσ (Tf ,k0) on time interval [t0,Tf )
with

∑
p∈S Nσp(Tf , t0) = Nσ (Tf ,t0).

Choose the following MPCLKF for SPLTS (1):

Vσ (t)(t, xt ) =V 1
σ (t)(t, xt )+ V

2
σ (t)(t, xt )+ V

3
σ (t)(t, xt ), (19)

where

V 1
σ (t)(t, xt ) = xT (t)υp,

V 2
σ (t)(t, xt ) =

t−1∑
j=t−h

eλp(j−t+1)xT (j)µip,

V 3
σ (t)(t, xt ) =

0∑
q=−h+1

t−1∑
j=t+q−1

eλp(j−t+1)xT (j)%ip.

By defining 1V (t, xt ) = V (t, xt+1) − e−λpV (t, xt ), for any
σ (t) = p ∈ S, from (19), we can obtain

1V 1
p (t, xt ) = xT (t)(ATσ (t)υp + K

T
σ (t)B

T
σ (t)υp − e

−λp Iυp)

+ x(t − h)TATdσ (t)υp (20)

1V 2
p (t, xt ) = xT (t)µip − e

−λphxT (t − h)µip (21)

1V 3
p (t, xt ) ≤ hxT (t)%̃ip − e

−λphxT (t − h)%ip (22)

From (20) - (22), we can further obtain that

1V (t, xt ) ≤ xT (t)(ATp υp + ziB
T
p υp − e

−λp Iυp

+ Iµip + hI%
i
p)+ x

T (t − h)(ATdpυp

− e−λphIµip − e
−λphI%ip) (23)

In view of 1Tr B
T
p υp > 0, from (18a)- (18c), it leads to

1V (t, xt ) ≤ 0. Thus, we can acquire that

V (t, xt+1) ≤ e−λpV (t, xt ) (24)

In the sequel, similar to the proof in Theorem 1, we can
conclude that under the state feedback controller (17),
the closed-loop system (1) is finite-time stable with respect
to (c1, c2, δ, ε, Tf , h, σ (t)) for the switching signal σ (t) with
MDADT (5). This proof is completed. �
Remark 2: Different from the construction of the multiple

piecewise copositive Lyapunov-Krasovskii functional in The-
orem 1, a novel linear combinatorial copositive Lyapunov-
Krasovskii functional is proposed in Theorem 2. For example,
for the part with no time delay, the traditional continuous
copositive Lyapunov function is used, however, for the part
with time delay, the multiple piecewise copositive Lyapunov-
Krasovskii functional is used. Note that for the switched

positive systems with time delay, the multiple piecewise
Lyapunov-Krasovskii functional approach proposed in The-
orem 1 is not suitable for designing the numerical structure
of the controller. Thus, by constructing a novel linear com-
binatorial copositive Lyapunov-Krasovskii functional, this
provides a possibility for the numerical construction of the
controller. And the limitation of multiple piecewise coposi-
tive Lyapunov-Krasovskii functional is removed and the con-
servatism is reduced. Similarly, in order to solve the limitation
that multiple piecewise copositive Lyapunov functionmethod
cannot be used to design controller, the construction idea
of this linear combinatorial copositive Lyapunov-Krasovskii
functional method can also be extended to the construction of
linear combinatorial copositive Lyapunov function, so as to
solve the problems such as the numerical construction forms
of controllers or observers. In addition, compared with the
existing iterative method in [21], [37]–[40] based on linear
matrix inequalities, the numerical construction method of
controller presented in this paper has lower complexity and
is easier to calculate.

If we use the classical continuous Lyapunov-Krasovskii
functional, we can obtain the following corollary 1 and corol-
lary 2.
Corollary 1: Consider system (1) with u(t) ≡ 0, for a

given time constant Tf , h > 0, λp > 0, 0 < ηp ≤ 1,
µ̄p > 1 satisfying µ̄pη

Gp−1
p > 1, and two vectors δ � ε � 0,

if there exist positive vectors υp, µp, %p, p ∈ S and positive
constants ξ1, ξ2, ξ3, ξ4, such that ∀(p,m) ∈ (S × S), p 6= m,
the following inequalities hold,

ATdpυp − e
−λphIµp − e−λphI%p ≺ 0, (25a)

ATp υp − e
−λp Iυp + Iµp + h%p ≺ 0, (25b)

υp � µ̄pυm, (25c)

µp � µ̄pµm, (25d)

%p � µ̄p%m, (25e)

c1η
G(0)−1
σ (0) (ξ2 + ξ3 + ξ4(h− 1)) < c2ξ1eλpKf , (25f)

ξ1ε ≺ υp ≺ ξ2δ, µp ≺ ξ3δ, %p ≺ ξ4δ, (25g)

then under MDADT

τap > τ ∗ap = Tf ln(µ̄p)/[ln(c2ξ1eλpTf )

− ln(ξ2 + ξ3 + ξ4(h− 1))] (26)

, the system is finite-time stable with respect to (c1, c2, δ, ε,
Tf , h, σ (t)).
Corollary 2: Consider system (1), for a given time con-

stant Tf , h > 0, λp > 0, 0 < ηp ≤ 1, µ̄p > 1 satisfying
µ̄pη

Gp−1
p > 1, and two vectors δ � ε � 0, if there exist

positive vectors υp, µp, %p, p ∈ S, vectors zi ∈ Rn, (i =
1, 2, . . . , r) and z ∈ Rn, and positive constants ξ1, ξ2, ξ3, ξ4
such that ∀(p,m) ∈ (S × S), p 6= q, inequalities (25a) - (25c)
and the following inequalities hold,

ATp υp + z− e
−λp Iυp + Iµp + hI%p ≺ 0, (27a)

ATdpυp − e
−λphIµp − e−λphI%p ≺ 0, (27b)
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zi � z, (27c)

1Tr B
T
p υpAp + Bp

r∑
i=1

1(i)r z
T
i � 0, (27d)

ξ1ε ≺ υp ≺ ξ2δ,µp ≺ ξ3δ,%p ≺ ξ4δ, (27e)

then under the state feedback controller (17), the closed-
loop system (1) is finite-time stable with respect to
(c1, c2, δ, ε, Tf , h, σ (t)) for the switching signal σ (t) with
MDADT (26).
Remark 3: Compared with the existing references, our

results obtained in Corollaries 1 and 2 have two main advan-
tages. First, compared with [21], (26) obtained in Corollary 1
is mode-dependent, this means each subsystem has its own
dwell time, which providesmore flexibility. Next, we propose
the numerical solution of controller gain explicitly. Com-
pared with the iterative solution controller method presented
in [21], [37], our method is less conservative. When Gp =
1 in Theorem 1, MPCLKF transforms into MCLKF, thus
Theorem 1 transforms into Corollary 1.

By replacping MDADT with ADT in Theorems 1-2,
we can obtain corollary 3 and corollary 4.
Corollary 3: Consider system (1) with u(t) ≡ 0, for a

given time constant Tf , h > 0, λ > 0, 0 < η ≤ 1,
µ̄ > 1 satisfying µ̄ηG−1 > 1, and two vectors δ � ε � 0,
if there exist positive vectors υ ip, µ

i
p, %

i
p, i ∈ <p, p ∈ S

and positive constants ξ1, ξ2, ξ3, ξ4, such that ∀i ∈ <p,
∀(p,m) ∈ (S × S), p 6= q, the following inequalities hold,

ATdpυ
i
p − e

−λhIµip − e
−λhI%ip ≺ 0, (28a)

ATp υ
i
p − e

−λIυ ip + Iµ
i
p + h%

i
p ≺ 0, (28b)

υ ip � ηυ
i−1
p , i 6= 0, (28c)

υ0p � µ̄υ
Gm−1
m , (28d)

µip � ηµ
i−1
p , i 6= 0, (28e)

µ0
p � µ̄µ

Gm−1
m , (28f)

%ip � η%
i−1
p , i 6= 0, (28g)

%0p � µ̄%
Gm−1
m , (28h)

c1η
G(0)−1
σ (0) (ξ2 + ξ3 + ξ4(h− 1)) < c2ξ1eλKf , (28i)

ξ1ε ≺ υ
i
p ≺ ξ2δ, µ

i
p ≺ ξ3δ, %

i
p ≺ ξ4δ,

(28j)

then under ADT

τa > τ ∗a = Tf ln(µ̄ηG−1)/[ln(c2ξ1eλTf )− ln(c1ηG−1)

− ln(ξ2 + ξ3 + ξ4(h− 1))] (29)

, the system is finite-time stable with respect to (c1, c2, δ,
ε,Tf , h, σ (t)).
Remark 4: Compared with the lower bound of ADT

obtained in [10], [21], [32], [39], our results have two addi-
tional degrees of freedom to adjust for the lower bound of
ADT. For example, in addition to the conventional param-
eters, we can also get a smaller lower bound by increasing
G or decreasing η. This undoubtedly brings more flexibility
and convenience for practical engineering application.

Corollary 4: Consider system (1), for a given time con-
stant Tf , h > 0, λ > 0, 0 < η ≤ 1, µ̄ > 1 satisfying µ̄ηG−1 >
1, and two vectors δ � ε � 0, if there exist positive vectors
υp, µip, %

i
p, i ∈ <p, p ∈ S, vectors zi ∈ Rn, (i = 1, 2, . . . , r)

and z ∈ Rn, and positive constants ξ1, ξ2, ξ3, ξ4 such that
∀i ∈ <p, ∀(p,m) ∈ (S × S), inequalities (28a) - (28e) and the
following inequalities hold,

ATp υp + z− e
−λIυp + Iµip + hI%

i
p ≺ 0, (30a)

ATdpυp − e
−λhIµip − e

−λhI%ip ≺ 0, (30b)

zi � z, (30c)

1Tr B
T
p υpAp + Bp

r∑
i=1

1(i)r z
T
i � 0, (30d)

ξ1ε ≺ υp ≺ ξ2δ, µ
i
p ≺ ξ3δ, %

i
p ≺ ξ4δ,

(30e)

then under the state feedback controller (17), the closed-
loop system (1) is finite-time stable with respect to
(c1, c2, δ, ε, Tf , h, σ (t)) for the switching signal σ (t) with
ADT (29).

IV. ILLUSTRATIVE EXAMPLES
In this section, two examples are given to illustrate the effec-
tiveness of theoretical findings.

A. EXAMPLE 1
Consider system (1) with u(t) = 0, two subsystems are given
as follows:

A1 =
[
0.2 0.4
0.3 0.2

]
, A2 =

[
0.1 0.2
0.3 0.41

]
,

Ad1 =
[
0.01 0.02
0.01 0.05

]
, Ad2 =

[
0.01 0.03
0.02 0.01

]
.

If we choose h = 0.01, c1 = 0.1, c2 = 1.5, Tf = 10,
δ = [4; 5], ε = [0.01; 0.01], λ1 = 0.6, λ2 = 0.6, η1 = 0.8,
η2 = 0.7, µ̄1 = 10, µ̄2 = 10, G1 = G2 = 2, by solving
Theorem 1, we can obtain the solutions of the following
unknown variables:

υ01 =

[
312.7015
361.2003

]
, υ11 =

[
70.0625
80.9072

]
,

υ02 =

[
266.4822
393.3153

]
, υ12 =

[
60.8959
89.9051

]
, µ0

1 =

[
0.0723
0.1563

]
,

µ1
1 =

[
0.0352
0.0453

]
, µ0

2 =

[
0.3287
0.2918

]
, µ1

2 =

[
0.0622
0.0554

]
, %01 =[

57.0148
67.6233

]
, %11 =

[
12.5979
14.4039

]
, %02 =

[
92.7318
84.1902

]
, %12 =[

23.7105
18.8503

]
, ξ1 = 0.3776, ξ2 = 95.6516, ξ3 = 36.6024, ξ4 =

47.5843. Then we can figure out τ ∗a1 = 5.9194 and τ ∗a2 =
5.3365. FIGURE. 1 shows the state response of the system.
FIGURE. 2 is the simulation of x(t)T ε. FIGURE. 3 shows
the system mode. From FIGUREs. 1-3, it can be shown that
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FIGURE 1. Simulation of States.

FIGURE 2. Simulation of xT ε.

the system can achieve finite-time stability with respect to
(0.1, 1.5, δ, ε, 10, 0.01, σ (t)).
Remark 5: In [21], a finite-time L1 control scheme is

designed for SPLTSs under ADT switching signals by using
the classical linear copositive Lyapunov-Krasovskii func-
tional approach. Based on this approach proposed in [21],
we can obtain the lower bound under MDADT switching
signals. That is τa1 = τa2 = 23.3248. It shows that the
MPCLKF approach proposed in Theorem 1 can provide more
parameters to adjust for obtaining a smaller lower bound of
MDADT.

B. EXAMPLE 2
Consider system (1), two subsystems are given as follows:

A1 =
[
2.7 2.4
2.6 2.5

]
, A2 =

[
2.6 2.4
2.3 2.2

]
,

Ad1 =

[
0.1 0.2
0.3 0.4

]
, Ad2 =

[
0.1 0.2
0.4 0.3

]
,

FIGURE 3. Simulation of switching signal.

FIGURE 4. Simulation of states (open-loop).

B1 =
[
3.4 3.5
3.6 3.7

]
, B2 =

[
4.8 4.9
4.8 4.6

]
.

If we choose h = 0.2, c1 = 0.1, c2 = 1.5, Tf = 10,
δ = [4; 5], ε = [0.01; 0.01], λ1 = 1.1, λ2 = 1.1, η1 = 0.8,
η2 = 0.9, µ̄1 = 10, µ̄2 = 10, G1 = G2 = 2, by solving
Theorem 2, we can obtain the solutions of the following
unknown variables:

υ1 =

[
123.3909
64.3834

]
, υ2 =

[
113.9465
87.0304

]
,

µ0
1 =

[
0.9164
0.3087

]
, µ1

1 =

[
0.5837
0.2224

]
, µ0

2 =

[
0.1470
0.3192

]
,

µ1
2 =

[
0.1022
0.2021

]
, %01 =

[
48.4947
70.0900

]
,

%11 =

[
41.1832
62.9055

]
, %02 =

[
59.4136
68.4959

]
, %12 =

[
47.4473
54.7731

]
,

z1 =
[
−470.5879
−450.1145

]
, z2 =

[
−470.5891
−450.1172

]
,

4424 VOLUME 8, 2020



L.-J. Liu et al.: New Results on Finite-Time Stability and Stabilization of Switched Positive Linear Time-Delay Systems

FIGURE 5. Simulation of states (closed-loop).

FIGURE 6. Simulation of xT ε.

z =
[
−470.5487
−450.0498

]
, ξ1 = 0.0021, ξ2 = 65.8343,

ξ3 = 44.1017, ξ4 = 54.2835.
Then we can figure out

K1 =

[
−0.3561 −0.3406
−0.3561 −0.3406

]
,

K2 =

[
−0.2447 −0.2340
−0.2447 −0.2340

]
, τ ∗a1 = 6.3683 and

τa2 = 5.8280. FIGURE. 4 and FIGURE. 5 show the
state responses of the open-loop system and the closed-
loop system. FIGURE. 6 is the simulation of x(t)T ε.
FIGURE. 7 shows the system mode. From FIGUREs. 4-7,
it can be shown that even for unstable subsystems, the sys-
tem can achieve finite-time stabilization with respect to
(0.1, 1.5, δ, ε, 10, 0.2, σ (t)) under designed state-feedback
controllers.
Remark 6: Similar to the discussions in Remark 5, based

on this approach proposed in [21], we can obtain the lower
bound under MDADT switching signals. That is τa1 = τa2 =
22.0912. By contrast, the MPCLKF approach proposed in

FIGURE 7. Simulation of switching signal.

Theorems 1 and 2 can providemore freedom to obtain smaller
lower bound on MDADT. Further, this MPCLKF approach
proposed in Theorems 1 and 2 can be applied for the system
with ADT switching signals. It means that our results can
decrease the conservatism.

V. CONCLUSION
This paper has investigated the finite-time stability and stabi-
lization for switched positive linear time-delay systems with
MDADT switching signal. By introducingmultiple piecewise
copositive Lyapunov-Krasovskii functional, some sufficient
conditions of finite-time stability have been developed for
switched positive linear time-delay systems by using LP
method. And the finite-time stabilization can be achieved
by designing a switched state-feedback controller. Since the
multiple piecewise copositive Lyapunov-Krasovskii func-
tional method cannot be applied for the numerical struc-
ture design of the controller, by putting forward a novel
linear combinatorial copositive Lyapunov- Krasovskii func-
tional method, it provides a possibility for the numerical
construction of the controller. Thus, the limitation of the mul-
tiple piecewise copositive Lyapunov-Krasovskii functional
method has been canceled and the conservatism has been
reduced. Similarly, in order to solve the limitation that mul-
tiple piecewise copositive Lyapunov function method cannot
be used to design controller, the construction idea of this lin-
ear combinatorial copositive Lyapunov-Krasovskii functional
method can also be extended to the construction of linear
combinatorial copositive Lyapunov function, so as to solve
the problems such as the numerical construction forms of
controllers or observers. Further research includes the con-
sideration of adaptive control for nonlinear switched positive
systems ( [41]–[45]) and stability of probabilistic Boolean
networks [46].
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