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ABSTRACT Lossy compression algorithms are widely used in video coding. However, lossy compressed
videos exist some annoying distortion and artifacts, such as blocking, blurring, and ringing. Thus, coding
efficiency improvement is a steady-state topic in the domain of video coding. High Efficiency Video Coding
(HEVC), a recent video standard, adopts two in-loop filters for the improvement of the coding efficiency,
including deblocking (DB) and sample adaptive offset (SAO). In a certain extent, traditional in-loop filters
reduce the distortion and improve the video quality. But the reduction of the distortion is a nonlinear problem
that is difficult to be solved by traditional linear filters. Recently, the progress of deep learning shows
the possibility to settle the complex problems in the computer vision field. Meanwhile, according to the
compressive sensing theory, the post-processing method at the decoder end can further enhance the coding
efficiency. In this paper, we propose a variable-filter-size Residue-learning convolutional neural network
with batch normalization layer (VRCNN-BN). Our model is an end-to-end model. We feed the decoded
pictures to the model at the decoder end. Different from previous methods, we apply the model to luma
pictures and chroma pictures, respectively. In order to comprehensively evaluate the coding performance of
both luma and chroma components, the color-sensitivity-based combined PSNR (CS-PSNR) is exploited to
measure the effectiveness of the proposed method. Compared to HEVC baseline, our approach achieves an
average BD-rate reduction of 10.3%, 8.9%, 13.1% and 11.8% in terms of CS-PSNR for random access, all
intra, low delay P and low delay B configurations, respectively. Abundant experimental results indicate that
our method is better than existing similar methods.

INDEX TERMS Convolutional neural network, end-to-end, post-processing, high efficiency video coding.

I. INTRODUCTION
In the past decades, videos have taken an important part in our
daily communications. Under the condition of bandwidth-
limited transmission, video compression has become a sig-
nificant research orientation of the video coding. Lossy video
compression standards, targeting for saving coding bit-rates
and transmitting high quality videos, have achieved a com-
mendable compression efficiency, such as high efficiency
video coding (HEVC) standard [1] and IEEE1857 video cod-
ing standard [2]. However, most of the lossy video coding
algorithms are based on block-prediction, block-transform
coding, and quantization coding. Thus, the lossy video coding
algorithms by nature cause distortion and artifacts. In the
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current video coding standard, some post-processing algo-
rithms are committed to reducing distortion and artifacts,
such as sample adaptive offset (SAO) [3] and deblocking
(DB) [4]. Meanwhile, in pace of the development of deep
learning, it becomes feasible to apply convolutional neural
networks (CNNs) to end-to-end post-processing methods for
videos and images [5]–[7].

In this paper, we propose a post-processing method for
luma pictures and chroma pictures. In contrast to ear-
lier CNN-based post-processing algorithms, our method
takes luma pictures and chroma pictures into the post-
processing model, respectively. In order to satisfy the require-
ments, we propose a modified variable-filter-size residue-
learning convolutional neural network (VRCNN). Our pro-
posed model adds the batch normalization layer [8] to
VRCNN, named VRCNN-BN. The structure of VRCNN-
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BN will be described in detail in section III. In our model,
we implement an end-to-end post-processing method for
video coding. Besides, VRCNN-BN model is not sensible
to the size of input pictures. The model can apply to the
videos, which are in the usual case of 4:2:0 color sampling
[1]. In the test, each sequence is compressed by HEVC
under four coding configurations: all intra (AI), low delay
P (LDP), low delay B (LDB), and random access (RA) [9].
The compressed videos are then divided into luma pictures
and chroma pictures, which are post-processed respectively.
In the experiment, the chroma pictures tend to perform better
than the luma pictures. The results of the experiment verify
that our model can apply to video post-processing problems
comprehensively.

In the domain of post-processing for videos and images,
most studies focus on reducing blocking artifacts, ringing
artifacts, color biases, and blurring artifacts [10]. In HEVC,
the most current video standard, there are mainly two post-
processing algorithms for artifacts reduction, including DB
and SAO. DB is specifically designed for reducing blocking
artifacts, which lessens the difference at the boundaries
of prediction blocks and transform blocks. Furthermore,
DB does not require any additional bits [4]. SAO is applied
after the DB to further reduce the artifacts by changing the
sample offset of the blocks in an image. Compared to DB,
SAO is designed to attenuate general compression artifacts.
However, SAO requires to transmit additional bits, that are
used in explicitly signaling the offset of each block from
the encoder to the decoder for reducing sample distortion
effectively [3]. Both DB and SAO contribute to improve
video quality and save bit-rates efficiently. However, it is a
complicated problem to reduce the distortion in lossy video
compression. Both DB and SAO, the existing in-loop filtering
methods, are not enough to satisfy the higher quality of video
coding.

The main limitation of current post-processing algorithms
in HEVC is that the linear filters cannot cope with nonlin-
ear distortion. Traditional post-processing algorithms mainly
focus on DB filters [11], [12]. In contrast to traditional
methods, deep learning has led to a series of breakthroughs
for dealing with nonlinear problems [7]. And most progress
of deep learning is not only the result of more powerful
hardware, lager dataset and deeper models, but also a conse-
quence of new ideas and algorithms [5].With the introduction
of some new methods, such as batch normalization (BN)
layer [8], activation function of rectified linear units (ReLU)
[13], and optimizer of Adam [14], deep learning has dra-
matically advanced the state of the art in vision, speech,
and many other areas[8]. As so far, many proposed CNNs
perform better than current post-processing algorithms in
HEVC. In terms of post-processing algorithms for videos,
CNN-based approaches can roughly be divided into two
aspects as follows:

1) the approaches are designed to replace in-loop filters at
the encoder end [15]–[17]. Among current video standards,
the in-loop filters are applied to the reconstructed samples

before writing them into the decoded picture buffer in encoder
loop [1]. And the picture buffer is used for reference buffer
in prediction coding. Thus, the in-loop filters are encoder-
end post-processing algorithms that improve the coding effi-
ciency and change the bit-streams signaled to the decoder
end.

2) the approaches improve video coding efficiency at
the decoder end [18]–[21]. for some applications limited
by the bandwidth and storage, the post-processing algo-
rithms use the decoded videos as inputs. Although the
in-loop filters reduce the distortion inside videos at the
encoder end. However, it is hard to assure the optimal cod-
ing efficiency. Thus, the post-processing methods at the
decoder end are possible to further enhance the quality of
decoded videos.

In this paper, we mainly focus on the coding efficiency
improved by CNN-based post-processing algorithms at the
decoder end. In section II, inspired by related works, we pro-
pose a CNN-based post-processing method and a network
structure, namedVRCNN-BN. Section III presents the details
of VRCNN-BN and the post-processing for luma pictures and
chroma pictures. Experimental results are demonstrated in
section IV. And section V concludes our work and presents
the future works.

II. RELATED WORKS
Currently, with the development of high-performance GPU
device, there are several existing CNNs for artifacts reduc-
tion and quality improvement. Some recent proposals and
methods are summarized as follows, which have made some
progress.

A. CNN-BASED POST-PROCESSING ALGORITHMS
AT THE ENCODER END
In the domain of post-processing for videos, there are two
aspects as mentioned previously. One is themethod of in-loop
filters for videos, which performs at the encoder end. Another
is about out-of-loop post-processing algorithms that works at
the decoder end. According to the research in residual learn-
ing, K. He et al. proposed a deep residual network for solving
image recognition problems [7]. In this article, the ideas of
residual learning influence the designing of models for CNN-
based post-processing.

Among the in-loop filters, W. Park et al. proposed an
in-loop filtering technique using convolutional neural net-
work (IFCNN) for replacing SAO [15]. They show the
results of reducing 2.8% in average BD-rate. J. Kang et al.
proposed a multi-modal/multi-scale convolutional neural
network (MMS-net) to replace exiting DB and SAO in
HEVC [16]. Their method consists of two sub-networks
of different scales, which reduces the average BD-rate by
4.55% and 8.5%, respectively. Y. Dai et al. proposed a
Variable-filter-size Residue learning convolutional neural
network (VRCNN) as the replacement of both DB and SAO
in HEVC intra coding [17]. In their experiments, VRCNN
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is reported to achieve a promising result of average 4.6%
BD-rate reduction.

B. CNN-BASED POST-PROCESSING ALGORITHMS
AT THE DECODER END
At the decoder end, the CNN-Based post-processing methods
performer as out-of-loop filters. Compared to the in-loop fil-
ters at the encoder end, the out-of-loop filters, at the decoder
end, apply to the decoded videos and satisfy the demands to
improve the quality of decoded videos.

Since the video is encoded at the encoder end, the out-
of-loop filters act on the decoded video, which are sim-
ilar to the super resolution (SR) algorithms for videos
or images. In terms of deep learning for SR problems,
C. Dong et al. proposed a structure named super reso-
lution convolution neural network (SRCNN) [22]. Based
on SRCNN, C. Dong et al. proposed an artifacts reduc-
tion convolution neural network (ARCNN) for reducing
artifacts in lossy JPEG [23] images [24]. In their article,
the ARCNN is reported to achieve 1 dB higher than JPEG.
Furtherly, J. Kim et al. proposed a very deep CNNs for SR
problems (VDSR) inspired by VGG-net [6], which claims
that VDSR performs better than SRCNN with extremely
high learning rates (104 times higher than SRCNN) [25].
Based on the VDSR for SR problems, C. Li et al. pro-
posed a VDSR, with 20 convolution layers [19], for post-
processing algorithms. their approach is adopted to extract
more meaningful information from the reconstructed error
and improve the filtering performance. Compared to HEVC
baseline, their approach achieves an average BD-rate reduc-
tion of 1.6% on the six sequences in 2017 ICIP Grand
Challenge[26].

More recently, T. Wang et al. proposed a Deep CNN-based
Auto-Decoder (DCAD) for post-processing at the decoder
end [18]. At the decoder end, their approach can further
improve the coding efficiency post the DB and SAO. In this
paper, the DCAD is claimed to have an average BD-rate
reduction of 5.0%, 6.4%, 5.3% and 5.5% for AI, LDP, LDB,
and RA configurations, respectively. L. Ma et al. proposed
a Residual-based Video Restoration Network (Residual-
VRN) for video post-processing [20][21]. Compared to
HEVC baseline, their method performs better than DCAD
with an average BD-rate reduction of 7.4%,9.4%,7.4%
and 7.6% for AI, LDP, LDB, and RA configurations,
respectively.

Meanwhile, there are some of the latest methods for
post-processing for images post-processing, which are sim-
ilar to the post-processing algorithms for intra video cod-
ing. M. Barni et al. proposed a JPEG -aware CNN for
JPEG post-processing, which is robust to JPEG compres-
sion [27]. H. Ma et al. proposed a pixel CNN for JPEG
images post-processing [28]. In their article, the pixel CNN
is reported to achieve 0.74 dB higher than JPEG-2000,
averagely [29].

III. VRCNN-BN BASED POST-PROCESSING
In this section, we analysis the structure of VRCNN-BN. And
then we propose our post-processing method that works on
luma pictures and chroma pictures.

A. STRUCTURE OF VRCNN-BN
As mentioned in section I, distortion reduction is a com-
plex nonlinear problem. Thus, in VRCNN-BN, we introduce
the nonlinear function ReLU as the activation function. The
ReLU works as the activation function to ensure that gradi-
ents always exist. As described in (1), the output feature maps
of ReLU layer are always greater than or equal to zero. Since
most input feature maps are composed of positive features,
ReLU layer is a good guarantee for the transfer of gradients
during back propagation. However, in VRCNN-BN, we train
the residual information between low quality images with
high quality images. In order to avoid dead ReLU layers,
we only use the ReLU layer in the first three layers. As shown
in Fig. 1, we keep the output feature maps of layer 4 without
using the activation function.

ReLU (x) =

{
0 if x < 0
x if x ≥ 0

(1)

Meanwhile, we choose the BN layer as the normalization
item in our model. As mentioned in [8], BN layer performs
better than dropout and L2-norm since the BN layer learns
the scale and shift on a batch size.

µ =
1
N

N∑
i=1

xi (2)

σ 2
=

1
N

N∑
i=1

(xi − µ)2 (3)

x̂ =
x − µ
√
σ
2 (4)

y = γ x̂ + β (5)

As shown in (2), (3), (4), (5), the input x of BN layer is a
N-dimensional input. And N is the size of a mini-batch. In the
process of training VRCNN-BN, we set the size of a mini-
batch is 120. we count the mean µ and the variance σ 2 of the
mini-batch, respectively. We normalize each dimension of x
and get the result x̂ since the mean and the variance of the
mini-batch have been counted. The x̂ is also a N-dimensional
variable. Then the BN layer introduces a pair of parameters γ
and β. γ and β scale and shift the normalized value x̂. Finally,
we get the y which is a N-dimensional output of BN layer.
The above is the entire process of the BN layer. During the
actual use of BN layer, a feature map shares a set of BN layer
parameters. And BN layer is not sensitive to the size of input
feature maps. Thus, we can resize the input feature maps in
the case of using a set of BN layer parameters. In this way,
we can use the trained model to process videos of different
resolutions.
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FIGURE 1. The structure of VRCNN-BN: there are four layers in VRCNN-BN, including six combination layers (each combination layer consists of a
convolution layer, a BN layer and a ReLU layer except layer 4). Between layer 2 and layer 3 and between layer 3 and layer 4, there is a concatenate layer,
respectively, which combines the output feature maps of pervious layer. At the end of VRCNN-BN, we add the output feature map with decoded picture,
and the result is post-processing picture.

TABLE 1. The structure of vrcnn-BN and some Data for each layer
(including filter size, number of filters, number of parameters, AND which
layer connected to).

The structure of VRCNN-BN is shown in Fig 1 and Table 1.
As shown in Fig 1, VRCNN-BN extract the residual image
between the input image and the output image. And in
layer 2 and layer 3, there are two filters of different sizes in
each layer. Then the concatenate layer combines the output
feature maps of two filters at the channel dimension. For
example, when layer 2-1 and layer 2-2 have 16 and 32 output
feature maps respectively, concatenate1 has 48 output feature
maps. The number of output feature maps in concatenate
2 is 48 in the same reason. In Table 1, the parameters of

each layer are also shown. By training these parameters,
the output images converge to the label images. After the
training process, the model can be used to post-process the
low-quality images. The process of training and testing will
be introduced in detail in section IV.

B. PROPOSAL POST-PROCESSING METHODS
Asmentioned in section II, previous post-processingmethods
mainly focus on the post-processing of luma pictures.

As shown in Fig 2, our approach provides the VRCNN-
BN-based schemes for luma pictures and chroma pictures.
Since luma pictures are different from chroma pictures,
we trainedVRCNN-BNmodels for luma pictures and chroma
pictures, respectively. When inputting a decoded picture in
case of 4:2:0 color sampling, the decoded picture is separated
to a luma picture and two chroma pictures. Then the luma
picture and the chroma pictures are respectively subjected
a VRCNN-BN-based post-processing model to obtain out-
put pictures. Finally, the output pictures, including an output
picture after post-processing of luma picture and two output
pictures after post-processing of chroma pictures, are recon-
stituted to the post-processing picture in case of 4:2:0 color
sampling, which has the same size as the decoded picture.

The proposed coding scheme is shown in Fig 3. Our post-
processing algorithm is a decoder-end method for decoded
videos. Based on the existing lossy video coding standard,
such as HEVC, we improve the coding efficiency at the
decoder end.

IV. EXPERIMENTS AND DISCUSSION
In this section, we propose the process of training and testing
for VRCNN-BN. The experimental results of VRCNN-BN
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FIGURE 2. The process of VRCNN-BN-based post-processing for luma
pictures and chroma pictures.

FIGURE 3. VRCNN-BN-based post-processing in coding scheme.

will be compared with HEVC baseline and existing similar
algorithms.

A. TRAINING MODELS
The input of model is the frame Yn, n ∈ (1, . . . ,N ), from
the compressed video Y . The output of model is F (Yn |2),
n ∈ (1, . . . ,N ), where 2 is the whole parameters set of
VRCNN-BN, including convolution layers and BN layers.
And these parameters will be updated at the process of back-
propagation. The ground truth of model is the frame Xn,
n ∈ (1, . . . ,N ), from the origin video X. The goal of training
is to minimize the following loss function:

L (2) =
1
N

N∑
n=1

‖F (Yn |2)− Xn‖2 (6)

In the experiment, we use the deep learning platform
Keras [30] with Tensor Flow backend [31]. During the
process of training, the Initialization method of weights is
Xavier [32]; the mini-batch size is 120; the optimizer in
training is Adam [14], where the learning rate α is set to
0.001, the momentum parameters β1, β2 are respectively set
to 0.9 and 0.99, and the Infinitesimal itemε is set to 10−8,
which is used to avoid errors in learning rate divided by zero,
when updating parameters inVRCNN-BN.

In order to obtain training data, we compressed the
sequences under of the common test conditions [9]. All the
sequences are compressed by HM16.19 encoder, which is
the newest version of HEVC reference software, used four
QP settings (22, 27, 32, 37) and four configurations (AI, RA,
LDB, LDP). The bit-stream files of compressed sequences
are decoded by HM16.19 decoder. In order to extend train-
ing data, for each QP, we randomly select frames from
compressed sequences, mixing the compressed videos at
four configurations, and origin sequences. Then the selected

FIGURE 4. Rate distortion curve of BQTerrace 1080p sequence on the case
of RA. (a), (b), (c), (b) show the Y-PSNR, U-PSNR, V-PSNR, and CS-PSNR of
our approach (VRCNN-BN) and baseline (HM16.19), respectively.

frames are separated into luma pictures and chroma pictures,
where luma pictures and chroma pictures are respectively
divided into 64× 64 sub-pictures on pairs of compressed
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FIGURE 5. The fifth frame of Fourpeople and Johnny. (a), (c), (e), (g) show the reduction of blocking
artifacts by our approach. And (b), (d), (f), (h) show the reduction of ringing artifacts by our method.

frame and origin frame without overlap. And a pair of corre-
sponding pictures is regarded as a sample. Finally, we select
1394400 luma samples and 679200 chroma samples as train-
ing set for each QP.

For each QP, we respectively train the VRCNN-BNmodels
for luma and chroma pictures on ourGPU1080ti. The number
of epochs is set to 100. After training, trained models are used
to post-process luma pictures and chroma pictures. For each
QP, the model for luma pictures are used for processing Y
samples and the model for chroma pictures are used for U
samples andV samples at the decoder end. There are 8 trained
models for 4 QP settings.

B. TESTING MODELS AND COMPARING WITH
HEVC BASELINE
For videos in the case of 4:2:0 color sampling, there are
Y-PSNR, U-PSNR and V-PSNR for each channel. In order

to comprehensively consider the impact of the three channels
on video quality, the color-sensitivity-based combined PSNR
(CS-PSNR) [33][34] is utilized to evaluate the results of
experiment. As described in (7):

CS− PSNR

=−10log10

(
PY

10
Y−PSNR

10

+
PU

10
U−PSNR

10

+
PV

10
V−PSNR

10

)
(7)

where PY = 0.685, PU = 0.137, PV = 0.178.
In (7), the PY, PU, PV are the percentages of three channels,

respectively. The percentages are calculated from the results
of a specific experiment. Since we have calculated the PSNR
data, the BD-rate of our post-processing algorithm compared
to HEVC baseline is obtained from a good interpolation
curve through 4 data points [35], including QP22, QP27,
QP32, and QP37. With the increase of QP value, PSNR and
bit-rates decrease gradually. The quality of videos in low
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TABLE 2. The BD-rate results of our VRCNN-BN compared to HEVC baseline on the case of RA and AI.

bit-rates is worse than the videos in high bit-rates, and they
are different in PSNR. As shown in Table 2 and Table 3,
we test 18 sequences in common HM test conditions [9],
from class A to class E. Compared to HM16.19, our approach
achieves an average BD-rate (Y-PSNR) reduction of 9.4%,
8.3%, 12.0% and 11.3% for RA, AI, LDP and LDB con-
figurations, respectively. Furtherly, the BD-rate results of
CS-PSNR subsume the BD-rate results of Y-PSNR, U-PSNR,
and V- PSNR. Compared to HM16.19, our approach achieves
average BD-rate reduction, on CS-PSNR, of 10.3%, 8.9%,
13.1% and 11.8% for RA, AI, LDP and LDB configurations,
respectively. In Table 4, the average CS-PSNR results of our
approach (proposal) is higher than HEVC baseline (anchor)
for each QP. The experimental results show that our method
can effectively improve the objective quality of videos.

Among the results of all sequences, the results of BQTer-
race are especially good. As shown in Fig 4, we test the
Y-PSNR, U-PSNR, V-PSNR, and CS-PSNR of our approach
and HM16.19 on BQTerrace used QPs (22, 27, 32, 37).
Compared to HM16.19, the four-QP-based BD-rate reduc-
tion of our approach is 19.6%, 32.5%, 39.1%, and 20.8%
on Y-PSNR, U-PSNR, V-PSNR and CS-PSNR, respectively.
On the high bit-rates, our approach gets higher quality videos.
Especially in the case of QP = 22, V-PSNR of our approach
is 1 dB higher than baseline (HM16.19).

As shown in Fig 5, the images obtained by our
approach have reduced more artifacts than HVEC baseline.

In Fig 5 (a), (c), (e), and (g), the red blocks show the blocking
artifacts after video coding. Compared to the original video
signal, the HEVC baseline creates a boundary line at the left
of face in the red blocks. Our approachweakens this boundary
line and the CS-PSNR result of our approach is 0.73 dB
higher than HM16.19 on the fifth frame of Fourpeople.
In Fig 5 (b), (d), (f), (h), the ringing artifacts are obvious in
the blue background area. Our approach reduces the ringing
artifacts in Fig 5 (h) and the CS-PSNR result of our approach
is 0.66 dB higher than HEVC baseline on the fifth frame of
Johnny.

C. COMPARING WITH OTHER METHODS
In this section, we compared our approach with other post-
processing algorithms. The video coding efficiency of each
approach is evaluated byBD-rate. The results are summarized
in Table 5, 6, and 7.

Since VRCNN is a post-processing algorithm for intra
HEVC coding according to [17], we list the BD-rate results
of our approach and VRCNN for AI configuration in Table 5.
On each sequence class, the average BD-rate (Y-PSNR,
U-PSNR, and V-PSNR) reduction of our approach is 3.7%,
8.2%, and 9% more than VRCNN in [17], respectively.
In contrast to VRCNN, our approach adds BN layers to
improve the original VRCNN at the decoder end. During the
process of training, the BN layers allow us to use much higher
learning rates and fewer training steps [8]. Thus, our model
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TABLE 3. The BD-rate results of our VRCNN-BN compared to HEVC baseline on the case of LDP and LDB.

TABLE 4. The average CS-PSNR results of our VRCNN-BN compared to HEVC baseline on the case of RA, AI, LDP and LDB.

is trained on a big data set, including 1394400 luma samples
and 679200 chroma samples, and performers better on test
sequences.

We list the average BD-rate results of our approach, DCAD
[18], and Residual-VRN [20], [21] for RA, AI, LDP, and
LDB configurations in Table 6. For each configuration, since
DCAD andResidual-VRN are post-processing algorithms for
luma pictures, the average BD-rate reduction on Y-PSNR

of our approach is 4.55% more than DCAD and 2.37%
more thanResidual-VRN. Compared toDCADandResidual-
VRN, our approach uses different sizes of convolution kernels
in one layer, which allows us to simplify the network and
performer better in post-processing.

Table 7 shows the BD-rate results of our approach and
VDSR in [19] on cif sequences [26]. According to [19],
we take the x265 platform as encoder, which is same as
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TABLE 5. The BD-rate performance of vrcnn-BN comparing with Vrcnn
[17] FOR hevc intra coding.

TABLE 6. The average BD-rate performance of VRCNN-BN comparing with
Residual-VRN [20], [21] and DCAD [18] in the case of RA, AI, LDP and LDB
for RA, AI, LDP and LDB configurantions.

TABLE 7. The BD-rate performance of vrcnn-BN comparing with
VDSR [19] on cif sequences.

their approach. On each cif sequence, because VDSR is
applied to luma pictures, the BD-rate reduction onY-PSNR of
our approach is 3.7% more than VDSR. As shown in Table 7,
the results of experiment indicate that our approach is still
valid for the videos with low bitrates and poor quality. Com-
pared to the videos with high bitrates, the neural network
cannot extract enough information to reconstruct the image.

V. CONCLUSION
In this paper, we present a CNN-based post-processing
algorithm for luma pictures and chroma pictures at the

decoder end. The proposed VRCNN-BN inspired by
VRCNN, VSDR and Residual-VRN. Our approach is better
than perviousmethods in achieving higher BD-rate reduction,
less artifacts, and better video quality. Meanwhile, our pro-
posed algorithm is applicable not only to luma pictures but
also to chroma pictures. In the usual case of 4:2:0 color sam-
pling, we test the BD-rate of CS-PSNR combined the Y-SNR,
U-PSNR andV-PSNR. Compared to HEVC baseline, we gain
the BD-rate reduction of 10.3%, 8.9%, 13.1%, and 11.8% on
CS-PSNR for RA, AI, LDP, and LDB configurations.

In the future, we plan to apply our post-processing method
to in-loop filters at the encoder end. Our method further
improves the coding efficiency not only by improving video
quality at the decoder end but also by reducing bit-rates at the
encoder end.
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