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ABSTRACT Ego-motion estimation, as one of the core technologies of unmanned systems, is widely used in
autonomous robot navigation, unmanned driving, augmented reality and other fields. With the development
of computer vision, there has been considerable interest in ego-motion estimation with visual navigation.
One of the core technologies in Visual navigation is using the matching feature points between consecutive
image frames to estimate pose. Since the feature-based method performed under the assumption of a
static environment, it susceptive to the dynamic targets. Visual navigation in the dynamic environment has
become an important research issue. This paper proposed a practical and robust features selection algorithm
of visual navigation which avoids using the feature points on dynamic objects. Firstly, according to the
instance segmentation of deep neural network, the objects are classified into potential dynamic and static
categories. Subsequently, the matching features on the potential moving objects are used to update vehicle
state respectively, meanwhile, the relevant reprojection error of other feature points on the background could
be calculated. Eventually, the result of whether the target is moving or not will be judged by the reprojection
error, and the features on dynamic targets are removed. To illustrate the effectiveness of the features selection
method in the dynamic environment, the proposed algorithm is merged into an MSCKF based on tri-
focal tensor geometry, and it has been evaluated in a public dataset. Experimental results demonstrated the
effectiveness of the proposed method.

INDEX TERMS Ego-motion estimation, visual navigation, features selection, instance segmentation,
reprojection error.

I. INTRODUCTION
Accurate ego-motion estimation plays a vital role in
autonomous robot navigation. In the last few years, there has
been considerable interest in ego-motion estimation based
on visual navigation [1], [2]. As the sensor of visual navi-
gation, camera could obtain sufficient information about the
surrounding environment. However, the ego-motion estima-
tion based on monocular camera has the scale uncertainty
question [3], [4]. The dual-camera system, which calculates
the parallax of two images to measure the distance of object,
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can solve this problem [5], [6], whereas the dual-camera
system has high computational complexity, and a relatively
long baseline is required for medium and remote measure-
ments. The inertial measurement unit (IMU) is another solu-
tion to solve the scale problem. Since the IMU is able to
get real scale information that the single camera could not
be, the visual-inertial odometry (VIO) can improve both
the reliability and precision of navigation [7]–[11]. Because
the feature information will be added into state vector in
traditional extended Kalman filter framework of VIO [12],
the computational complexity will increase over time, and it
is not suitable for large scale environments. One approach to
overcome this question is usingmulti-state constraint Kalman
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filter (MSCKF) [13] to remove the feature position from state
vector, and this method uses sliding windows to establish the
constraints of features among multiple poses, which is more
suited to ego-motion estimation of vehicles.

One of the core technologies in visual navigation is match-
ing the feature points between consecutive image frames.
The mismatches are inevitable during the feature matching.
Random sample consensus (RANSAC) [14], [15] is usually
used to address this issue, but it may also fail in the com-
plex dynamic environment, especially when there are a large
number of moving objects in the picture. In the sequence
image, the optical flow is generated if movements exist in the
image. A proper way is using the optical flow to distinguish
moving targets [16]. However, the accuracy of this method
is relatively low. Another method is using depth information
to estimate inappropriate feature points [17]. Meanwhile,
it increases the computation complexity. As a choice, employ-
ing the image classification algorithm to obtain the moving
objects could help to eliminate the outliers [18]. Whereas,
the traditional image classification method has relatively low
efficiency and is challenging to meet the requirements of a
high dynamic environment. A practical and robust features
selection algorithm is necessary.

Motivated by the outstanding performance of deep-
learning [19], [20], several relevant visual navigation tech-
nologies in dynamic environment have been proposed.
A single shot multibox detector is constructed to detect
dynamic objects with prior knowledge, and selection track-
ing algorithm is proposed to eliminate the interference from
dynamic objects [21]. However, the detect results expressed
by the least surrounding boxes can not obtain the full contour
information. The efficiency of this method needs to be fur-
ther improved. Another dynamic SLAM method combines
semantic segmentation network with moving consistency
checkmethod by optical flow to reduce the impact of dynamic
objects [22]. It is a pity that the performance in outdoor
scenes of this work was not shown. Additionally, a visual
SLAM system which adds the capabilities of dynamic object
detection and background inpainting has been proposed to
achieve precise navigation [23]. Also, the method could be
used in dynamic scenarios with monocular, stereo and RGB-
D configurations. Nevertheless, compared with the other two,
the performance of this algorithm in the monocular system
decreases obviously.

From the reviews above, the existing technologies can not
realize the precise ego-estimation using the monocular cam-
era in the dynamic outdoor environment. This paper proposed
a features selection algorithm based on deep-learning for
VIO, which could be performed in dynamic outdoor envi-
ronment. On the basis structure of visual inertial navigation
algorithm, deep learning is introduced to segment potential
dynamic targets. A features excluding strategy is used to
eliminate the features on moving objects. By removing these
feature points, the proposed method could realize the utilized
maximized features and achieve precision visual navigation
in dynamic environments. The proposed features selection

FIGURE 1. Process of the feature-based visual inertial navigation
combined with the proposed feature selection method.

algorithm will be merged into an MSCKF based on tri-focal
tensor geometry. Results of simulation experiments have
demonstrated the effectiveness of the proposed method.

The remainder of this paper is organized as follows:
Section II introduces the VIO framework this paper
employed. The proposed method is presented in Section III.
A number of comparisons are performed by experiments in
Section IV. Finally, Section V summarizes the key conclu-
sions of this work.

II. VISUAL EGO-MOTION ESTIMATION
Visual navigation could be classified into direct methods and
feature-based methods. The direct methods could estimate a
completely dense reconstruction by minimizing the photo-
metric error. However, large scale movements and rotations
will affect the estimated results. The feature-based methods
could only estimate a sparse reconstruction based on salient
points matching and epipolar geometry. Compared with the
direct methods, the feature-based methods have better robust-
ness in large scale motion estimation. Therefore, a feature-
based method which uses MSCKF based on tri-focal tensor
geometry is employed as our ego-motion estimation frame-
work [24], [25]. Fig. 1 is the process of the feature-based
visual inertial navigation combined with the proposed feature
selection method.

The system state of the selected VIO algorithm is divided
into two parts: nominal state and error state. The nominal
state, which is described in Equation (1), includes the pose
information and bias of the IMU.

x̂k =
[
x̂TIMU (p̂GI1)

T
(q̂GI1)

T
(p̂GI2)

T
(q̂GI2)

T
]T

(1)

where x̂IMU is the current IMU state which is shown in
Equation (2).

x̂IMU =
[
(p̂GI )

T
(q̂GI )

T
(v̂GI )

T
b̂Ta b̂Tg

]T
(2)

p̂GI is the IMU position in global frame, q̂GI the quaternion
from IMU frame to global, v̂GI the IMU velocity. b̂a and b̂a
are the bias of accelerometer and gyroscope. In the nominal
state, p̂GI1 and q̂

G
I1 are IMU position and quaternion of last but

one, p̂GI2 and q̂
G
I2 are the last.

Since the error state ofMSCKF is used in Kalman iteration,
the nominal and error state should be kept corresponding. The
error state is expressed in Equation (3).

x̃k =
[
x̃TIMU (δp̃GI1)

T
(δθGI1)

T
(δp̃GI2)

T
(δθGI2)

T
]T

(3)
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where x̃IMU is the current error of IMU state which is shown
in Equation (4).

x̃IMU = [ (δp̃GI )
T

(δθGI )
T

(δṽGI )
T

b̃Ta b̃Tg ]T (4)

δp̃GI is the position error, δθGI the attitude error, δṽGI the
velocity error, b̃a and b̃g are the bias error of accelerome-
ter and gyroscope. In the error state, δp̃GI1 and δθGI1 are the
position and attitude errors of last but one, δp̃GI2 and δθ

G
I2 are

the last. The framework of MSCKF has two processes: filter
propagation and measurement update.

A. FILTER PROPAGATION
In the MSCKF, the nominal state could be easily predicted
with kinematic equation by Runge Kutta. The propagation of
error state is given as Equation (5).

˙̃xk = Fx̃k + 0ni (5)

where F and 0 are the state transition matrix and noise
transition matrix which are expressed in Equation (6) and (7),
and ni is the noise vector of IMU.

F =


03∗3 03∗3 I3 03∗3 03∗3 03∗12
03∗3 F22 03∗3 03∗3 −I3 03∗12
03∗3 F32 03∗3 F34 03∗3 03∗12
03∗3 03∗3 03∗3 03∗3 03∗3 03∗12
03∗3 03∗3 03∗3 03∗3 03∗3 03∗12
012∗3 012∗3 012∗3 012∗3 012∗3 03∗12

 (6)

0 =


03∗3 03∗3 03∗3 03∗3
−I3 03∗3 03∗3 03∗3
03∗3 −R

(
q̂GI
)

03∗3 03∗3
03∗3 03∗3 I3 03∗3
03∗3 03∗3 03∗3 I3
012∗3 012∗3 012∗3 012∗3

 (7)

The elements in Equation (6) are as follows:
F22 = −

⌊
ω̂×

⌋
F32 = −R

(
q̂GI
)
bâ×c

F34 = −R
(
q̂GI
)

In the above equations, bω̂×c and bâ×c are the antisym-
metric matrix of angular speed and acceleration, and R(q̂GI ) is
the rotation matrix obtained from the quaternion.
The error prediction matrix φ can be obtained by Taylor

series. The process of Taylor series is described in Equa-
tion (8).

φ = exp (F1t) = I + F1t + 1/2!F21t2 + · · · (8)

The definition of noise covariancematrixQ is as following:

Q = ninTi (9)

Subsequently, the error system process noise W will be
calculated by using the noise covariance:

W =
∫
φ (τ) 0Q0Tφ(τ)T dτ (10)

FIGURE 2. Point-Line-Point correspondence of tri-focal tensor.

Lastly, the error state covariancematrixP can be calculated
as Equation (11).

Pk = φPk−1|k−1φT +W (11)

B. MEASUREMENT UPDATE
The observation model is based on tri-focal tensor which
describes the geometric relations among three camera
images. The tri-focal tensor could recover the camera motion
without the real position of features. Fig. 2 is the point-line-
point correspondence among three views.

Wherem1,m2 andm3 are the normalized plane coordinates
of one feature point in three views respectively, which can be
obtained by the intrinsic matrix of camera and pixel location
of feature point. l2 is the line perpendicular to the epipolar
line in second view. It is assumed that P1[I |0], P2[A|a4]
and P3[B|b4] are the projection matrices at three camera
viewpoints, where A and B are rotation matrixes from the first
view to the second and the third one, and a4 and b4 are the
relevant translation vector. The tri-focal tensor is shown in
Equation (12).

Ti = b4aTi − a4b
T
i (12)

where ai and bi are the i-column elements of P2 and P3. Then
the correspondence of point-line-point can be expressed in
Equation (13).

m3 =

(∑
i

m1iT Ti

)
l2 (13)

where m1i represents the i-column of m1.
The main consideration of MSCKF is the pose of the con-

secutive camera. As the error states directly affect the projec-
tion location of feature points, the measurement model in the
visual navigation framework is the location error of matching
points. Since the filter state includes three consecutive states
of the camera, the measurement model is represented by the
epipolar geometry of adjacent images and the tri-focal tensor
of three consecutive images. The correspondingmeasurement
model of the i-th feature point is given by Equation (14).

zi =


mT2 R

T
1,2 bt12×cm1

mT3 R
T
2,3 bt23×cm2

K
(∑

i
m1iT Ti

)
l2

 (14)
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FIGURE 3. Procedure of the proposed features selection algorithm performs in visual navigation system.

Ri,j means the rotation matrix from i to j, btij×c is the anti-
symmetric matrix of relevant translation vector, and K is the
intrinsic matrix of the camera. Since the measurement model
is nonlinear, the Sigma-Point approach is used to update the
system error state. The error state will be used to correct the
nominal state after the measurement update, which is shown
in Equation (15).

Xk = X̂k + X̃k (15)

Additionally, the RANSAC algorithm is also applied to
select inliers during the measurement update process. The
method used here is similar to 1-point RANSAC. Equa-
tion (16) is the inliers decision formula.

{m1,m2,m3}
Inliers

=

{
{m1,m2,m3}

∣∣∣∣∣
∥∥∥∥∥m3 −

(∑
i

m1iT Ti

)
l2

∥∥∥∥∥ < t

}
(16)

The RANSAC in visual navigation could detect the out-
liers of feature point, and it enables the VIO to work on a
certain dynamic environment. However, this method still has
a number of limitations. For example, the RANSAC may fail
with multiple objects moving simultaneously or several large
dynamic objects occupying an ample space in the image.
A practical and robust features selection algorithm is neces-
sary for visual navigation.

III. FEATURE POINTS SELECTION ALGORITHM BASED ON
INSTANCE SEGMENTATION
To reduce the adverse influence caused by moving objects
on ego-estimation, the features on dynamic targets should be
eliminated. A naive method is to remove all the feature points
that lie on the potential moving targets, resulting in a certain
number of valid feature points are also lost. This paper pro-
posed a features selection algorithm based on instance seg-
mentation. The procedure of the proposed method is depicted
in Fig. 3. This work prefers Mask R-CNN [26] to obtain the
object instance information. Additionally, the feature points
which are located on the potential dynamic objects will be

FIGURE 4. Instance segmentation results of Mask R-CNN.

selected. The Kalman filter, in turn, updated by the features
on each potential moving object. Subsequently, according to
the reprojection error to eliminate the improper feature points.
The remaining feature points which are trustworthy can be
used for visual navigation.

A. INSTANCE SEGMENTATION ALGORITHM
Computer vision has been improved rapidly in recent years,
especially in terms of object detection and segmentation. The
instance segmentation, as a combination of object detection
and semantic segmentation, requires finding and accurately
segmenting the object. Since the proposed method needs
to get the precise segmentation information of the poten-
tial moving objects, the instance segmentation technology is
adopted as the first step to implement the features selection
algorithm. The Mask R-CNN is used to implement the func-
tion in this paper.

Mask R-CNN is an extension of the Faster R-CNN [27],
a segmentation mask branch that executes in parallel with
other branches is introduced in the head section of the model.
Moreover, the Mask R-CNN prefers RoIAlign instead of
RoIPool to improve the accuracy of the mask. Through the
above improvements to the past network, Mask R-CNN has
a proper execution. The segmentation results of image are
depicted in Fig. 4.

In the proposed method, potential dynamic and static
categories are segmented by Mask R-CNN. The potential
dynamic objects mainly include person, animal, vehicle, etc.
The static category is considered as the background, which
includes construction, landmark, etc. The features on the
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FIGURE 5. Reprojection of the feature points.

background are generally considered to be trustworthy for
visual navigation. Due to the Mask R-CNN has no ability to
distinguish whether the target is moving or not, the proposed
method still need a features excluding strategy.

B. FEATURES EXCLUDING STRATEGY
In this part, the matching points on each potential moving
target are used for state update, respectively. The reprojection
error [28] of the features on the background is calculated by
updated state and adopted to evaluate whether the potential
moving objects are in motion or not. The specific implemen-
tation is as follows.

Firstly, an object index map should be constructed by
encoder the pixel on each potential moving object. Accord-
ing to the location of each matching point, the number of
matching points on each target is obtained. Feature points on
each target are used as measurements to update the system
state separately. The reprojection error is presented in Fig. 5,
which refers to the distance between observed and estimated
locations of feature points.

Where p2 and p̂2 are measurement and reprojection of
feature point respectively. e means reprojection error. In this
paper, the features on each potential moving target are respec-
tively used to calculate the reprojection error of matching
points on the background. The reprojection of features in our
work could be calculated by tri-focal tensor:

m̂3 =

(∑
i

m1iT̂ Ti

)
l2 (17)

where m̂3 is the reprojection location of the feature point
in the third normal coordinate, and T̂ is the tri-focal tensor
based on the system update. To calculate the reprojection
error in image, the normal coordinate should be convert to
pixel coordinate by the intrinsic matrix:(

û v̂
)
= K−1m̂3 (18)

where the û and v̂ are the reprojection location in pixel
coordinate. The average of reprojection error reflects the state
of the potential moving target, and the moving possibility of
each object is depicted in Equation (19).

PMi =
1
n

n∑
j=1

(√(
ûij − uj

)2
+
(
v̂ij − vj

)2) (19)

where PMi reflects the moving possibility of the i-th potential
dynamic object, ûij and v̂ij are the predict position of j-th

FIGURE 6. Effect of proposed features selection algorithm.

matching feature by the system update using the features
on i-th potential dynamic object, uj and vj the measurement
position, n is the number of feature points on the background.

The feature points on targets with high moving probability
should be eliminated. According to the experiments of the
selected dataset, the threshold of the probability chooses 1.8.
Fig. 6 describes the effect of the proposed method. In this
example, there are eight potential moving objects have feature
points, the quantitative results of calculation based on the
proposed method is shown in Table 1. In Fig .6, the points
are the features extracted from the image. Red points are
used for visual navigation, and the blue points are improper
features which calculated by naive mask and our method.
In Fig. 6(b), although some cars were parked on the roadside,
all of them were supposed to be the moving objects, and the
features on these cars are eliminated. Fig. 6(c) shows that our
method could distinguish the dynamic targets effectively, and
the feature points are utilized maximized.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The proposed method was evaluated using a public dataset
KITTI [29], [30]. The KITTI is one of the largest datasets
for computer vision algorithm, which is used to evaluate
multiple fields such as stereographic images, optical flow,
visual odometry (VO), object detecting and tracking.

The data acquisition platform of KITTI was equipped with
multiple sensors, including two grey and two color cameras,
a Velodyne laser scanner, and an OXTS GPS/IMU. The
dataset also provides corrected and synchronized data. In the
experiments, the pose information of the GPS/IMU are intro-
duced as ground truth, and the left color camera is the image
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TABLE 1. Quantitative results of calculation based on the proposed
method.

TABLE 2. Details of the four routes in this study.

sensor. The resolution of the images is 1242 × 375 pixels.
Since the proposed method is applied to dynamic scenarios,
four groups of raw data are selected as experimental data. The
details of these data are shown in Table 2.

The performance of the proposed method in VIO is also
evaluated by using the root mean square error (RMSE) and
Hausdorff distance [31], [32].

RMSE shows the differences between the estimated data
and the ground-truth. Since trajectory is displayed in 2D coor-
dinates, the calculation formula of RMSE is Equation (20).

RMSE =

√√√√√ n∑
i=1

((
x̂i − xi

)2
+
(
ŷi − yi

)2)
n

(20)

where x̂i and ŷi are the estimated position, xi and yi are the
ground truth, n means the number of position points. Due to
it computes the error between two points with the same index,
the measurement of RMSE is symmetric.

The Hausdorff distance is the maximum distances between
a point in one set and its nearest point in another set, which has
been widely used in shapematching. In this issue, the formula
is modified as Equation (21).

hd (G,E) =
1
NG

∑
g∈G

{
min
e∈E
{d (g, e)}

}
(21)

where G and E are the trajectories of ground truth and
estimated. g and e are the corresponding position point. NG
means the point number of G. d represents the Euclidean
distance. Different from RMSE, the Hausdorff distance is
asymmetric, the value from G to R is different from G to
E . In this paper, we used the bigger one as the measurement
value. The formula is described in Equation (22):

HD (G,E) = max {hd (G,E) , hd (G,E)} (22)

To verify the effectiveness of the proposed method in
dynamic environments, pure IMU navigation, original VIO,
naive mask VIO, the proposed method, and stereo VO were

TABLE 3. The position RMSE and Hausdorff distance values computed
between the ground truth trajectory and the estimated.

used to generate the trajectories. Fig. 7 is the experimental
results that show the comparisons between the proposed algo-
rithm and other approaches.

In Fig. 7, four groups of vehicle paths were estimated by
above methods. Black lines stand for the ground truth which
were produced by GPS/IMU. Blue lines represent pure IMU
navigation, cyan lines are original VIO trajectories, green
lines are the naive mask VIO trajectories, the paths obtained
by the proposed method are shown as red lines, and the
magenta lines are stereo VO trajectories. The pure IMU nav-
igation trajectories usually have a bias, which will increase
over time. In dynamic environments, due to the disturbance
of the moving targets, the estimated results of stereo VO and
VIO deviated from the ground truth. The Mask VIO could
improve navigation accuracy to some extent. The proposed
algorithm performs better than other methods.

The RMSE and Hausdorff distance values computed
between ground truth and each trajectory estimation are
reported in Table 3. Since the feature-based methods have
a contingency, the RMSE and Hausdorff distance of above
visual navigation methods are obtained by conduct experi-
ments repeatedly five times and calculate the average. The
error accumulation in pure IMU navigation leads to the tra-
jectories differ from the ground truth, especially in Test_2 and
Test_4. Both the RMSE and Hausdorff distance in these two
tests show the IMU navigation has a large error. The selected
data all have moving objects which introduce adverse inter-
ference for visual navigation. Therefore, almost all the results
of RMSE and Hausdorff distance of original VIO are worse
than other methods. It is worth noting that, even the Hausdorff
distance of VIO in Test_3 are better than others, it does not
mean the VIO performs good similarity. The trajectory of
VIO in Test_3 has an inversion at 26s the trajectory after rota-
tion basically coincides with that before. As a consequence,
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FIGURE 7. The ground truth trajectory and the trajectories obtained using different methods.

TABLE 4. Process duration of VIO, Mask VIO, and the proposed
method(CPU and GPU could compute in parallel).

the Hausdorff distance can not be used as an evaluative
criterion alone. The results of stereo VO are not stable in
a dynamic environment, as pure visual navigation is more
susceptive to dynamic targets. The Mask VIO removed the
features on all potential moving object, and the performance
is better than VIO. However, excessive elimination of feature
points leads to the matching points are not used adequately.
The proposed method uses the reprojection error to eliminate
the feature points located on moving objects, so the valid
feature points are utilized to the maximum. From the above
test results, almost all the RMSE and Hausdorff distance of
the proposed method are better than other methods.

The above algorithms have been solved on a 2.40 GHz E5-
2640 workstation that has 32 GB of ram, and the GPU is

Nvidia Quadro M5000. Table 4 shows the average process
duration for one calculation cycle of VIO, Mask VIO, and
the proposed method. We could conclude that the proposed
method added a few additional computation time in the CPU
process. Compared to the CPU process time, the process
duration in GPU is relative long. Therefore, a lightweight
network that could satisfy the requirement of real-time should
be adopted in futurework. Additionally, because the sequence
images contain a large number of repeated targets, using the
combination of deep-learning and consistency check method
could prompt the proposed method applied in the real-time
visual navigation system.

V. CONCLUSION
In this paper, we proposed a features selection algorithm
based on instance segmentation. Compared with the existing
methods, the proposed method does not need to calculate
the 3D position information of each feature point, so it has
low computational complexity. The deep neural networks are
used to realize accurate instance segmentation. Therefore,
the object segmentation has good stability. According to the
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reprojection error, this algorithm removes the features on
dynamic targets to achieve maximum utilization of the valid
features. The proposed method combines with the MSCKF
based on tri-focal tensor and has been evaluated by the KITTI
dataset. The RMSE metric is used to obtain the error of the
estimated trajectory, and Hausdorff distance is utilized to
measure the inconsistency between the estimated path and
ground-truth. The algorithm performs well in both the RMSE
and Hausdorff.

The proposed algorithm has high efficiency and robustness
in the features selection and can be applied to visual naviga-
tion for ego-motion estimation. We will study the application
of this algorithm to other scenarios and improve its perfor-
mance in future.
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