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ABSTRACT Vehicular fog and cloud computing (VFCC) system, which provides huge computing power
for processing numerous computation-intensive and delay sensitive tasks, is envisioned as an enabler for
intelligent connected vehicles (ICVs). Although previous works have studied the optimal offloading scheme
in the VFCC system, no existing work has considered the departure of vehicles that are processing tasks,
i.e., the occupied vehicles. However, vehicles leaving the system with uncompleted tasks will affect the
overall performance of the system. To solve the problem, in this paper, we study the optimal offloading
scheme that considers the departure of occupied vehicles. We first formulate the task offloading problem as
an semi-Markov decision process (SMDP). Then we design the value iteration algorithm for the SMDP to
maximize the total long-term reward of the VFCC system. Finally, the numerical results demenstrate that
the proposed offloading scheme can achieve higher system reward than the greedy scheme.

INDEX TERMS Vehicular fog computing, cloud computing, task offloading, semi-Markov decision process.

I. INTRODUCTION
Intelligent connected vehicles (ICVs) are considered as a
promising technology to solve a series of traffic-related issues
such as traffic congestion, traffic accident and environmental
pollution [1]. ICVs can facilitate many smart applications
such as autonomous driving [2], augmented reality [3] and
natural language processing [4], which can assist both the
drivers and passengers in the vehicular environment [5]. The
implementation of those applications needs powerful com-
puting capability to process numerous computation-intensive
and delay sensitive tasks generated by the vehicle sensors.
It is predicted that there are around 4000 GB data generated
by vehicles every day in 2020 [6]. However, the computing
capabilities of vehicles are limited. If all tasks are processed
by the vehicles, it is difficult to meet the requirements of those
smart applications [7].

The concept of cloud computing has been proposed to
process enormous computational tasks [8]–[10]. The cloud is
a distant centralized server with powerful computing capa-
bility. Vehicles are connected to the remote cloud (RC)
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through the advanced communication technologies such as
fifth-generation (5G) [11]–[13], software defined network-
ing (SDN) [14], [15], and cognitive radio [16], [17]. Then
vehicles can enjoy the powerful computing resource by trans-
mitting tasks to the cloud server. However, with the increas-
ing data transmitted to the RC, the collision probabilities
of data transmission between vehicles and the cloud server
may increase dramatically, incurring poor network perfor-
mance [18]. Moreover, the long distance between the cloud
server and vehicles may result in high latency, thus failing
to process the delay sensitive tasks. In this case, vehicu-
lar fog (VF) computing has been introduced to push the
computing resources close to the computational tasks via
Vehicle-to-Vehicle (V2V) communication and Vehicle-to-
Infrastructure (V2I) communication [19]–[22]. As a result,
the vehicles can obtain the analytical results in a very
short time. Thus VF is envisioned as a promising method
to process low-latency tasks and support the Internet of
Thing (IoT) applications [23], [24]. However, due to the lim-
ited communication bandwidth and computing capability of
on-board computer, it is difficult for the VF system to process
such amount of tasks and meet the requirements of smart
applications.
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FIGURE 1. Illustration of VFCC system.

Vehicular fog and cloud computing (VFCC) system is
a new computing architecture, that has been proposed to
provide huge computing capability for processing numerous
computation-intensive and delay sensitive tasks [25]. In the
VFCC system, each vehicle is considered as not only the
source of tasks but also a processor with a computing resource
unit (RU). In other words, the vehicles can offload its tasks
between each other. Owing to the dynamics of the VFCC
system, we need to consider different factors when designing
an offloading scheme: 1) tasks arrive at the system; 2) tasks
are completed and then depart from the system; 3) vehicles
join the system; 4) vehicles which are not processing tasks,
i.e., the available vehicles, leave the system; and 5) vehicles
which are processing tasks, i.e., the occupied vehicles, depart
from the system. A simple example is given to explain the
departure of occupied RUs (i.e., occupied vehicles) in Fig. 1.
Vehicle C1 generates a task and the system allocates three
RUs, i.e.,C2,C3 andC4, to process the task. However, vehicle
C4 departs from the system before the task is completed.
Due to the dynamic properties of VFCC system, the num-
ber of computing resources changes frequently. Thus when
the above five features are considered, how to offload the
computational tasks to maximize the benefit of VFCC system
becomes a challenging problem. Note that the main benefits
of the VFCC come from reducing the energy consumption
and processing time of tasks [26], [27].

To the best of our knowledge, most of existing works
mainly considered four factors in conducting task offload-
ing [28], [29]. No existing work has taken into account the
departure of occupied vehicles. However, an accurate model
should consider all major factors. Furthermore, the occu-
pied vehicles departing from the VFCC system will interrupt
computational tasks, and thus degrade the overall efficiency
of the system. Thus it is necessary to propose an optimal
task offloading scheme that takes into consideration the
departure of occupied vehicles to maximize the long-term
reward of the VFCC system, which motivates us to do this
work.

In this paper, we propose an optimal task offloading
scheme. The optimal policy considers all major factors that
affect the total long-term expected reward of the VFCC sys-
tem. Our main contributions are summarized as follows.

1) We consider the departure of occupied vehicles in per-
forming task offloading. Specifically, the task offload-
ing problem is formulated as an semi-Markov decision
process (SMDP) model. Then we define and analyze
the states, actions, discounted rewards and transition
probabilities of the SMDP model. Finally, an itera-
tive algorithm is used to solve the task offloading
problem.

2) To evaluate the performance of the proposed task allo-
cating scheme, we conduct extensive experiments and
attain numerical results. Numerical results illustrate that
the proposed policy is able to improve the total long-term
reward of VFCC system.

The paper is outlined as follows. Section II discusses the
related work on task offloading problem in fog and cloud
computing system. Section III describes the system model.
The task offloading problem is formulated as an SMDP in
Section IV. Section V introduces the iteration algorithm to
find the optimal task offloading policy. Section VI evalu-
ates the performance of proposed scheme through numerical
results. Section VII concludes this paper.

II. RELATED WORK
A fewworks have been conducted to solve the task offloading
problem in fog and cloud computing system.

Zheng et al. [29], investigated an optimal offloading
scheme to maximize the long-term reward of the VFCC
system. Specifically, they formulated the optimal resource
allocation problem as an SMDP model and solved it by
the value iteration algorithm. Liu et al. [30] took into
account the different size of tasks and computation capaci-
ties of resources and proposed an integrated fog and cloud
computing approach with non-orthogonal multiple access
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to optimize the offloading scheme. They further solved the
optimization problem by a low-complexity method which
was called alternating direction method of multipliers based
algorithms. Du et al. [31] considered the user fairness and
maximal tolerable delay and investigated the joint optimiza-
tion problem including the offloading scheme and trans-
mit power assignment in a mixed fog/cloud computing sys-
tem. They proposed a low-complexity suboptimal algorithm
which was called computation offloading and resource allo-
cation algorithm to solve the optimization problem. Deng
et al. [32] took into account the constrained service delay
and investigated the workload allocation problem in the
fog-cloud computing system. They further divided the prob-
lem into three subproblems. Each subproblem was solved
via exiting optimization techniques, i.e., convex optimiza-
tion techniques, generalized Benders decomposition algo-
rithm and Hungarian algorithm. Meng et al. [33] considered
the different computation and communication capabilities of
cloud server and fog computing and investigated the task
offloading problem. Specifically, they defined a concept of
computation energy efficiency and then solved the offloading
problem by decomposing it into four subproblems. They
further gave a closed-form computation offloading solution
for each subproblem. Lin et al. [34], considered the het-
erogeneity of vehicles and roadside units and proposed an
SMDP model for the VFCC system. They further developed
the value iteration algorithm to find the optimal allocation
scheme. Shah-Mansouri and Wong [35] proposed a compu-
tation offloading game to investigate the allocation of com-
puting resources among IoT users in a hierarchical fog-cloud
computing paradigm. They further proposed a near-optimal
resource allocation algorithm to reduce the time complexity
of reaching the pure Nash equilibrium. Du et al. [36] inves-
tigated the joint optimization problem including offloading
scheme, resource allocation and power distribution in amixed
fog and cloud computing system. The offloading scheme
was obtained by Binary Tailored Fireworks Algorithm based
joint computation offloading and resource allocation algo-
rithm (FAJORA)whichwas a general iterative algorithmwith
low-complexity. Li et al. [37], proposed two SMDP-based
virtual machine allocation methods for the cloud-fog com-
puting system. Specifically, they proposed an SMDP-based
planning method to find the optimal policy. In this model,
the generic SMDP was degraded into a continuous-time
Markov decision process. The optimal virtual machine allo-
cation policy was obtained via the relative value iteration
algorithm. Then they also proposed the model-free rein-
forcement learning method to find an approximately optimal
virtual machine allocation policy. Wang et al. [38] took into
account the different delay requirements of the applications
and formulated the resource allocation problem as an SMDP
model. They further solved the offloading problem via itera-
tion algorithm.

As described above, a few works have studied the
task offloading problem in the VFCC system. However,

no existing work takes into account the departure of occupied
vehicles, which motives us to do this work.

III. SYSTEM MODEL
In this section, the system model will be described in detail.
The scenario considering the departure of occupied vehicles
is illustrated in Fig. 1. Vehicles moving on the highway form
a dynamic vehicular fog. When a computational task is gen-
erated by a vehicle (i.e., a request vehicle), the request vehicle
can transfer the task to VF via V2V communication. By this
way, the VFCC system can reduce the energy consumption
and processing time of tasks. We assume that the computing
capacity of each vehicle is the same. Vehicles arrive at the
system and depart from the system according to Poisson
distribution with parameter λv and µv, respectively. Note that
the maximal number of vehicles that the system can sup-
port is M . Tasks generation follows the Poisson distribution
with parameter λp. The processing rate that a computing RU
handles tasks is µp. Thus the aggregated processing rate of
i RUs is iµp. If a vehicle in the VFCC system generates a
task, the system may decide to transfer it to the cloud server
or the VF. Specifically, if the system determines to process
the task in the VF. According to the number of available
RUs (i.e., available vehicles), the VFCC system needs to
make the decision to assign how many computing units to
process the task. Finally, the analytical results will be sent
back to the request vehicle from VF. If the task is transmitted
to the RC, the vehicle receives results from the remote cloud.
We use an example in Fig. 1 to further illustrate the VFCC
system. Vehicle C1 generates a compute-intensive task. Since
the system has sufficient available RUs, the task is accepted
by the VF and three RUs are allocated to process the task,
i.e., C2, C3 and C4. However, vehicle C4 departs from the
VFCC system before the task is completed.

IV. PROBLEM FORMULATION
In this section, we will formulate the task offloading prob-
lem as an SMDP with the states, actions, discounted reward
model and transition probabilities of the VFCC system. Nota-
tions used in the analysis are summarized in Table 1.

A. STATES
A state is composed of the number of RUs that can be
used to handle tasks, the number of tasks handled by dif-
ferent numbers of RUs and a specific event e, where the
event e ∈ H = {A,L1, . . . ,Li, . . .LN,V+1,V−1,V1, . . . ,
Vi, . . . ,VN}. Here, A denotes that a vehicle in the VFCC
system generates a compute-intensive task. Li denotes that
a task handled by i RUs leaves the system. Denote N as
the maximal number of computing units that a task can be
allocated. V+1 means that a vehicle joins the VFCC system.
V−1 denotes that the vehicle which is not processing a task
departs from the VFCC system. Vi denotes that the vehicle
which is processing a task with other (i−1) RUs departs from
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TABLE 1. Notations used in the analysis.

the VFCC system. Therefore, the state set can be denoted as

X = {x|x = (K , s1, . . . , sN , e)} , (1)

where K denotes the number of RUs at the state x which
cannot exceedM , si denotes the number of tasks handled by i
RUs. Obviously, the total number of occupied vehicles should
satisfy

∑N
i=1 i · si 6 K .

B. ACTIONS
An action indicates the decision of VFCC system under a
specific event. When an event e happens, based on the current
state x, the VFCC system will take an action a(x), where
a(x) ∈ � = {−1, 0, 1, 2, . . . ,N }. Specifically, a(x) = −1
means that the system takes no action; a(x) = 0 means
that the task is transmitted to the RC; a(x) = i means that
the VFCC system decides to accept the task by the VF and
allocates i RUs(1 ≤ i ≤ N ) to process it. The action space

under different events e can be given as

Ax=

{
{−1}, e ∈ {L1, . . . ,LN ,V+1,V−1,V1, . . . ,VN }

{0, 1, 2, . . . , i, . . . ,N }, e = A.
(2)

C. REWARDS
A reward indicates the benefit of the VFCC system after an
action is taken. The rewards consist of both the immediate
income I (x, a) and the system cost G(x, a) before next state,
i.e.,

R(x, a) = I (x, a)− G(x, a). (3)

Next, the formulas for immediate income and the cost will
be derived, respectively.

1) IMMEDIATE INCOME
Since the system aims to reduce the energy consumption and
processing time of tasks, the immediate income should take
into account both of them. Furthermore, the state is related
with the action a and event e. Thus, the immediate income
I (x, a) can be analyzed as follows.
(a) a(x) = i(i ≥ 1), e = A

This case represents that the VFCC system decides to
assign i RUs to handle the task. Specifically, after a
vehicle in the system generates a task, the VFCC system
assigns i computing RUs to handle the task and finally
the analytical results are sent back to the request vehicle.
Denote El as the energy consumed by processing the
task at request vehicle, D1 as the transmission delay
between request vehicle and RUs and Pl as the transmis-
sion power of request vehicle. Then the energy saved by
the system can be derived as (El−Pl ·D1). Similarly, let
Tl be the time of processing the task at the request vehi-
cle, Dp(i) be the time that i RUs handle a task, i.e., 1

iµp
.

Then the time saved by the system is [Tl −Dp(i)−D1].
Let ωe and ωt be the weight of energy income and time
income, which should satisfy ωe+ωt = 1. ζe and ζt are
the saved price of per energy unit and per time unit which
transform the energy and time into the income [34], and
ϕ be the cost of one unit of transmitting time. Thus,
the immediate income of the VFCC system is expressed
as [ωeζe(El − Pl ·D1)+ωtζt (Tl −Dp(i)−D1)− ϕD1].

(b) a(x) = 0, e = A
This case represents that the system decides to process
the task in the RC. Specifically, the request vehicle
transfers the task to the VF. However, the available RUs
are insufficient, then the VF transmits the computing

I (x, a) =


ωeζe(El − Pl · D1)+ ωtζt

[
Tl − Dp(i)− D1

]
− ϕD1, a = i, e = A(i > 0)

ωeζe(El − Pl · D1)+ ωtζt (Tl − D1 − D2)− ϕ(D1 + D2), a = 0, e = A
0, a = −1, e ∈ {L1, . . . ,LN ,V+1,V−1}

−ηi, a = −1, e ∈ {V1, . . . ,VN }

(4)
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task to the RC and finally the results are sent back to the
request vehicle. We assume that D2 is the transmission
delay between the VF and the RC. Thus, the immediate
income of the system can be denoted as [ωeζe(El − Pl ·
D1)+ ωtζt (Tl − D1 − D2)− ϕ(D1 + D2)].

(c) a(x) = −1, e ∈ {L1, . . .Li, . . . ,LN ,V+1,V−1}
In this case, e is one of the events including a task
handled by i(1 ≤ i ≤ N ) RUs leaves the system,
a vehicle joins the VFCC and a vehicle which is not
processing a task departs from the system. Under these
events, the system does not take any action, and there is
no income for the VFCC system.

(d) a(x) = −1, e ∈ {V1, . . .Vi, . . . ,VN }
In this case, e is the event that an occupied vehicle which
is processing a task with other (i− 1) RUs (1 ≤ i ≤ N )
departs from the system and no action is taken. Under
this situation, the task processed by the occupied vehicle
will be interrupted, reducing the overall efficiency of the
system. Thus, the VFCC system should be punished and
the punishment of event Vi is −ηi.

Conclusively, the immediate income I (x, a) under different
events and actions can be expressed as Eq. (4) as shown at the
bottom of previous page.

2) COST
G(x, a) indicates the cost of the VFCC system during the
period of two decisions. We assume that the interval between
two decisions follows an exponentially distribution with
parameter α which is a continuous-time discount factor.
According to [39], the discounted cost of the system between
decision epochs can be denoted as

G(x, a) = C(x, a)Eax

{∫ τ

0
e−αtdt

}
= C(x, a)Eax

{
1− e−ατ

α

}
=

C(x, a)
α + β(x, a)

, (5)

where β(x, a) is the expected event rate. The average event
rate can be calculated by adding up the occurrence rates of
all events which may happen under the specific state x and
action a.C(x, a) is the cost rate which is related to the number
of occupied vehicles, i.e.,

C(x, a) =
N∑
i=1

i · si. (6)

D. TRANSITION PROBABILITIES
In the VFCC system, the next state is affected by the current
state and action. Similar to [29], we define the transition
probability as the ratio between the rate of next event (i.e.,
the next event occurrence rate) and the expected event rate.
Let q(j|x, a) denote the transition probability from state x to
state j after action a, where x = (K , s1, . . . , sN , e) and e is the
current event. Based on different current events, the transition
probabilities can be divided into the following cases.

In the first situation, the current event e is that a vehicle
generates a task and the VFCC system may decide to assign
i computing RUs (i = 1, . . . ,N ) for handling the task or
transmit it to the cloud server. According to the definition
of transition probabilities, we first discuss the rate of next
event. Then the formulas of transition probabilities will be
derived.

If the next event is that a vehicle generates a
compute-intensive task, i.e., A, the rate of next event is the
rate that vehicles generate tasks. Since the rate that vehicles
generate tasks is λp and the number of vehicles at the state x
is K , the rate of next event is equal to Kλp. If the next event
is that a task handled by i computing units leaves the VFCC
system, i.e., Li, the rate of next event is explained as follows.
When the decision of the VFCC system is transferring the
task to the RC, the rate of next event can be denoted as si ·iµp.
When i RUs are assigned to handle the task, the rate of next
event can be given as (si+1)·iµp. However, if the next event is
Lm (m 6= i), the rate of next event is sm ·mµp. If the next event
is that a vehicle joins the VFCC system, i.e., V+1, the rate of
next event is the rate that vehicles arrive at the system, i.e., λv.
The rate that vehicles departs from the system is µv. If the
next event is that a vehicle departs from the VFCC, the rate
of next event can be analyzed as following:
(a) a = 0, e = Vi

In this situation, the system decides to transmit the task
to the cloud server and the next event is that a vehicle
which is processing the task with other (i − 1) RUs
departs from the system. Since the number of tasks
handled by i computing RUs is si, the corresponding
total number of occupied vehicles can be calculated as
i · si. Thus the rate of next event can be denoted as

i·si
K µv.

(b) a = 0, e = V−1
In this situation, the task is processed by the RC and
the next event is that a vehicle which is not process-
ing the task departs from the system. Since the total
number of occupied vehicles is

∑N
i=1 i · si, the num-

ber of vehicles which are not handling the tasks is
(K −

∑N
i=1 i · si). Thus the rate of next event can be

given by
(
1−

∑N
i=1 i·si
K

)
µv.

(c) a = i, e = Vi
In this situation, the system decides to assign i comput-
ing units to handle the task and the next event is that an
occupied vehicle departs from the system. The number
of tasks handled by i computing RUs is (si + 1) and the
corresponding number of occupied vehicles is i · (si+1).
Thus the rate of next event is i·(si+1)

K µv.
(d) a = i, e = Vm,m 6= i

In this situation, the next event is that an occupied vehi-
cle processing a task with other (m − 1) RUs departs
from the system. Since the system determines to assign i
RUs to handle the task, the number of compute-intensive
tasks handled by m RUs has not changed and the corre-
sponding number of occupied vehicles ism · sm. The rate
of next event can be expressed as m·sm

K µv.
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(e) a = i, e = V−1
In this situation, the next event is that an available vehi-
cle departs from the system. Since i computing units
are assigned to handle the task, the number of occupied
vehicles is (

∑N
i=1 i · si + i) and the number of available

vehicles is (K −
∑N

i=1 i · si − i). Thus the rate of next

event can be expressed as
(
1−

∑N
i=1 i·si+i
K

)
µv.

Since the expected event rate is β(x, a), the transition
probability is the ratio between the rate of next event and
the expected event rate. Thus if the current event is that a
vehicle in the system generates a task, i.e., A, the transition
probabilities can be expressed as Eq. (7).

1) x =
(
K , s1, . . . , sN ,A

)
q(j|x, a)

=



Kλp
β(x, a)

, a = 0, j = (K , s1, . . . , sN ,A)

si · iµp
β(x, a)

, a = 0, j = (K , s1, . . . , sN ,Li)

λv

β(x, a)
, a = 0, j = (K , s1, . . . , sN ,V+1)(

1−

∑N
i=1 i · si
K

)
·

µv

β(x, a)
, a = 0,

j = (K , s1, . . . , sN ,V−1)
i · si
K
·

µv

β(x, a)
, a = 0, j = (K , s1, . . . , sN ,Vi)

Kλp
β(x, a)

, a= i, j=(K , s1, . . . , si+1, . . . , sN ,A)

(si + 1)iµp
β(x, a)

, a= i, j=(K , s1, . . . , si+1, . . . , sN ,Li)
sm · mµp
β(x, a)

, a = i,m 6= i,

j = (K , s1, . . . , si + 1, . . . , sN ,Lm)
λv

β(x, a)
, a= i, j=(K , s1, . . . , si+1, . . . , sN ,V+1)(

1−

∑N
i=1 i · si + i

K

)
·

µv

β(x, a)
, a = i,

j = (K , s1, . . . , si + 1, . . . , sN ,V−1)
i · (si + 1)

K
·

µv

β(x, a)
, a = i,

j = (K , s1, . . . , si + 1, . . . , sN ,Vi)
m · sm
K
·

µv

β(x, a)
, a = i,m 6= i,

j = (K , s1, . . . , si + 1, . . . , sN ,Vm)
(7)

Similarly, if the current event e is the departure of a
task, arrival of a vehicle, departure of an available vehicle,
or departure of an occupied vehicle, i.e., Li, V+1, V−1 and Vi,
the transition probabilities in these cases are expressed as
Eqs. (8)-(11), respectively.

2) x =
(
K , s1, . . . , sN , Li

)
q(j|x, a)

=



Kλp
β(x, a)

, a=−1, j=(K , s1, . . . , si−1, . . . , sN ,A)

(si−1) iµp
β(x, a)

, a=−1, j=(K , s1, . . . , si−1, . . . , sN ,Li)
sm · mµp
β(x, a)

, a = −1,m 6= i,

j = (K , s1, . . . , si − 1, . . . , sN ,Lm)
λv

β(x, a)
, a = −1,

j = (K , s1, . . . , si − 1, . . . , sN ,V+1)(
1−

∑N
i=1 i · si − i

K

)
·

µv

β(x, a)
, a = −1,

j = (K , s1, . . . , si − 1, . . . , sN ,V−1)
i · (si − 1)

K
·

µv

β(x, a)
, a = −1,

j = (K , s1, . . . , si − 1, . . . , sN ,Vi)
m · sm
K
·

µv

β(x, a)
, a = −1,m 6= i,

j = (K , s1, . . . , si − 1, . . . , sN ,Vm)
(8)

3) x =
(
K , s1, . . . , sN ,V+1

)
q(j|x, a)

=



(K+1) λp
β(x, a)

, a = −1, j = (K + 1, s1, . . . , sN ,A)

si · iµp
β(x, a)

, a = −1, j = (K + 1, s1, . . . , sN ,Li)

λv

β(x, a)
, a = −1, j = (K + 1, s1, . . . , sN ,V+1)(

1−

∑N
i=1 i · si
K + 1

)
·

µv

β(x, a)
,

a = −1, j = (K + 1, s1, . . . , sN ,V−1)
isi

K + 1
·

µv

β(x, a)
, a = −1, j = (K + 1, s1, . . . , sN ,Vi)

(9)

4) x =
(
K , s1, . . . , sN ,V−1

)
q(j|x, a)

=



(K − 1) λp
β(x, a)

, a = −1, j = (K − 1, s1, . . . , sN ,A)

si · iµp
β(x, a)

, a = −1, j = (K − 1, s1, . . . , sN ,Li)

λv

β(x, a)
, a = −1, j = (K − 1, s1, . . . , sN ,V+1)(

1−

∑N
i=1 i · si
K − 1

)
·

µv

β(x, a)
,

a = −1, j = (K − 1, s1, . . . , sN ,V−1)
isi

K − 1
·

µv

β(x, a)
, a = −1, j = (K − 1, s1, . . . , sN ,Vi)

(10)
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5) x =
(
K , s1, . . . , sN ,Vi

)
, i = 1, . . . ,N

q(j|x, a)

=



(K − 1) λp
β(x, a)

, a = −1,

j = (K − 1, s1, . . . , si − 1, . . . , sN ,A)
(si − 1) iµp
β(x, a)

, a = −1,

j=(K − 1, s1, . . . , si−1, . . . , sN ,Li)
sm · mµp
β(x, a)

, a=−1,m 6= i,

j=(K−1, s1, . . . , si−1, . . . , sN ,Lm)
λv

β(x, a)
, a = −1,

j=(K−1, s1, . . . , si−1, . . . , sN ,V+1)(
1−

∑N
i=1 i · si − i
K − 1

)
·

µv

β(x, a)
, a = −1,

j=(K−1, s1, . . . , si−1, . . . , sN ,V−1)
i(si − 1)
K − 1

·
µv

β(x, a)
, a = −1,

j=(K−1, s1, . . . , si−1, . . . , sN ,Vi)
msm
K − 1

·
µv

β(x, a)
, a = −1,m 6= i,

j = (K−1, s1, . . . , si−1, . . . , sN ,Vm)
(11)

The average event rate β(x, a) is the sum of rates of all
events that may occur with the current state x and action a.
Under different events and actions, β(x, a) can be calculated
by Eq. (12).

β(x, a)

=



Kλp + λv + µv +

(
N∑
i=1

i · si + i

)
µp,

e = A, a = i(0 ≤ i ≤ N )

Kλp + λv + µv +

(
N∑
i=1

i · si − i

)
µp,

e = Li, a = −1

(K + 1)λp + λv + µv +
N∑
i=1

i · siµp,

e = V+1, a = −1

(K − 1)λp + λv + µv +
N∑
i=1

i · siµp,

e = V−1, a = −1

(K − 1)λp + λv + µv +
N∑
i=1

i (si − 1)µp,

e ∈ {V1, . . . ,VN }, a = −1.

(12)

Fig. 2 shows a simple state transition diagram. The current
state is expressed as x = {10, 1, 1, 1,A}, i.e., the total number
of RUs is 10 and the current event is that a vehicle generates
a task. Since there are four available RUs in the current

FIGURE 2. State transition diagram.

state, the VFCC system may transfer the task to the RC,
i.e., a(x) = 0, or allocate iRUs (i = 1,2,3) to process the task.
The corresponding transition probabilities can be calculated
as Eq. (7).

V. SOLUTION
In this section, we adopt a value iteration method to maxi-
mize the total long-term reward of the VFCC system. Firstly,
the value iteration algorithm is briefly described. Then the
continuous-time SMDP is transformed into a discrete-time
SMDP by normalizing the reward, transition probabilities
and discount rate. Finally, the detailed description of finding
optimal policy π∗ will be presented.
The value iteration algorithm is widely used to solve the

optimal problem. For each state x, we utilize the Bellman
optimal equation [39] to calculate the maximal state-value
function v∗(x) under different actions. The equation is shown
in Eq. (13). If the maximal state-value function of each state
converges, the above step terminates.

v∗(x) = max
a∈Ax

R(x, a)+ γ∑
j∈X

q (j|x, a) v∗ (j)

 , (13)

where γ is the discount rate, 0 ≤ γ ≤ 1. The discount
rate decides the present value of future rewards and can be
calculated as γ = β(x, a)/(α + β(x, a)).
According to the Bellman optimal equation [39], given a

parameter y = Mλp + M · N · µp + λv + µv, the reward,
transition probabilities and discount rate can be normalized
accordingly. The normalized equations are expressed as

r̂(x, a) = R(x, a)
α + β(x, a)
α + y

(14)

γ̂ =
y

(y+ α)
(15)
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Algorithm 1 Value Iteration, for Finding Policy π∗

1 Initialize v∗(x) = 0, for all state x ∈ X ; set k = 0, and
set convergence rate ε;

2 for each system state x ∈ X do

3 v̂∗(x) = maxa∈Ax

[
r̂(x, a)+ γ̂

∑
j∈X

q̂ (j|x, a) v̂∗ (j)

]
;

4 if
∥∥1v̂k+1∗ (x)

∥∥ = max
∥∥v̂k+1∗ (x)− v̂k∗(x)

∥∥ < ε(1−γ̂ )
2γ̂ then

5 for each system state x ∈ X do
6 π∗(x) =

argmax
a∈Ax

[
r̂(x, a)+ γ̂

∑
x∈X

q̂ (j|x, a) v̂k+1∗ (j)
]
;

7 else
8 k ++;
9 go back to Line 2;

10 Return the optimal policy π∗;

q̂ (j|x, a) =


1−

[1− q(j|x, a)]β(x, a)
y

, j = x

q (j|x, a) β(x, a)
y

, j 6= x
(16)

Substituting Eqs. (14)-(16) into Eq. (13), the Bellman optimal
equation can be written as

v̂∗(x) = max
a∈Ax

r̂(x, a)+ γ̂∑
j∈X

q̂ (j|x, a) v̂∗ (j)

 . (17)

We will further describe the process of finding optimal
policy π∗. Initially, the state-value function is set to be
zero. Afterwards, for each state x, we calculate the maximal
state-value function based on Eq. (17). Then the maximal
difference is derived as∥∥∥1v̂k+1∗ (x)

∥∥∥ = max
∥∥∥v̂k+1∗ (x)− v̂k∗(x)

∥∥∥ , x ∈ X , (18)

where vk+1∗ (x) is the maximal value function of state x in the
(k + 1)th iteration. Then the threshold θ is calculated as

θ =
ε(1− γ̂ )

2γ̂
(19)

where ε is the convergence rate. Once the maximal difference
1v̂k+1∗ (x) is less than the threshold θ , the optimal policy π∗

for each state x can be expressed as

π∗(x)=argmax
a∈Ax

[
r̂(x, a)+γ̂

∑
x∈X

q̂ (j|x, a) v̂k+1∗ (j)

]
, (20)

Otherwise, the algorithm goes into the next iteration.
The pseudocode of the value iteration method is given
in Algorithm 1.

VI. NUMERICAL RESULTS
In this section, we evaluate the performance of optimal
policy π∗ which is calculated by Eq. (20) through exper-
imental numerical results. We conduct the experiments on
MATLAB 2010a. The scenario in consideration of the depar-
ture of occupied vehicles is shown in Fig. 1 and described
in Section III. The maximal number of RUs that a task can
be allocated is 3. Behavior 1 denotes that one RU handles a
task; behavior 2 denotes that two RUs handle a task; behavior
3 denotes that three RUs handle a task; behavior 0 denotes
that the VFCC system transfers the task to the RC. Finally,
the long-term reward is compared under different methods,
i.e., the proposed algorithm and greedy algorithm. The greedy
algorithm means that the system always allocates the maxi-
mal number of available computing units to process a task.
The values of related parameters are shown in Table 2.

TABLE 2. Parameter setup.

FIGURE 3. Behavior probabilities under different number of vehicles that
the system can accommodate (λp = 5, µp = 8, λv = 16).

Fig. 3 shows the behavior probabilities under different
number of vehicles that the system can accommodate. Ini-
tially, the number of vehicles that the system can accom-
modate, i.e., M , is low. There are not sufficient computing
resources to be allocated so that the probability of behavior
3 is less than those of behavior 0, behavior 1 and behavior 2.
In Fig. 3, as the number of vehicles that the VFCC system
can accommodate increases, the probabilities of behavior 0,
behavior 1 and behavior 2 all decrease and the probability
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FIGURE 4. Behavior probabilities under different task arrival rates in the
VFCC system (K = 10, µp = 8, λv = 16).

FIGURE 5. Behavior probabilities under different vehicle arrival rates in
the VFCC system (K = 10, µp = 8, λp = 5).

of behavior 3 becomes larger. This is because that there are
more available computing resources for compute-intensive
tasks. The VFCC system assigns as many computing units
as possible to obtain the maximal long-term reward. Thus the
probability of behavior 3 increases and those of behavior 0,
behavior 1 and behavior 2 decrease.

Fig. 4 shows the behavior probabilities under different
task arrival rates in the VFCC system. It is observed that
the probability of behavior 0 is the lowest initially. This is
because that when the arrival rates of tasks are low, there are
sufficient RUs to be allocated. Thus the system is inclined to
process the task in the VF, resulting in the situation that the
probability of behavior 0 is the lowest initially. It also can
be seen that as the arrival rate of tasks increases, the proba-
bility of behavior 3 gradually decreases and that of behavior
0 increases. This is because that the available computing
resources is not especially abundant. The system decides
to degrade the probability of behavior 3 and increases the
probability of behavior 0 to reduce the energy consumption
and processing time of tasks. Moreover, the VFCC system

FIGURE 6. Behavior probabilities under different service rate of a vehicle
in the VFCC system (K = 10, λp = 5, λv = 16).

trends to allocate as many RUs as possible, resulting in the
increasing probability of behavior 2.

Fig. 5 shows the behavior probabilities under different
vehicle arrival rates in the VFCC system. It is observed
that as the arrival rates of vehicles increase, the probability
of behavior 0 decreases. This is because that the available
computing resources are gradually sufficient and the VF can
process more tasks, causing that the probability of behavior 0
decreases. However, the probability of behavior 3 decreases
and those of behavior 1 and behavior 2 increase with the
vehicles arrival rate increasing. This is because that the pun-
ishment of V3 is largest, thus to maximize the long-term
reward, the probability of behavior 3 decreases. As a result,
the system trends to allocate one or two RUs to process the
tasks. Furthermore, the system aims at reducing the total
energy consumption and processing time of tasks. Thus the
system assigns asmany computing units as possible, resulting
in that the probability of behavior 2 is higher than that of
behavior 1.

Fig. 6 shows the behavior probabilities under different
service rate of a vehicle in the VFCC system. In Fig. 6, as the
service rate of a vehicle increases, the probability of behavior
0 decreases. It can be explained as follows. As the processing
rate that a RU handles tasks increases, the number of available
computing RUs trends to become larger. To reduce the total
energy consumption and processing time of tasks, the system
is inclined to process the tasks in the VF, which degrades
the probability of behavior 0. It also can be seen that as up
increases, the probability of behavior 3 decreases. This is
because that the punishment of V3 is largest, which degrades
the probability of behavior 3. To achieve the long-term ben-
efit, the VFCC system will assign one or two computing
resource units to process the tasks, resulting in the situation
that the probabilities of behavior 1 and behavior 2 increase.

Next, we evaluate the proposed offloading algorithm of the
SMDPmodel by comparing with GA algorithm. Fig. 7-Fig. 9
shows the tendency of long-term reward under different
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FIGURE 7. Behavior probabilities under different number of vehicles that
the system can accommodate (λp = 5, µp = 8, λv = 16).

FIGURE 8. Behavior probabilities under different task arrival rates in the
VFCC system (K = 10, µp = 8, λv = 16).

FIGURE 9. Behavior probabilities under different service rate of a vehicle
in the VFCC system (K = 10, λp = 5, λv = 16).

situations, i.e., the number of vehicles that the VFCC system
can accommodate, task arrival rate and service rate of a
vehicle. It can be seen that their tendencies are similar, which

can be explained as follows. In Fig. 7, as the number of
vehicles that the VFCC system can accommodate increases,
the long-term reward becomes higher. This is because that the
proposed algorithm considers the punishments of the depar-
ture of occupied vehicles in performing task offloading, while
the GA algorithm only trends to assign as many computing
RUs as possible to handle tasks without considering other
factors. In Fig. 8, the long-term reward becomes larger with
the arrival rate of tasks increasing. This is because that more
tasks are processed by the VF. In Fig. 9, as the service rate of a
computing unit increases, the long-term reward is higher. This
is because that the computing resources are more sufficient
with the service rate increasing. In this case, the system
considering the long-term reward takes actions. It is obvious
that the proposed algorithm outperforms the GA algorithm.

VII. CONCLUSION
In this paper, we formulated the offloading problem in the
VFCC system as an SMDP model with the defined state
space, action space, discounted reward model and transi-
tion probabilities. To maximize the long-term of the system,
the relative value algorithm was designed to solve the prob-
lem to find the optimal task offloading scheme. Numerical
results showed that the performance of proposed scheme can
achieve higher gains than the regularly used greedy scheme.
In the future, the factor that vehicles periodically arrive at the
system will be considered.
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