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ABSTRACT Brain tumor segmentation from Magnetic Resonance Imaging (MRI) is of great importance
for better tumor diagnosis, growth rate prediction and radiotherapy planning. But this task is extremely
challenging due to intrinsically heterogeneous tumor appearance, the presence of severe partial volume effect
and ambiguous tumor boundaries. In this work, a unique approach of tumor segmentation is introduced based
on superpixel level features extracted from all three planes (x-y, y-z, and z-x) of 3D volumetric MR images.
In order to avoid the pixel randomness and to account for precise inhomogeneous boundaries of brain tumor,
each of the images belonging to a particular plane is partitioned into irregular patches (superpixels) based
on their intensity and spatial similarity. Next, various statistical and textural features are extracted from each
superpixel where all three planes are considered separately in order to obtain better labeling on superpixels
in tumor edges. A feature selection scheme is proposed based on their performance on histogram based
consistency analysis and local descriptor pattern analysis, which offers a significant reduction in feature
dimension without sacrificing classification performance. For the purpose of supervised classification,
Extremely Randomized Trees is used to classify these superpixels into a tumor or a non-tumor class. Finally,
pixel level decision is taken based on corresponding decisions obtained in each plane. Extensive simulations
are carried out on publicly available dataset and it is found that the proposed method offers better tumor
segmentation performance in comparison to that obtained by some state of the art methods.

INDEX TERMS Magnetic resonance imaging, superpixels, extremely randomized trees, pixel labelling,

feature selection, dice score.

I. INTRODUCTION

With the introduction of information technology and
advancement in the medical field, accurate segmentation
of brain tumors is of the enormous potential for improved
diagnosis, growth rate prediction and treatment planning.
In the last decade, the immense growth of research interest
in processing medical data using machine learning algo-
rithms signifies the importance of this domain [1]-[3]. MRI
is the modality of choice for evaluating patients who have
symptoms and signs suggesting brain tumor. The nature
of brain tumors leads to huge challenges in the develop-
ment of semi-automated and fully automated brain tumor
segmentation method. The variable sizes, positions, and
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shapes of brain tumors prohibit the use of priors, like shape
and location.

In early works, segmentation were often performed based
on threshold segmentation algorithms [4], [5], Region-based
methods [6]-[8], Edge-based methods [9], [10], Atlas-based
methods [11]-[13]. The threshold segmentation method is
simple and efficient but due to the high complexity of
brain structure and complex boundaries, a threshold-based
approach is often used to locate brain tumors [14]. Aneja
and Rawat [15] and Zhao et al. [16] proposed two different
clustering algorithm that works in noisy images. Maoguo
etal. [17] proposed an improved Fuzzy C-Means(FCM) algo-
rithm which extended the use of tradeoff weighted fuzzy
factor and a kernel metric, the tradeoff weighted fuzzy
factor depends on the spatial distance of all neighboring
pixels. These methods are not computationally expensive
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but they generally produce poor results and need prior
knowledge from experts and feature engineering. Supervised
learning-based algorithms use training data labeled by experts
for segmentation of tumors Classifiers such as Support Vector
Machine [18], [19] was successfully applied in brain tumor
segmentation. The RF can handle a multiclass problem with
large feature vector. A variety of features were proposed in
the literature: encoding context [20]-[22], first-order and
fractal-based texture [20], [22]-[25], gradients [20], [23],
brain symmetry [20], [23], [27], and physical properties [27].
Geremia et al. [25] used discriminative random decision
forests to classify the voxels of 3D MRI image for segmen-
tation of tumor. Wu et al. [26] used superpixel features in a
conditional random fields (CRF) framework to detect brain
tumors.

Recently deep learning methods, especially the convolu-
tional neural networks (CNN) have gained popularity among
researchers in image classification and biological image seg-
mentation tasks [49], [50]. Zhuge et. al. presented holistically
nested neural networks which combines multilevel hierarchi-
cal intensity representations of the image [51]. Zhao and Jia
proposed multiscale CNNs where a three-stream framework
can automatically detect the optimum top three scales [52].
Usually, deep neural network based schemes do not need
any additional feature extraction stage from data and may
provide very high accuracy depending on the proper selec-
tion of various tuning parameters. However, it involves
high training complexity and a risk of overfitting of the
training data.

To implement classical machine learning pipeline like
decision trees many aspects are left to be hand engineered.
So proper feature selection by detailed analysis, tackling
data imbalance present by proper sampling and parameter
selection in various cases need extensive reasoning to create
a robust and highly accurate segmentation pipeline.

Taking all these challenges into consideration, in this paper,
a fully automated brain tumor segmentation scheme is pro-
posed based on superpixel level features extracted from three
planes of 3D volumetric MR images from FLAIR, Tlc, and
T2 modalities of the working dataset. Unlike conventional
tumor segmentation methods that consider pixel level or
fixed shape block level classification, in the proposed method
superpixel based feature extraction along three planes is
introduced. Along with the statistical features, Gabor textural
features are also extracted. As a classifier, Extremely random-
ized Trees is used which offers better performance in terms
of computational complexity and accuracy in comparison
with the other widely used classifiers for this task. Use of
superpixels in all three planes helps to avoid partial volume
effect and offers better consistency in extracted features even
in inhomogenous tumor boundaries of brain tumor. In view
of taking the final decision on a pixel, decisions from all
three planes are taken into consideration. To demonstrate the
segmentation performance, standard BRATS 2013 annotated
training dataset is used and various performance parameters
are measured.
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FIGURE 2. Overview of our proposed method.

Il. PROPOSED METHOD

In the proposed method, three modalities of MR images
namely (FLAIR, Tlc, and T2) are used for segmentation pur-
pose. The reason for that is the intensity difference between
the tumor and non-tumor region is more prominent in case of
FLAIR and T2 images. Non-enhancing tumor core region is
hyper-intensified in the T1c images as shown in Fig. 1.

The steps involved in the proposed method are presented
in Fig.2. First, an intensity adjustment scheme is applied on
the whole 3-D MRI data to reduce the bias in intensities in
various types of tissues and a histogram matching algorithm
is applied to bring all planar images in a uniform dynamic
range. Next, the whole MRI volume is sliced into images
along the three planes (x-y, y-z and z-x). Thus, three sets of
images are found corresponding to x-y, y-z and z-x planes for
a particular modality. Each of the images in a set is partitioned
into irregular patches named superpixels based on spatial and
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(a) Segmented image

FIGURE 3. Effect of MRI bias correction.

intensity similarity. Then from each superpixel, a number of
statistical and Gabor Textural features are extracted and the
superpixels are then classified using Extremely Randomized
Trees (ERT) classifier. Finally, the decision on each pixel is
taken considering the labels on the superpixels obtained from
all three planes.

A. PREPROCESSING

An MRI volume is a three-dimensional data which can be
viewed along with any of the three (x-y, y-z and z-x) direc-
tions. The superpixels extracted from images captured from
a particular planar direction are different from the scenario
when it has been extracted from another plane. The pixels in
the most vulnerable areas (edges) of a particular plane might
not be edge pixels in other planes. So each 3D MRI of a
patient is sliced along three planes and three sets of images
are captured for each of the three modalities used in this work.

A bias field is a low frequency smoothly varying undesir-
able signal that corrupts MR images because of the inhomo-
geneities in the magnetic field of the MRI machine. Bias field
blurs images and thus reduces the high-frequency contents of
the image. As a result, similar kind of tissues exhibit different
gray level distributions across the image. Hence, the MR
images are undergone a bias field correction according to the
method presented in [28].

In order to present the effect of bias correction, an MR
image segment containing the tumor portion as shown
in Fig.3(a). A high-intensity region belonging to the
non-tumor portion of the brain image having similar intensity
level as the tumor region (visualized in Fig. 3(b)) which can
be misclassified by a classifier. But after bias correction, all
the tissues have their similar gray level distribution, which is
shown in Fig. 3(c).

A major drawback of Magnetic Resonance Imaging is the
lack of a standard interpretation of image intensities as the
image intensities in MRI do not have a fixed meaning. In view
of obtaining a similar dynamic range of MRI pixel intensities
a histogram matching algorithm [29] is applied to ensure
that all the data have similar dynamic ranges. Histogram of
MRI modalities for each of the patients is transformed to
match the histogram of the sets of reference images. The
reference image set is chosen from the same modality as the
transformed image.
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(b) Image before MRI bias cor-
rection

(c) Image after MRI bias correc-
tion

As seen from Fig. 4(a), the histograms of the FLAIR
modality of patient 1 and patient 2 are transformed from an
intensity range of (0-400) and (0-600) to a standard range
of (0-200). The similar situation is seen in the other two
modalities respectively in Fig. 4(b) and Fig. 4(c).

B. SUPERPIXEL BASED FEATURE EXTRACTION

1) SUPERPIXEL SEGMENTATION

For the segmentation purpose, classifying pixels is a prevalent
approach. But for any classifier, this large number of samples
is a huge burden. A viable option is to consider a group
of pixels and classify the group. In this way, the burden is
lessened to a great extent and faster segmentation is achieved.
A very common approach is to group the pixels into reg-
ular sized patches or blocks and consider them as a unit
for extracting features. But due to highly inhomogeneous
tumor boundaries of brain tumor fixed sized blocks fails to
group the pixels of similar characteristics together and create
inconsistency in block features belonging to the same group.
Hence, instead of fixed-block, a compact group of pixels with
similar characteristics (superpixels) is considered here as the
underlying representation. One more advantage of classifying
a group of pixels with similar characteristics is that the effect
of unwanted random noise on a pixel is relatively high in
comparison to that on a compact group of pixels. In order
to generate consistent and compact superpixels, the simple
linear iterative clustering (SLIC) algorithm [30] is used here
which segregates an image into groups with approximately
similar characteristics. The major advantage of SLIC method
is that it creates groups and there is a very low possibility of
grouping pixels of dissimilar characteristics [31]. Moreover,
it involves a very low computational cost and a tradeoff is
possible between accuracy and classification time. A given
image is first divided into equal sized (S) grids and the
geometrical center of each grid is considered as the superpixel
center. Next, these centers are moved to the seed location
corresponding to lowest gradient position in a 3 x 3 neigh-
bourhood. The pixels in a 25 x2S neighborhood are clustered
together based on two important metrics, spatial and intensity
distance metrics. The spatial distance ds is the geometric
distance between a cluster center and a neighboring pixel.The
intensity distance metric d. is taken as the intensity dis-
tance of pixels considering all three modalities and calculated
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FIGURE 4. Effect of histogram matching algorithm.

(a) superpixel segmentation us-
ing compactness factor m=0

(b) superpixel segmentation us-
ing compactness factor m=0.2

(c) superpixel segmentation us-
ing compactness factor m=1

FIGURE 5. Visualization of superpixels with different compactness factor m.

as:

de = \/ (iFtair — LiFtain)® + (Gric — hirie)? + (G2 — lir2)?
(1)

where liFiair, ljFlain lit1c, lelu lit2, and le2 are the intensity
values of the jiy, cluster center and a neighboring iy, pixel
of FLAIR, Tlc and T2 respectively. Performing superpixel
segmentation considering only the intensity of one modality
creates inconsistency in the extracted features from other
modalities. The overall distance measure, D which is a com-
bination of spatial and intensity distances, is then calculated

as:
ds
D=,/d*+ (§)2m2 2
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where m is the compactness coefficient which determines
the flexibility of superpixel boundaries. A sample superpixel
segmented image is shown in Fig. 5 for different compactness
factor, m.

2) STATISTICAL FEATURES
Next, our objective is to represent each superpixel in terms
of some representative characteristics. In view of this, a good
set of relevant features are required to represent each of these
superpixels. Conventionally, statistical features are extracted
in most of the cases. But in the proposed method, textural
features are extracted along with the statistical features for
the proper representation of the superpixels.

Statistical features are computed based on the intensity
of the pixels of an object and they express the distribution
of grey levels within the sample which are superpixels in
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FIGURE 6. Visualization of Gabor filter in different orientation and filter
size.

this case. Ten statistical features are extracted from each of
the superpixels including mean, standard deviation, entropy,
mean of absolute deviation, skewness, kurtosis, maximum,
minimum, median and mode. A histogram-based consistency
analysis is also employed to reduce the number of features
which is discussed in II-C.1.

3) TEXTURAL FEATURES
Textural features corresponding to human visual perception
are very useful for proper representation of image data. In this
proposed method, a Gabor filter bank is used to extract the
textural content of the images [45]. The Gabor filter is basi-
cally a Gaussian function modulated by complex sinusoid of
frequency and orientation and it has the ability to perform
both in spatial and frequency domain and can be in any
number of dimensions [32], [33].

In the spatial domain, a 2D Gabor filter is a Gaussian kernel
function modulated by a sinusoidal plane wave as follows:

exp(—(x? + y%y'?)

202

2mx’ 3
X +¥)) 3)

where o, ¥, A, y are denoted as the filter size, the phase shift,
the wavelength and the spatial aspect ratio of sinusoid respec-
tively. x” and y’ are calculated from the spatial orientation, 6
of the filter by the following equations

G(x,y,0,0,A,¥,y) =

x exp(i(

x = xcos@ + ysiné 4)
y = —xsinf + ycosé 5)

A set of Gabor filter bank is extracted by varying the
filter size o and orientation 6. Then the filter is convolved
with the MR images to obtain the filtered images and mean
filter response of pixels within superpixels filtered images is
calculated.

C. FEATURE SELECTION

1) SELECTION OF STATISTICAL FEATURES

In most of the previous works [34] [35], a wide range of
statistical measures of superpixel are selected but enough
reasonings for selecting them is not provided. It is to be
noted that all of the statistical measures may not con-
tain significant information to distinguish between classes
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(tumor and non-tumor class). The statistical features those
are used frequently are mean, standard deviation, entropy,
mean of absolute deviation, skewness, kurtosis, maximum,
minimum, median and mode. To investigate the performance
of different statistical features on superpixels of FLAIR, Tlc,
and T2 images, a histogram based consistency analysis is
introduced. First, the total number of superpixels extracted
from the whole dataset are selected and divided into Tumor
and non-tumor classes according to the pixel level ground
truth. Next, the histogram of a feature value for both classes
are investigated. In Fig. 7(a-f), histograms of both classes for
six features in case of three modalities are shown. Consider-
ing the space, all 30 cases are not shown.

It is found that mean, median, mode, maximum and min-
imum features provide almost distinct separation of tumor
and non-tumor class in FLAIR, Tlc, and T2 images. On the
other hand, for the other features like skewness, kurtosis,
entropy, mean of absolute deviation, moment and standard
deviation, each of them provides a very similar characteristic
and insignificant separation between two classes. As a result,
in this work mean, median, mode, maximum and minimum
features are selected for their consistent and distinct class
separation.

For better understanding, box plots corresponding to the
FLAIR, Tlc, and T2 modalities considering all the features
are presented in Fig. 8(a), Fig. 8(b) and Fig. 8(c) respectively.

2) SELECTION OF TEXTURAL FEATURE’'S PARAMETERS
Because of the high variation of tumor in size and shape, five
Gabor wavelets of different filter size are used, each with
three orientations. The filter size is selected within [0.2 0.5
0.8 1.1 1.4] with increment of 0.3. Initially, eight orientations
[0 7/8 27/8 37/8 4m/8 S5r/8 67/8 Tm/8] are considered.
In order to determine the optimal orientation of the Gabor fil-
ter from the eight orientations, an orientation analysis is car-
ried out [33]. In this case, the direction at each block of MRI
image is determined by eight local direction patterns (LDP)
as shown in Fig. 9. The size of these windows is restricted
within 3 x 3 block. Every mask pattern is slid over an entire
image, convoluted by the LDP operator and pixel values of
that image are changed to directional intensities. Finally, eight
directional intensities are obtained by summing up the pixel
intensities of corresponding blocks. The directional intensity
is obtained using the following equations:

1 1

Lyi.j)= Y > fli+aj+b)xdia+b) (6

a=—1b=—1

Ly=Y Y Ly.j; p=12....8 @)

i=1 j=1

f(@,J) in the image is considered as the center of mask
pattern and dj, is one of the local patterns. The designed LDP
features contain the information of 2-D distribution. Hence,
they can represent the image orientation characteristics more
closely. The optimal direction of Gabor filter is chosen
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FIGURE 7. Consistency analysis of statistical features in different modality.

TABLE 1. Dominating no. of images (along x-y plane).

TABLE 2. Dominating no. of images (along y-z plane).

considering the larger value of the directional intensity L.
In this case, the analysis has been applied to the whole image
set corresponding to the FLAIR, T1c, and T2 modalities. The
directional intensity Ly is calculated for each of the images
respectively. For each of the images, the top three values of
Ly, are chosen which are basically the top three orientation
descriptors for that particular image. After analyzing the top
three orientation descriptor of all the images, it is found that
[0,7/8,7/8] rank in the top three of most of the images
extracted from x-y plane corresponding to FLAIR, Tlc, and
T2 modalities as shown in Table 1. Hence, these orientations
are selected for the images extracted from the x-y plane.
For the same reason, the orientation [37/8,47/8,57/8] are
selected for the images extracted from the y-z plane and
[0,37/8,47/8] are selected for the images extracted from
the z-x plane, which are shown in Table 2 and Table 3,
respectively.

25340

Moda- | x| 2x | 8x | an | 5z | 6x | 7 Moda- | x |2x | sz | an | 52 | 6xr | x
lity 8 8 8 8 8 8 8 lity 8 8 B 8 8 B 8
FLAIR | 2649 | 2247 | 7 | 197 | 774 | 201 | 3 | 2121 FLAIR | 875 | 1097 | 7 | 1539 | 2801 | 2040 | 9 | 146
Tlc 2360 | 2271 6 539 | 756 | 650 3 1605 Tlc 793 1004 | 64 | 2241 | 1590 | 2586 | 228 8

T2 2393 | 2304 | 10 | 542 | 854 | 591 | 4 | 1420 T2 1301 | 184 | 4 | 2189 | 2087 | 2111 | 8 | 630

TABLE 3. Dominating no. of images (along z-x plane).

Moda- | x | 2x | 8x | 4n | Bm | 6x | 7n
llty 8 8 8 8 8 8 8
FLAIR | 2989 | 746 | 20 | 1317 | 3106 | 906 | 3 | 732
Tic | 3238 | 1284 | 14 | 1778 | 3068 | 656 | 4 | 176
T2 3131 113 15 | 2504 | 3355 | 1003 | 6 94

For the filter size values under 0.2, filtered images are very
close to the original image, while for the values above 1.5,
the images are intensively blurred. Therefore, the kernel sizes
are selected within this range with the increment of 0.3, i.e.
[0.2,0.5,0.8, 1.1, 1.4]. Wavelength coefficient A = 2 is cho-
sen empirically as It is found out that the value of wavelength
has less effect on the performance of the classifier.

After proper feature selection, (5 statistical x 3 modalities)
and (15 textural x 3 modalities) i.e. 60 features have been
selected to create the feature vector.
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Comparison of Tumor and non Tumor Class for Different
Statistical Features for FLAIR images
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Comparison of Tumor and non Tumor Class for Different
Statistical Features for T2 images
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FIGURE 8. Box Plots of different Statistical Features in different
modalities.

D. EXTREMELY RANDOMIZED TREES CLASSIFIER

The selection of a classifier in a specific machine learning
task generally depends on the computational complexity,
time, and overfitting of the training datal. Among many
classification schemes, Logistic Regression, Support Vector
Machine (SVM), Random Forest (RF) and decision-based
trees are very popular in different machine learning appli-
cations. Among these methods, the Extremely Randomized
Trees (ERT), which is a tree-based ensemble method for
supervised classification, offers comparably better perfor-
mance in terms of computational complexity and overfitting
of the training data [48]. Besides, it offers the benefit of
filtering out the irrelevant features [36]. It randomizes both
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FIGURE 9. Eight local direction patterns(LDPs).

attributes and cut point choices while splitting a tree node.
The strength of randomization of ERT can be controlled by
varying the number of trees (M), the strength of attribute ran-
domization (k), and the degree of smoothing (). Moreover,
it comprises of a post-processing stage, in which the tree is
cut off based on an independent sample [47]. Hence, it can
efficiently remove those parts which can overfit the learning
sample. For these reasons, ERT is used as the classifier in this
proposed method.

One major concern in the superpixel based supervised clas-
sification is the labels of the trainer dataset as the superpixel
(Tumor or non-Tumor) is unknown rather the labels of each
pixel inside the superpixel are known. As a result, a simple
method of assigning the labels of superpixels is proposed in
this paper based on the knowledge of pixel-level ground truth.
A superpixel is labeled as tumor if the majority of its pixels
are marked as tumor pixel as per the ground truth. Due to
the inherent property of superpixel formation, there is a ten-
dency of containing pixels with similar nature in a superpixel.
Hence, the choice for majority voting for assigning the label
of superpixel as tumor or non-tumor to create the training
dataset is found satisfactory. For a test superpixel, the features
are extracted utilizing three modalities as described in the pre-
vious section. Next, the features are fed to the ERT to predict
the class label of the test superpixel utilizing the trainer set.
It is to be mentioned that all the pixels inside the superpixels
are labeled as per the label of the superpixels. This operation
is carried out in all the three planes respectively.

E. PIXEL LABELING BASED ON THREE PLANAR VOTING

After classification of superpixels, the images are recon-
structed from the classified superpixels and the whole tumor
volume is constructed from the images. During the formation
of superpixels from a particular planar image, if the tumor
region appears very small in shape on that plane, there is
a chance of getting false positive cases (non-tumor pixels
to be classified as tumor pixels). But when superpixels are
extracted from all the three planar images, a good possibility
arises that at least in one of them, the tumor may appear to be
in better shape than the others. Moreover, it is also possible
that the superpixel distribution extracted from a particular
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FIGURE 10. Pixel labelling based on three planar score.

plane may have a better boundary separation than the others.
For these advantages, the superpixels are extracted from all
the three planar images in this proposed method. As a result,
each pixel will be assigned a class label (tumor or non-
tumor) for three different planes. Finally, a pixel is labeled
as Tumor class if the labels obtained from all three planes
are found tumor. Otherwise, it is labeled as non-tumor. For
better understanding, proposed three planar voting algorithm
is demonstrated in Fig. 10. After applying the classifier for
segmentation purpose, some false positive cases are found in
the first planar image. But, after combining the three planar
voting, the false positive cases can be efficiently removed.
In the 3-D MRI data, at each spatial location, there will be
ultimately one particular class (Tumor or non-Tumor) i.e.
the class of each pixel. This three planar votings effectively
increases superpixel classification accuracy and also filters
out the false positive cases too overall contributing signifi-
cantly for the accuracy achieved.

Ill. RESULTS AND ANALYSIS

In proposed method, a two-stage feature extraction technique
is applied. In the first stage, two types of features (Statistical
and Textural) are extracted from the superpixels extracted
from each of the three modalities used in this method. In the
next stage, the final feature vector is obtained by concate-
nating all the features selected from each of the selected
modalities. In view of analyzing the quality of these features,
statistical and orientational analyses have been performed
considering the whole MRI data. Description of the dataset,
detailed analysis on the choice of proper parameters, quality
of the extracted features and classification performance are
presented in the following subsections.

A. DATASET
The brain tumor image data used in this work are obtained
from the NCI-MICCAI 2013 Challenge on Multi-modal
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Brain Tumor Segmentation [37]. Simulation results shown in
this section considers 3D MRI volumetric data having manual
segmentation for evaluation. The pixel level annotated data
are collected from 20 high-grade glioma patients(anaplastic
astrocytomas and glioblastoma multiforme tumors) , each
one with 4 MRI protocols and the ground truth for each
subject. The included protocols are FLAIR, T1, Tlc (post-
Gadolinium T1) and T2 which differs basically because of
their different acquisition procedure.

B. SELECTION OF SUPERPIXEL PARAMETERS

For generating superpixels, two important factors have to
be considered. One is compactness of its size and the other
is how adherent it is to the boundary or the edge of an
image. These two important factors depend on two main
parameters of superpixel, which are the initial grid size, S and
the compactness coefficient, m. Normally, selecting a larger
initial grid size, superpixels of larger areas are generated and
less number of superpixels are to be classified. It lessens the
burden on the classifier but may hampers the classification
accuracy as superpixels of wider areas may have more mis-
labeled pixels in them. The effect of varying the parameter
S is depicted in Fig. 13. Considering overall accuracy and
burden on the classifier the initial gird size is selected to
be § = 6. The compactness coefficient, m is a constant
factor by which the value of image intensities is normalized.
By default the spatial distance measure is normalized by the
initial selection of grid size, S. With the increasing value
of m, the intensity distance measures become less dominant
for generating superpixels and creates compact superpix-
els as doing so makes the spatial distance more dominant.
In order to improve the boundary adherence of the superpix-
els, a smaller value of m is selected than its default value 10.
But if the intensity measure is made too much dominant (e.g.
selecting m = 0), the generated superpixels would be of a
severely irregular shape giving much importance to the noise
present, ignoring spatial proximity. Considering these factors,
for initial grid size 6, the value of m = 1 is selected by visual
inspection which generates superpixels of compact size and
good boundary adherence as shown in Fig. 5.

C. SELECTION OF ERT CLASSIFIER PARAMETERS

It is previously mentioned that the ERT classifier has three
important parameters on which the performance of the clas-
sifier depends. Normally a higher value of K leads to a better
chance of filtering out the irrelevant variables. According
to [36], the default value of K = /n is optimal for most
of the classification problem where n is the total number of
features extracted. Hence, K = 8 is selected considering
the total number of features selected in this method. Next,
the degree of smoothing, nyin = 2 is considered. As for the
number of trees M, it is well known that for randomization
methods the behavior of prediction error is a monotonically
decreasing function of M. Thus, for values greater than 22 the
performance improvement gets saturated. Considering over-
all computational cost the value of M is selected to be 20.
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TABLE 4. Performance comparison in case of single plane and combined
plane for 20 HGG patients.

Patient | Dice Score | Dice Score | Dice Score | Final Dice
No. (x-y plane) | (y-zplane) | (z-x plane) Score
HGO1 0.76 0.79 0.78 0.82
HGO02 0.80 0.75 0.70 0.81
HGO3 0.84 0.82 0.83 0.85
HGO04 0.81 0.76 0.74 0.84
HGO5 0.90 0.87 0.85 0.91
HGO06 0.80 0.74 0.81 0.82
HGO7 0.84 0.85 0.87 0.89
HGO8 0.82 0.75 0.77 0.81
HGO09 0.82 0.83 0.76 0.85
HG10 0.78 0.80 0.84 0.85
HGI11 0.85 0.87 0.88 0.93
HG12 0.86 0.85 0.81 0.92
HG13 0.79 0.70 0.75 0.81
HG14 0.86 0.92 0.82 0.90
HG15 0.88 0.91 0.90 0.91
HG16 0.84 0.83 0.86 0.88
HG17 0.80 0.79 0.82 0.85
HG18 0.79 0.74 0.70 0.81
HG19 0.81 0.80 0.77 0.82
HG20 0.87 0.82 0.85 0.88
Average 0.826 0.809 0.8055 0.858
TABLE 5. Definition of accuracy measures.
Tumor Non-Tumor

True-Positive(TP)
False-Positive(FP)

Tumor
Non-Tumor

False-Negative(FN)
True-Negative(TN)

D. EXPERIMENTAL RESULTS

The training and testing are performed with a series of
different cross-validations, where the patients are randomly
selected into two non-overlapping sets. The performance
of the proposed method is determined using five standard
performance measures named Dice Coefficient, Sensitiv-
ity, Specificity, PPV (Positive Predictive Value) and Jac-
card value. Dice Coefficient [40] is the degree of over-
lap between the system output and the annotation mask
obtained from the clinicians. The Dice Coefficient is defined
as:

Dice = 2ANB) @®)
(A+BD

where A and B are the segmented regions found from the
model prediction and the ground truth, respectively. Its value
varies between 0 and 1 where a higher value indicates higher
degree of overlap. In Table 5, definitions of true positive
(TP), false negative (FN), false positive (FP), and true neg-
ative (TN) are presented. For example, TP corresponds to the
event that the test makes a positive prediction, and the subject
has a positive result, FP is the event that the test makes a
positive prediction, and the subject has a negative result and
FN is the event that the test makes a negative prediction, and
the subject has a positive result.
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TABLE 6. Performance measures on 20 HGG patients.

lel\tllsnt Specificity | Sensitivity | PPV | Jaccard gjc 1(;&;
HGO1 0.94 0.81 0.82 0.72 0.82
HGO02 0.92 0.84 0.79 0.74 0.81
HGO03 0.95 0.83 0.81 0.75 0.85
HGO04 0.99 0.85 0.85 0.72 0.84
HGO5 0.98 0.85 0.82 0.73 0.91
HGO06 0.99 0.82 0.83 0.72 0.82
HGO7 0.99 0.83 0.87 0.77 0.89
HGO08 0.93 0.81 0.80 0.78 0.85
HG09 0.99 0.81 0.77 0.65 0.81
HGI10 0.95 0.85 0.82 0.78 0.85
HGI11 0.99 0.93 0.86 0.82 0.93
HGI2 0.94 0.92 0.87 0.81 0.92
HGI13 0.87 0.79 0.81 0.75 0.81
HG14 0.95 0.91 0.82 0.79 0.90
HGI5 0.99 0.91 0.85 0.80 0.91
HGI16 0.99 0.82 0.84 0.75 0.88
HG17 0.95 0.79 0.83 0.75 0.85
HGI8 0.94 0.79 0.90 0.72 0.81
HGI19 0.93 0.81 0.83 0.71 0.82
HG20 0.97 0.83 0.85 0.75 0.88
Average 0.957 0.840 0.832 0.751 0.858

Sensitivity is defined as

o TP
Sensitivity = ———— )
TP + FN
Specificity is defined as
Specificit ™ (10)
ecificity = ———
ey = IN T FP
The positive predictive value (PPV) is defined as
TP
PPV=_— — (1)
TP + FP
Jaccard Similarity score [46] is defined as
TP
Jaccard = ————— (12)
TP 4+ FP + FN

In the proposed method, instead of considering one of the
three planes (x-y, y-z, z-x), all three planes are individually
considered and then combined. The effect of considering
three planes on overall performance is shown in Table 4.
Here, the dice scores obtained from each subject in case of
considering individual planes (x-y, y-z, z-x) and the proposed
three planes are presented separately. Among all sixty cases
(20 subjects, 3 individual planes), except for three cases,
better classification performance is observed for the proposed
combined planes approach.

In order to clearly visualize the tumor segmentation perfor-
mance, sample images are shown in Fig. 11. Here, the seg-
mented tumor images found after applying the proposed
method are depicted. The first row is the 82 slice of
HGO9 case, the second row is the 80 slice of HG11, and the
third row is the 100" slice of HG18. The first three columns
present the axial slice of three modalities: FLAIR, Tlc
and T2. The fourth column presents the segmented results
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Segmented Ground Truth
image

FIGURE 11. Representative segmentation results on one axial slice for three different high-grade subjects (from
the first row to the third row) on the real data of the BRATS 2013 data set.

on those axial slices. In the last column, for the purpose of
comparison, ground truth image slice is provided. From the
figures, one can understand the satisfactory performance of
the proposed method.

In table 6, five performance measures, namely Specificity,
Sensitivity, PPV, Jaccard and Dice Score are shown consid-
ering all 20 subjects. It is observed from these results that a
very consistent performance is observed in all cases.

Finally, the performance of the proposed method is com-
pared with that obtained by some other methods reported
in [23], [27], [41]-[44], [51], [52]. In different methods,
the final classification performance is presented considering
various cross validation techniques like leave-one-out, 2-fold,
5-fold or 10-fold cross validations. the performance of the
proposed method is evaluated in all these 4 cases of cross val-
idation considering all 20 subjects. In Table 7, performance
measures are compared for various methods (as reported in
corresponding references). It is evident from these results that
the performance of the proposed method is better than that is
obtained from these methods in terms of all five performance
measures.

In order to compare the computational performance of the
proposed method, the computational platform along with the
prediction time of different baseline methods are included
in Table.8. It is found that the proposed method takes 3.5 min-
utes to detect tumor for one subject (3.5 minutes/subject),
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while the method described in [27] takes 100 minutes/subject.
Besides, the methods in [23], [41], and [42]have a prediction
time of 6, 20, and 30 minutes/subject. The method in [51] has
applied a holistically nested neural network for the segmen-
tation purpose which has a prediction time of 30 seconds for
each of the images. It is to be noted that the cross validation
schemes chosen in different cases vary and thus an exact com-
parison cannot be performed. However, in general it is found
that the proposed method offers satisfactory computational
performance in terms of computational time in comparison
to that obtained by some existing methods.

E. EFFECT OF PIXEL LABELING BASED ON THREE PLANAR
VOTING ON THE PERFORMANCE

In between several layers of 3D MRI, it is expected that
a tumor exhibits consistent characteristics inside the tumor
boundary unlike the tumor surface where diverse shapes
between several layers may be observed. As a result, in the
proposed superpixel based classification scheme, a super-
pixel, which is located inside the tumor boundary, contains
mostly tumor pixels. On the other hand, a superpixel located
at the tumor surface may contain both tumor and non-tumor
pixels in it. If the majority of the pixels in a superpixel exhibits
the characteristic of tumor, it is most likely that the superpixel
will be classified as tumor class and its pixels are labeled
as tumor pixels. Consequently, a redundant region of tumor
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TABLE 7. Comparison of proposed method with other approaches.

Approach Vaﬁzijiison Specificity | Sensitivity | PPV | Jaccard | Dice Score
Zhuge [51] 2-fold - 0.81 - - 0.78
Zhao [52] - - - - - 0.81
Tustison [27] - - 0.89 0.85 - 0.87
Cordier [41] | leave-one-out - 0.78 0.79 - 0.79
Maier [23] 5-fold - 0.859 0.773 - 0.802
Festa [42] leave one out 0.87 0.80 - 0.72 0.83
Abbasi [43] 10-fold - - - 0.733 0.837
Banerjee [44] - - - - - 0.86
2-fold 0.957 0.840 0.832 | 0.751 0.858
Proposed 5-fold 0.966 0.862 0.851 0.79 0.865
10-fold 0.974 0.88 0.87 0.81 0.873
leave on out 0.981 0.891 0.89 0.82 0.881

TABLE 8. Comparison of computational time of different baseline

methods.
Method Computational Platform Pr(rar(!lctlon
ime
Tustison et. al. 100 min
[27] B (Per Subject)
DELL PRECISION
Zhuge et. al. workstation 30 seconds
[51] T7400, NVIDIA Tesla (Per Image)
K20c GPU
Intel processor
Festa et.al. (i7- 3930k, 30 minutes
[42] [37] 3.2 GHz) and 24 GB (Per Subject)
of RAM.
Maier et.al. 6 minutes
[23] [37] ) (Per Subject)
Cordier et.al. 20 minutes
[41] [37] B (Per Subject)
p Intel CoreTM i7-8700 Approximately
roposed .

Method 3.2 GHz (x12) processor, 3.5 mlnl}tes
8 GB of RAM (Per Subject)

pixels is introduced in the outer surface region. On the other
hand, non-tumor dominated superpixel will be classified as
non-tumor class and its pixels are labeled as non-tumor pixels
resulting in losing some tumor pixels. As a result, according
to the three planar voting approach, two possible cases are
observed in the outer surface: a tumor pixel if misclassified as
a non-tumor in any one of the three planes will be discarded
and at the same time, a non tumor pixel if misclassified as
tumor pixel will also be discarded. In general, the second case
is mostly observed in outer surface of tumor region which
helps in removing non tumor regions in the predicted tumor
region. The possible alternate to the current three planar
voting approach - single planar voting (a pixel is labeled as
Tumor class if the label obtained from at least one plane is
found tumor) and double planar voting (a pixel is labeled as
Tumor class if the labels obtained from at least two planes are
found tumor) are also considered and evaluated in the BRATS
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2013 database. As in the single planar voting the pixel is
labeled as tumor if it is declared as tumor by at least one of
the planar scores, there is less possibility to discard any tumor
pixel which is usually happenened in the outer surface super-
pixel as discussed previously. Hence the single planar voting
has an advantage over the current voting approach in that
particular case and eventually increases the sensitivity in most
of the cases as shown in Table.9. However, the main problem
of this approach is that it includes a huge redundant tumor
region created from the pixel labeling - based on superpixel
label in all the three planar classification individually. This
situation is illustrated in Fig.12. where a random patients’
data is evaluated and it is found that in the single planar voting
approach, the tumor region is larger in comparison with the
original tumor region. Consequently, the dice score measured
is severely affected as it is depend on the segmented region.
In the dice score measure (8), if the segmented region (B) is
bigger than the original tumor (A), the overall volume (A + B)
is increased drastically, resulting in a degradation of dice
score performance. The similar situation is happened in the
double planar voting approach. On the other hand, the current
three planar voting approach has the advantage to discard
the redundant region by forcing the labeling of a pixel to be
determined by all the three planar scores. As a result, though
sensitivity is sacrificed, the overall performance is improved
by the three planar voting approach.

F. PERFORMANCE COMPARISON BETWEEN EXTREMELY
RANDOMIZED TREES AND OTHER CLASSIFIERS

In order to visualize the computational complexity of differ-
ent classification schemes, Table.10 is included, where order
of the training complexity as well as training time is reported.
The parameters used in representing the order of training
computational complexity (denoted as O(.)) are:

o n is the number of training samples,
o d is the number of features,
e c is the number of class,
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TABLE 9. Effect of different voting schemes on performance measures.

Patient

No Single Planar Voting Double Planar Voting Three Planar Voting
Specificity | Sensitivity | Dice Score | Specificity | Sensitivity | Dice Score | Specificity | Sensitivity | Dice Score
HGO1 0.96 0.93 0.51 0.97 0.78 0.68 0.94 0.81 0.82
HGO02 0.98 0.82 0.47 0.96 0.92 0.72 0.92 0.84 0.81
HGO03 0.99 0.95 0.69 0.99 0.91 0.68 0.95 0.83 0.85
HGO04 0.95 0.93 0.68 0.98 0.90 0.65 0.99 0.85 0.84
HGO05 0.92 0.81 0.51 0.97 0.87 0.78 0.98 0.85 0.91
HGO06 0.99 0.92 0.64 0.98 0.98 0.69 0.99 0.82 0.82
HGO07 0.95 0.93 0.57 0.95 0.92 0.72 0.99 0.83 0.89
HGO08 0.98 0.94 0.68 0.97 0.93 0.76 0.93 0.81 0.85
HG09 0.97 0.97 0.45 0.99 0.93 0.72 0.99 0.81 0.81
HG10 0.99 0.88 0.47 0.98 0.95 0.72 0.95 0.85 0.85
HGI11 0.98 0.98 0.78 0.99 0.96 0.88 0.99 0.93 0.93
HG12 091 0.97 0.67 0.98 0.82 0.85 0.94 0.92 0.92
HG13 0.98 0.73 0.66 0.99 0.64 0.70 0.87 0.79 0.81
HG14 0.97 091 0.52 0.95 0.77 0.79 0.95 091 0.90
HG15 0.99 0.92 0.68 0.93 0.92 0.81 0.99 091 0.91
HG16 0.98 0.92 0.78 0.99 0.82 0.86 0.99 0.82 0.88
HG17 0.96 0.83 0.54 0.96 0.92 0.73 0.95 0.79 0.85
HGI18 0.97 0.73 0.57 0.99 0.82 0.68 0.94 0.79 0.81
HG19 0.97 0.99 0.57 0.99 0.95 0.80 0.93 0.81 0.82
HG20 0.99 0.94 0.72 0.97 0.84 0.79 0.97 0.83 0.88

Ground truth Proposed Three Planar

Voting

Double Planar voting Single Planar Voting

FIGURE 12. (From Left to Right) 3-D view of Actual Tumor Region of
HG11 patient, Tumor region extracted from three planar voting, Tumor
region extracted from double planar voting, Tumor region extracted from
single planar voting.

o E is the number of epoch in training,
e M is the number of trees, and
e k is a constant (where d > k).

In Table.10, along with the order of training computational
complexity, training time required by the classifiers and clas-
sification performance in terms of dice score under a similar
testing condition are also reported. Among the classifiers
mentioned above, except Logistic Regression, other classi-
fiers exhibit competitive classification performance. How-
ever, in case of large number training samples like in the
current application, the number of samples (») is much higher
than the number of trees and number of features, which
eventually increases the computational complexity as well as
computational time of SVM and RF classifiers in comparison
to the ERT classifier. In this example, in order to evaluate the
performance of a neural network, a four-layer feed-forward
neural network is implemented. The number of neurons in
the two hidden layers is chosen to be 40 and 20, respectively,
which gives better classification accuracy. The weights of the
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TABLE 10. Computational complexity of different algorithms.

. Training Traning .
Algorithm Complexity | Time(sec) Dice Score
Logistic Regression | O((d+1)cnE) 491 0.76
SVM om?) 1820 0.823
RF O(Mdnlogn) 524 0.849
ERT O(Mknlogn) 335 0.858
ANN - 7200 0.838

network are adjusted by a back-propagation procedure with
an adaptive learning rate to obtain the desired output. The
tan-sigmoid and softmax activation functions were used for
the hidden layers and final output layers, respectively. Apply-
ing the network, it is found that a classification accuracy
very closer to the ERT classifier is achieved. Yet, considering
the complexity of tuning different parameters and training
complexity of the neural network, the ERT is chosen in the
proposed method. Here, the computational performance anal-
ysis is carried out on Intel CoreTM 17-8700 3.2 GHz (x12)
processor, 8 GB of RAM, running on Windows 10 64 bit OS.
Classifiers used here for comparison are implemented using
MATLAB and the codes used here are not fully optimized.

G. PERFORMANCE COMPARISON BETWEEN SUPERPIXEL
AND FIXED BLOCK BASED IMAGE PARTITION

Fixed block of pixels or sliding window has been used as
an alternative of superpixel in many object detection and
image segmentation tasks. In [38], [39], the image is parti-
tioned into fixed block of sliding windows and features are
extracted from these blocks. But due to the arbitrary shape
of the Tumor, a fixed block window does not provide proper
information about the edge portions of a tumor region. It is
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Superpixel vs Fixed Block Based Segmentation performance Comparison
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FIGURE 13. Performance comparison between superpixel and fixed block
based image partition.

because at the edge the block may contain both types of pixels
(tumor and non-tumor), which creates severe mislabeling in
classification. But in the case of superpixel, the whole image
is divided into non-overlapping and uneven blocks according
to their intensity similarity. Consequently, the edge portion
is precisely preserved and the performance of superpixels
dominates over the fixed block. In Fig. 13, considering the
same window size, performance obtained by the proposed
method in case of superpixel and fixed block is presented.
Here, average dice score value is considered as a performance
index. The performance reported here is the average dice
value obtained from all 20 subjects. It is clearly observed
from the figure that the performance with superpixels is much
better than that obtained using fixed blocks irrespective of
the window sizes. As discussed before (section III-B), with
superpixels of larger size the chance of inclusion of more
dissimilar pixels increases thus classification performance
may degrade. This fact is also clearly observed in Fig. 13.

IV. CONCLUSION

In this paper, a tumor segmentation method based on three
planar superpixel features extracted from the 3-D MRI data
is introduced. In order to tackle the problem of planar data
imbalance and mislabeling of the pixels present in a certain
plane which is inherent in slice wise detection of the tumor,
three planar superpixel based statistial and textural features
extraction is performed. Unlike conventional feature based
methods, where a large number of features are considered,
we propose to utilize five statistical features those were
shown to be more effective in obtaining large class separa-
tion. An exhaustive analysis for finding the suitable feature
set is done which not only contribute to the accuracy but
also reduce computational burden. For selecting the optimum
Gabor orientation, a rank based orientation selection method
is applied by analyzing the whole MR images. Performing
pixel labeling based on three planar images, it is found
that considering all three planar images for segmentation
enhances the classification performance of the task. The pro-
posed method is evaluated on a publicly available dataset and
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it offers excellent segmentation performance in comparison
to some existing methods in terms of Sensitivity, Specificity,
PPV, Jaccard Score and Dice coefficient.

It is observed that the proposed method offers compara-
tively better performance in terms of various performance
measures. However, considering very high level of precision
in tumor region segmentation, further increase in values of
performance metrices is desired. One possible future work
could be to investigate the performance of various neural
network based schemes, such as deep neural network or
convolutional neural network. In that case, large number of
labeled training data is required to train the complex models,
which is not always available for medical applications and
computational complexity needs to be sacrificed.
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