
Received November 28, 2019, accepted December 18, 2019, date of publication December 23, 2019,
date of current version January 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2961692

A Hive-Based Retrieval Optimization Scheme for
Long-Term Storage of Massive Call Detail Records
XI PENG 1,2, LIANG LIU 2, AND LEI ZHANG 2
1Graduate Faculty, China Academy of Telecommunication Technology, Beijing 100191, China
2College of Cybersecurity, Sichuan University, Chengdu 610065, China

Corresponding author: Lei Zhang (zhanglei2018@scu.edu.cn)

This work was supported by the National Key Technology Research and Development Program of China under Grant 2017YFB0802900.

ABSTRACT With the dramatic rise of mobile internet users and the administrative requirements of long-
term data retention, telecom providers are facing increasingly challenging storage and retrieval issues of call
detail records (CDRs). The existing storage system can only achieve the requirement of online query and
offline analysis of the CDRs. However, to the best of our knowledge, few studies have focused on the topic of
CDRs retrieval optimization with long-term storage. In order to improve the retrieval speed while ensuring a
high compression ratio, in this paper we propose a novel hash storage scheme, termed dual-column bucketing
(DCB), based on the Hive platform by making use of its Bucketing nature. Compared to the conventional
scheme, the proposed DCB scheme can improve the performance both for CDRs compression and query.
Second, similar storage scenarios such as storage of SMS, email and extended detail records (XDRs) are
included in the optimization scope of the DCB. Experiments on real-world CDRs show that in contrast to
the conventional scheme, the proposed DCB scheme can save the storage space by approximately 40%,
reduces the amount of disk read to 2%, and improve the retrieval speed of known phone number queries by
up to seven times.

INDEX TERMS Bucketing, call detail records, hash storage, long-term storage.

I. INTRODUCTION
Nowadays, the mobile communication network has become
an indispensable part of people’s daily life. Faced with bil-
lions of users, communication operators are forced to store
large amounts of call detail records (CDRs) for a long period
to meet business needs and national regulatory requirements.
It is estimated that 150KB raw data is generated per sub-
scriber in China per year. In November 2018, statistics on
the number of subscribers of operators in China showed that
China Mobile had more than 900 million subscribers, China
Unicom and China Telecom had more than 300 million sub-
scribers of each. If the billing information is required for stor-
age for 6 months, a single operator of these three mentioned
abovemust store 20PB data at least. Yet, according to the Law
of the People’s Republic of China on Network Security, half
a year’s data is the minimum requirement in the regulations.
Internationally, the EU and Australia have already adopted
similar regulations to retain CDR data several years ago [1].
This is a matter of national security.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xin Luo .

Although 20PB data may appear small by today’s stan-
dards in memory and storage capacity, they are absolute
minimum estimates of raw data. Protection of the CDRs such
as encryption and random access to it should be considered
because the privacy information of the service users is hidden
in it. Both features can bring storage overhead and it may
be tenfold from extrapolating previous experiences [2]. The
above estimation may still appear small by comparison to a
large business platform. However, the CDR retention system
is a non-profitable investment for the operator so we cannot
expect it to use significant resources in terms of purchased
hardware and software. Besides, the improvement of retrieval
speed is also demanded. Therefore, to increase the compres-
sion ratio and improve retrieval speed on PB-level CDRs
simultaneously is a big challenge.

A. EXISTING PROBLEMS
At present, there are a variety of big data analysis tech-
niques [3], [4]. Among them, Hadoop is an open-source
software framework for distributed storage and processing
for huge data sets on computer clusters built on cheap

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 431

https://orcid.org/0000-0001-9299-5890
https://orcid.org/0000-0002-5612-1915
https://orcid.org/0000-0001-8074-906X
https://orcid.org/0000-0002-1348-5305


X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

hardware [5]. Hive [6] and HBase [7] are two major big data
stores based on Hadoop and many research results have been
achieved.

First, about optimizing Hadoop storage system implemen-
tation, the authors of [8] proposed a compression strategy
based on HBase, using different compression algorithms for
cold and hot data on TPC-H data set, which achieves a
compression rate of up to 28%. The authors of [9] designed
the secondary index of HBase to improve query perfor-
mance on generated log data. In [10], the authors pro-
posed PageFile, a hybrid page-based storage structure on the
MapReduce framework. It has faster query processing, better
disk space utility compared to Hive’s RCFile [11] on the
TPC-H data set. The researchers of [12]–[14] focused on
content or record level of big textual data analysis that give
respectively 52.4% average data size reduction compared to
Huffman algorithm on real-world data sets such as Amazon
movie review and food review, up to 72% on analysis per-
formance and nearly Bzip compressor compression ratios by
two-level compression on real-world data sets such as Google
Server Logs and YahooMusic Rating, and 24% improvement
on analysis performance with up to 75% data size reduc-
tion by making splittable compressed content on real-world
data sets such as Wikipedia Article Abstract and Genome
Sequence.

Although researchers mentioned above contribute greatly
from file-level optimizations including compression algo-
rithm, the structure of file format, and record analysis to
improve storage efficiency and retrieval performance on pop-
ular data sets, they do not focus on scheme optimization and
target CDRs which is a special data set.

Second, about CDRs, researchers of [15] compa-
red [16]–[22] CDR analysis solutions and [20], [22] among
them with Hadoop architecture has the advantages of with
good performance, high scalability, and low cost but they do
not give a detail store scheme of CDRs. The authors of [23]
studied evaluating the potential of call detail record data in
the context of route choice behavior modeling that infers the
user’s chosen routes or subsets of their likely routes from par-
tial CDR trajectories and data fusion with external sources.
Reference [24] studied how to predict complex user behavior
combining social, economic, and legal considerations from
CDRs by developing a sophisticated model. Researchers
in [25] studied degree characteristics and structural properties
in large-scale social networks by analyzing tera-scale CDRs
that are useful for managing and planning communication
networks. Sparse mobility information in CDRs is enriched
in [26] that reduces temporal sparsity in CDR by recovering
75% of daytime hours and retaining the spatial accuracy
within 1km for 95% of the completed data. Moreover, authors
of [27] use more than 800 million CDR to identify weekly
patterns of human mobility through mobile phone data that
helps local authorities for human mobility analysis and urban
planning.

It can be seen that Hadoop is applicable to CDRs stor-
age and analysis. However, for the storage aspect, low cost

FIGURE 1. Scan range of a typical query under conventional scheme.

and scalability of storage media are considered while CDRs
retrieval performance is not; for the analysis aspect, extract-
ing user behavior information from CDRs is the hot spot and
storage of CDRs is seldom involved. When combing CDRs
with system storage schemes, there is little research in this
field.

B. MOTIVATIONS
The CDRs are a special data set that has high volume
and highly repeated information such as the call number.
However, CDRs with the same call number are scattered
in the storage space and cannot be gathered together then
efficiently stored. Besides, the call number is the most fre-
quent key filter in a legitimate query. A typical query is
like:
select * from table where call_num_fieldA = ‘123456’ or

call_num_fieldB = ‘123456’ and date = ‘201707’
This typical query on massive CDRs (TB or PB level) is

time-consuming because this job is a ‘‘wide-ranged’’ normal
linear searching process. Fig. 1 shows the typical query’s scan
range and the data distribution under conventional storage
scheme: a table with partition on date. For simplicity, we sup-
pose the table only has one partition. In Fig. 1, the white
rectangle represents the table’s partition with the date on
’201707’ and it is filled with massive CDRs (a large city
with tens of million people can produce at least hundreds
of gigabytes CDRs a month) represented by many invisible
lines. The colored lines represent four pairs of CDRs in the
partition contains the call number of ’123456’. About the
‘‘pairs’’, this is a characteristic of CDRs that they are always
generated in pairs and stored. The detailed reason is described
in Section III. C.

From Fig. 1, we can spot that the CDRs of a call number
are scattered in the storage space which means to finish the
query, the system has to scan the whole partition. Though
we can slice partition to smaller pieces, it makes the query
more complicated. Because we have to query more times
on different partition, and the scan range of the query on
the table remains unchanged indeed. Besides, performance
for linear searching on tons of CDRs is poor no matter how
you partition the table or adopt the file-level or record-level
contributionsmentioned in Section I.A. Therefore, we need to
design a scheme fulfilling the following two key requirements
to tackle the query problem.

• Narrow the scan-range.
• Optimize the linear searching process.

432 VOLUME 8, 2020



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

C. CONTRIBUTIONS
In this paper, we propose a dual-column bucketing (DCB)
scheme that greatly improves retrieval performance on the
premise of reaching a higher compression rate. The main
work and contributions of this paper are summarized as
follows.
• We propose a novel DCB scheme by extending the
existing hash storage scheme. In DCB, CDRs with the
same call number gathered in a bucket by hash then
are highly compressed. By utilizing the Hive’s bucket
sampling statement (Tablesample), newly propose DCB
retrieval algorithm significantly improves the retrieval
speed on Typical queries.

• We propose multiple key columns sorting under the
DCB scheme. The multiple key columns sorting in each
bucket file improves the typical query’s running speed
further with key columns as filter conditions.

• Implement the system prototype and evaluate the
scheme’s effectiveness with real-world data and the
result shows that our DCB saves storage space by about
40% and improves typical query speed up to 7x.

The remainder of this paper is organized as fol-
lows. Section II describes the preliminary techniques.
Section III illustrates the DCB scheme proposed in this paper.
In Section IV, an experimental evaluation with real CDRs is
given. Section V describes work most related to our contribu-
tions. Section VI concludes this paper.

II. PRELIMINARIES
The relevant Hive techniques involved in this paper provide
essential support for the implementation of our DCB scheme.

A. HIVE BUCKET
Table in Hive supports partitioning and Bucketing.When par-
titioning, Hive creates subdirectories under table file direc-
tory, named after partition fields, and partition data is stored
in corresponding partition folders. The essence of partitioning
is to slide data using folders. When querying with partition,
Hive will only read the corresponding directory files that
save query time. For Bucketing, Hive first hashes the data
by bucket column (or columns) designated by the user, and
then use the hash results to mod the number of buckets to get
the remainder. Finally, Hive distributes the records according
to the remainder. Assuming that F is the bucketed field, N is
the number of buckets, then the formula for calculating bucket
number B for each record is as follows:

B = Hash(F) mod N (1)

After Bucketing, the data is stored evenly with smaller
granularity, and the data in the bucket is sorted by the chosen
bucketed field (or fields). In this way, querying does not
necessary to read the whole partitioned file, which further
improves the retrieval performance. Because of the sorting
of the bucketed column in bucket files, the query speed and
compression efficiency of the bucketed column is improved.

FIGURE 2. Table structure.

FIGURE 3. Hive Tablesample principle.

The comparison of the table structure with and without Buck-
eting is shown in Fig. 2.

B. HIVE TABLESAMPLE
Hive has special support for bucketed table: Tablesample,
which makes it is possible to specify a bucket to read
data through the Tablesample statement when querying, thus
avoiding scanning the whole table data (or the whole parti-
tion). For example, if the call number F and the number of
bucketsN is known, according to ‘‘(1),’’ bucket number B can
be calculated. And the HQL statements like the following one
can be used to query:
select * from table tablesample (bucket B out of N) where

call_num = F;
Fig. 3 shows the principle of the Tablesample query. If the

corresponding bucket number of a call number in CDRs
can be calculated beforehand, the Tablesample statement can
greatly improve the query performance.

C. HIVE FILE FORMAT
The establishment of Hive data tables requires specify-
ing the file format. Hive supports row-based and column-
based storage formats. In version 1.2.1, row-based storage
includes TextFile, SequenceFile, and Avro; row-column
storage includes Parquet, RCfile, and ORC. Different data

VOLUME 8, 2020 433



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

FIGURE 4. File structure of Parquet and ORC.

formats differ in their storage structure and compression
algorithm. According to the file format characteristics sup-
ported by Hive and the business habits of querying CDRs,
the appropriate storage format can be selected to improve
query and storage efficiency. Since row-based files are not
efficient for storage and query on big data, this paper focuses
on row-column files.

Parquet is a row-columnfile format. The idea of nested data
structure design originates from the algorithm in Dremel’s
paper. It reduces storage costs and improves computing
performance, which is also one of its greatest advantages.
In point of its structure, the file is divided into row group,
column chunk, and page, totally three levels. The file has
page-level min and Max statistics (The version in this paper
does not have.) and the data is compressed in pages that
provide a variety of encoding methods.

RCfile and ORC [28] are row-column file formats, simi-
lar in structure to Parquet, but without page-level partition-
ing. ORC improves the file compression method based on
RCfile. It has column block-level compression encoding and
improves the efficiency of file compression. Compared with
Parquet, ORC also has column-level ‘‘avg’’ and ‘‘count’’
statistics, which Hive can use for block-level filtering when
querying. Besides, Bloom filter has been added to ORC for
filtering that is equivalent to a further step in the statistical
index, which improves the query speed. Fig. 4 is a schematic
diagram of the current version in this paper of Parquet and
ORC.

Considering that the Hive has original support for ORC file
and ORC file format has good encodings, compression algo-
rithms, and multi-dimensional statistical information [29],
the data in this paper is stored in ORC file format.

III. THE PROPOSED SCHEME
A. OVERVIEW
Fig. 5 illustrates the CDR Retention System structure in this
paper. The system is based on a typical Hadoop distribution

FIGURE 5. DCB system architecture.

system architecture: A master node with Hadoop Namen-
ode and Hive, several slave nodes with Hadoop Datanode.
Besides, Fig. 5 performs the life cycle of CDRs: CDRs are
produced by the operator’s network equipment first and then
are stored in the CDR Retention System. At last, after a
certain period, the ‘‘old CDRs’’ are discarded.

Combining the storage and retrieval requirement described
in Section I., two aspects should be considered.

• About compression: CDRs have high volume and lots of
repeated information such as the call number. However,
the same call number is scattered in the storage space
and cannot be gathered together then efficiently stored.

• About query speed: Randomly distributed call numbers
bring low efficiency for retrieval especially querying in
a massive CDRs storage database.

Therefore, clustering similar CDRs is the key to solve the
problem, and hash storage comes to mind. Based on our
knowledge of Hive, we try to introduce a hash storage to
reach our goal. The existing technique in Hive does have
a hash option named Bucketing, but it only brings limited
improvement: Bucketed tables are fantastic in that they allow
much efficient sampling than do non-bucketed tables, and
they may later allow for time-saving operations such as map-
side joins [30]. The more detailed reason and solution are
given in section III.B. To tackle this problem, we propose
a well-fitting DCB scheme for long-term CDRs storage that
successfully takes the best of the advantage of hash storage.
As a result, we greatly improved retrieval performance on the
premise of improvement on the compression rate.

The DCB scheme optimization can be divided into the
following two parts:

434 VOLUME 8, 2020



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

FIGURE 6. Problem of Bucketing.

1) Bucketing Optimization: Implement our hash strategy
based on Hive’s Bucketing characteristic.

2) Multiple Key Columns Sorting and De-Duplication:
Sort the bucket files based on multiple key columns and
eliminate redundancy in the files.

B. DCB: BUCKETING OPTIMIZATION
The basic principle of Bucketing and Tablesample has been
described in II.B. Directly apply Bucketingmechanism to call
number column can do improve storage and query perfor-
mance that means normal hash strategy is useful.

However, improvement is poor. Fig. 6 shows an example of
two different conventional Hive original Bucketing schemes
that bring two different problems. And the two schemes
are SCB (Single Column Bucketing) on the top and MCB
(Multiple Column Bucketing) on the below. A Bucket and C
Bucket are the buckets of SCB; AB Bucket and CA Bucket are
the buckets of MCB. Two horizontal bars in blue represent
two different records of CDR with two call number fields
given. NumA, NumB, and NumC represents three different
call numbers. If we focus on NumA, the SCB cannot allo-
cate two records both containing NumA to a single bucket
because NumA and NumC have different hash values. Turn
to MCB, we also focus on NumA and it is found that since
(NumA, NumB) and (NumA,NumC) has different hash values,
we cannot allocate two records both containing NumA to a
single bucket either.

This result means that we cannot do a typical query of
NumA on a single bucket and have to query on every bucket
that contains NumA which has no difference with the query
on the scheme without Bucketing. These two schemes of
hash do not consider a typical query performance. In other
words, the traditional hash storage scheme only takes query
on one column primary key into consideration, when there

FIGURE 7. Solution scheme.

Algorithm 1 Hash Code for String
Input: char value[]
Output: int h

1 int h = hash;
2 if h = 0 && value.length > 0 then
3 char val = value;
4 for int i = 0; i < value.length; i ++ do
5 h = 31 ∗ h+ val[i];

6 hash = h;

7 return h;

has a dual-column primary key, the conventional hash storage
scheme needs to be changed.

To solve this problem, Fig. 7 illustrates the scheme of our
hash storage design and the detail is as follows:

1) In data pretreatment, manual hashing operation is per-
formed on two columns of call number fields separately.

2) A new column field is added to the table for playing the
role of a bucket column.

Considering the first design, since two call number fields
are allocated to buckets respectively, the same call number in
two columns of number fields will fall into the same bucket,
which can ensure that only one bucket is needed to retrieve all
records of a call number. About the hash function, the Hive’s
hash algorithm of String type is as follows:

Algorithm 1 uses the remainder of an int’s overflow as a
hash code of a String. The hash table size is the length of an
int that has 8 bytes which means that the hash table size is
over 4 billion. In our research field, a country normally has
fewer subscribers than the hash table size and thus this hash
function is qualified to satisfy our requirement for allocating
call numbers evenly to buckets. Besides, the multiplier 31 is
a large enough odd prime that effectively limits the conflicts
and the hashing process is fast due to the multiplication that
can be replaced by a shift and a subtraction. Therefore, we use
this hash function to hash the call number.

VOLUME 8, 2020 435



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

FIGURE 8. Multiple Columns Sorting.

For the second design, after adding a column of fields
for indicating the bucket, we can utilize the field to do the
Tablesample query of a call number now. Besides, due to the
field added in each bucket file has the same value, this bucket
column occupies almost no storage space.

In general, the purpose of the Tablesample query on a
designated bucket is achieved by manual hashing of two
columns and adding a bucket column. The scheme clusters
all of the similar CDRs to a predictable small storage space
called bucket that changes the data structure of traditional
hash storage scheme (from each record has a unique hash
value to similar records share a hash value.) The scheme can
also applied to storage of SMS, email, and extended detail
records (XDRs) which has similar two-party communication
features to CDRs. In addition, this is a scheme of trading
space for time. Because during the hashing phase, a call detail
record has been copied to another bucket. However, CDRs are
a special data set that always contain duplication. The next
subsection describes and tackles this problem.

C. DCB: MULTIPLE KEY COLUMNS SORTING AND
DE-DUPLICATION
With Bucketing operation, files have been sliced to suf-
ficiently small on size. Thus sorting within bucket files
becomes easy and feasible. When reading an ORC file in
Hive, the predicate will be pushed down to the row filter, thus
sorting the frequently used conditional fields will improve
query performance. Therefore, this paper sorts those two call
number fields in each bucket.

Fig. 8 shows the diagram of multiple key columns sorting.
In the diagram, the data are sorted in ascending order accord-
ing to the weighted priority: C1>C2>C3. Yellow represents
cells to be sorted, blue represents cells unsorted, green rep-
resents cells have sorted. In addition, because many identical
numbers are aggregated in the same bucket after Bucketing,
the sorted data could occupy less space in storage.

In reality, CDRs are always generated in pairs. When a
call occurs, both the calling and the called billing system
(or base station) will record an identical call record of the
call, like ‘‘twins’’. When an operator collects CDRs from
different billing systems in different areas together and stores

FIGURE 9. Data distribution and scan range of a typical query on four
schemes.

them in the storage system, without a high-cost full scan,
the same records cannot be de-duplicated. However, com-
bined with the scheme in Fig. 7, two identical records will
be allocated to the same bucket. To save storage space and
decrease the data inflation effect brought by the scheme,
the same records in a bucket are de-duplicated. The cost of
de-duplication is low because the records are sorted and the
time complexity is about O(n). After all these pretreatments,
the number of records should be bigger than that of original
records because there are still some calls that do not have a
‘‘twin’’ but they are duplicated. The size of the processed
CDRs also should be bigger than that of the original one
because one more field for bucket number is stored and some
‘‘twin’’ is produced. The compression ratio of the scheme
depends on how many ‘‘twins’’ there are among the original
data.

D. DCB: RETRIEVAL ALGORITHM
To illustrate the advantage and principle of the DCB retrieval
algorithm, Fig. 9 shows a typical query and four storage
schemes (for simplicity, we omit the filtering field of time
in the query.) In the figure, the white rectangle represents
a CDRs storage space that stored massive CDRs which is
represented bymany invisible lines. The highlighted 8 lines of
four colors represent 4 pair of CDRs that contains call number
‘123456’ and especially, green and red lines indicates call
number field A’s call number is ‘123456’; blue and yellow
lines represent call number field B’s call number is ‘123456’.
Each pair contains the same CDR. The brace on top of each
rectangle means the scan range of the query on the scheme.
First, we focus on the 4 pairs of CDRs’ distribution under
these different schemes.

• Considering the table scheme without Bucketing,
because CDRs are collected by chronological order,
every CDR of each pair gathered by pairs and scattered
in the storage space.

436 VOLUME 8, 2020



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

Algorithm 2 Conventional Scheme Retrieval of TQ
Input: LT [r1, r2, r3, . . . , rn], call_num
Output: LR[r1, r2, r3, . . . , rm]

1 //a full table scan
2 for i = 1; i ≤ n; i++ do
3 if match(LT [i], call_num) then
4 add(LR,LT [i])

5 return LR

Algorithm 3 DCB Scheme Retrieval of TQ

Input: LT [B1[r11 , . . . , r1n1 ], . . . ,Bn[r
n
1 , . . . , rnnn ]],

call_num
Output: LR[r1, r2, r3, . . . , rm]

1 //calculate the target bucket
2 b = Hash(call_num) mod n
3 //a scan of the target bucket
4 for i = 1; i ≤ nb; i++ do
5 if match(Bb[i], call_num) then
6 add(LR,Bb[i])

7 return LR

• When adopting SCB scheme, assume we bucket the call
number field A, since green and red lines represent call
number field A’s call number is ‘123456’ that means
they are the same, these two pair of CDRs are allocated
to the same bucket. In Fig. 9, we put them in a very
close position to express. Because we don’t know what
yellow and blue pairs of CDRs’ call number field A are,
the records are allocated to different buckets respectively
and they are randomly distributed in the storage space.

• About the MCB scheme, since two fields of call number
make up the bucket field, each pair has different hash
value and they will be allocated to different buckets.
Also, they are scattered in the storage space.

• Concerning the DCB scheme, Fig. 9 shows that one
record in each pair of CDRs will be allocated to the
same bucket because they all contain the call number
of ‘123456’ wherever the call number is in call number
field A or call number field B. The other record in each
pair will appear in other bucket.

Turn to the query, Algorithm 2,3,4,5 shows the retrieval
algorithms of typical query (TQ) on each scheme. We define
LT [r1, r2, r3, . . . , rn] as a list of CDRs without bucketing,
LT [B0[r01 , . . . , r0n1 ], . . . ,Bn−1[r

n−1
1 , . . . , rn−1nn ]] as a list of

CDRs with bucketing, LH [h1, h2, . . . , hp] as a list contains
MCB hash value with call numbers, call_num as the target
number, and LR[r1, r2, r3, . . . , rm] as a list of target CDRs.

Combine Fig. 9 with these four retrieval algorithms, it can
be seen that the conventional scheme and SCB scheme scans
the whole storage space to obtain target CDRs respectively,
especially, SCB scheme needs two scans to finish the query;
MCB scheme need access an auxiliary table LH to know

Algorithm 4 SCB Scheme Retrieval of TQ

Input: LT [B0[r01 , . . . , r0n1 ], . . . ,Bn−1[r
n−1
1 , . . . , rn−1nn ]],

call_num
Output: LR[r1, r2, r3, . . . , rm]

1 //calculate the target bucket
2 b = Hash(call_num) mod n
3 //a scan of the target bucket
4 for i = 1; i ≤ nb; i++ do
5 if match(Bb[i], call_num) then
6 add(LR,Bb[i])

7 //a scan of rest buckets
8 if b > 0 then
9 for i = 0; i < b; i++ do
10 for j = 1; j ≤ ni; j++ do
11 if match(Bb[j], call_num) then
12 add(LR,Bb[j])

13 if b < n− 1 then
14 for i = b+ 1; i < n; i++ do
15 for j = 1; j ≤ ni; j++ do
16 if match(Bb[j], call_num) then
17 add(LR,Bb[j])

18 return LR

Algorithm 5MCB Scheme Retrieval of TQ

Input: LT [B1[r11 , . . . , r1n1 ], . . . ,Bn[r
n
1 , . . . , rnnn ]],

LH [h1, h2, . . . , hp], call_num
Output: LR[r1, r2, r3, . . . , rm]

1 LB = []
2 //a scan of auxiliary table to obtain target buckets
3 for i = 1; i ≤ p; i++ do
4 if match(LH [i], call_num) then
5 add(LB, hi mod n)

6 //a scan of target buckets
7 for i = 0; i < LB.length(); i++ do
8 for j = 1; j ≤ nLB[i]; j++ do
9 if match(BLB[j], call_num) then
10 add(LR,BLB[j])

11 return LR

what buckets contain the call_num first, then search each
bucket to obtain target CDRs. The scan times equals to the
length of LB. Generally, considering the system startup cost
brought by multiple scans and scan range in SCB and MCB,
their query speed is slower than that of the conventional
scheme.

Compared to these algorithms, our proposed DCB retrieval
algorithm has the simplest process and the fastest speed that
can complete the query through a single scan of a bucket.

VOLUME 8, 2020 437



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

TABLE 1. Configuration of a node.

TABLE 2. Statistics of table fields.

FIGURE 10. Call Degree on undirected Graph.

IV. EXPERIMENT
A. EXPERIMENT ENVIRONMENT
This experiment uses the development environment of a com-
munication company. There are five nodes in the experimen-
tal cluster, including two management nodes and three data
nodes. A single node environment is shown in Table 1.

B. DATA SET DESCRIPTION
The test data uses a month’s real CDRs of a certain place in
China of 2017. The original size of the data was 13.4 GB,
totaling about 170 million rows. The data fields and field
statistics of the data are shown in Table 2.

To accurately evaluate the characteristic of the data set,
we define a new index: Average Call Degree (ACD). The data
structure of CDRs can be considered as an undirected graph
like Fig. 10.

In Fig. 10, the A, B, C, and D represents four different call
numbers; the number on each edge represents the number of
calls made between these two call number. Then, the ACD is
calculated by ‘‘(2).’’

ACD =

n∑
i
Ci

N
(2)

TABLE 3. Statistics of calls.

FIGURE 11. Distribution of call degrees on call degree.

FIGURE 12. Distribution of amount of calls on call degree.

Ci is calls made between these two call numbers, and
N is the number of pairs of calls. The ACD of Fig. 10 is
not (10+6+7+14+8)/4=11.25 but (10+6+7+14+8)/5=9.
ACD reflects how repetitive of each edge is, in other words,
it reflects each edge can be compressed to what extent. Higher
the ACD is, which means more calls were made between a
pair of call numbers, the better compression will be. It is a
tool to predicate the DCB compression ratio.

Table 3 shows the basic statistics of the test data.
Two groups of distribution information of the data are

shown in Fig. 11 and Fig. 12. Call Degree (CD) is a concept
like ACD but without average operation.

Generally, Fig. 11 and Fig. 12 illustrates that the data
distribution is in a reasonable range which is compliance with

438 VOLUME 8, 2020



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

TABLE 4. Contrast of Experimental Conditions.

Pareto‘s principle which means almost 80% of calls are made
by 20% of callers. Although Fig. 11 shows that call degree 1
occupies almost half of all degree in data which brings bad
compression, Fig. 12 shows that it has about 10 percent of
calls in total which means the compression will only be
affected limitedly.

C. EXPERIMENT DESIGN
The experiment was divided into control group (normal)
and optimization group (opt). The control group adopt the
conventional storage scheme in Hive. The optimization group
adopt the DCB scheme. Table 4 shows the relevant condition
setting information:

Considering that the size of compressed data is slightly
smaller than that of HDFS file blocks, the table is divided
into 24 buckets to ensure that ORC file blocks do not cross
file boundaries. Besides, to eliminate the influence brought
by file format, the ORC and Parquet file formats were both
used in the control group and the optimization group. The
ORC file was compressed by ZLIB, and the Parquet file was
compressed by GZIP.

The experiment will compare:
1. The data loading time of and space occupied by the two

file formats in the two groups.
2. Query speed of two file formats in two groups. All

queries are just like the typical query that are most frequently
used in the legitimate query. The performance test is divided
into two sets:
• The first set is predictable bucket number query, includ-
ing seven queries. The query of NO.1-5 are aggregate
queries returns a call number’s aggregation information
in a period and the queries include keywords for min,
max, count, sum, avg. Query NO.6 is a small-ranged
query that returns all the records of a call number in
a period (returns 73 records). Query NO.7 is a point
query that returns a single record of a call number that
happened at a moment.

• The second set is unpredictable bucket number query,
including two query statements NO.8 and NO.9:
query NO.8 is cut-end query and query NO.9 is cut-start
query and they both limit the call number.

3. The amount of disk read by two file formats for different
queries in two groups.

4. The number of records read and CPU time in two sets of
two groups.

In this experiment, the control group uses the ‘‘normal’’
tag, the optimization group uses the ‘‘opt’’ tag, the text file

TABLE 5. Data size and number of rows before and after pretreatment.

FIGURE 13. Compression comparison.

uses the ‘‘text’’ tag, the ORC file uses the ‘‘orc’’ tag, the Par-
quet file uses the ‘‘parq’’ tag, and the number of rows of files
uses the ‘‘row’’ tag.

D. EXPERIMENT RESULT AND ANALYSIS
Table 5 shows that the number of records in the optimization
group is slightly larger than that of the original one which
means that there are a majority of ‘‘twin’’ records in the
given data. Correspondingly, the opt data size increases a few
by about 3%. This result is consistent with the prediction in
Section III. C.

Fig. 13 shows the size and compression rate of different
file formats with different schemes of CDRs. The data storage
space of the optimization group is significantly reduced. ORC
and Parquet format files in the optimization group save more
than 40% of the storage space. The overall compression rate
is about 14%.

To simulate the worst condition, which means there are no
‘‘twin’’ in data, we use ‘‘brute force’’ to sort the whole data
set and de-duplicate all redundancies and then compare the
data size and rows. The result is shown in Table 6. We use
the De- tag to denote the no ‘‘twin’’ data. It can be seen that
the optimized group data size is still slightly smaller than that
of the other group, which proves that although our scheme is
a trading space for time strategy, it still avoids data inflation
and even improved the compression rate.

VOLUME 8, 2020 439



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

TABLE 6. Size and number of rows under the worst condition.

TABLE 7. Average size of fields.

TABLE 8. Size of fields(simulation).

By analyzing the metadata files of ORC, Table 7 shows the
average size of each field with the file format.

It is found that the average space for two call number fields
of each record in the control group accounted for 6.44 bytes,
while these fields in the optimization group occupied only
2.25 bytes. And because the IMSI field corresponds to the
call number field one by one, the storage space of the two
IMSI fields is also significantly reduced, from 7.19 bytes
to 2.44 bytes. In fact, the ACD in Table 3 can explain the
effect very well. To verify the effectiveness of ACD, we set
two groups of randomly generated data to simulate different
data with different ACD (5 and 10). Because callera, callerb,
imsia, and imsib are four main fields to compress, we keep the
other fields unchanged. Besides, we also basically simulate
the distribution mentioned in Fig. 9 and Fig. 10 to approach
a more accurate simulation. The result is shown in Table 8.

The goal of setting the ACD5 column in Table 8 is to sim-
ulate the experiment data adopted in this paper (ACD4.5) and
the result shows that the average error of these four fields is
about 5.4% which proves the effectiveness of the simulation.
The second column is a reasonable inference that provides a
bigger ACD because our experiment only includes a single
month’s CDRs that is one-sixth of the retention requirement.
The result shows that we can save at least more than 20%
storage space if we can experiment with bigger data. The
compression ratios of ACD5 and ACD10 are 15% and 12%
respectively. ACD provides a new index for other researchers

TABLE 9. Data loading time.

FIGURE 14. Query performance of the first set.

to predicate the compression rate of their data under the DCB
scheme.

Table 9 shows the loading time of the control group is
longer than that of the optimized group when specifying file
formats. In fact, for these four modes, the unit loading time
is 155.5s/GB (opt with orc), 120.5s/GB (normal with orc),
132s/GB (opt with parq) and 99s/GB (normal with parq),
respectively. It can be seen that in the case of the Bucket-
ing group, the actual unit loading time increases due to an
additional step of data processing (Bucketing), but the overall
loading time decreases due to the reduction of the total size
of the data.

The result in Fig. 14 of the first set shows that the query
performance of the optimization group is better than that
of the control group. For ORC files, the average speed of
aggregate query increased to about 2.7 times, that of small
data sets is about 1.7 times and that of point query is about
7.2 times. For Parquet files, the average speed of aggregate
query is 3.1 times faster than the control group, that of small
data sets is 3.5 times and that of point query is 3.3 times.
Generally speaking, the improvement of query performance
is obvious.

As can be seen from Fig. 15, the amount of query disk
read by the optimization group is significantly lower than
that of the control group. Query 7 reduces the most disk
reads, about 99% in ORC file format and 97% in Parquet
format. Overall, for aggregated queries numbered 1-5, ORC
files and Parquet files are reduced by about 98% on average;
for small data set queries, ORC files and Parquet files are
reduced by about 97%. This shows that the optimization
model is consistent with the expectation, that is, by utilizing

440 VOLUME 8, 2020



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

FIGURE 15. Disk read amount of the first set.

FIGURE 16. Query performance and disk read amount of the second set.

Bucketing and Tablesample to reduce the amount of reading
to improve the query performance. For the comparison of
file formats, observing the log records of Query 7 shows that
ORC reads fewer records than parquet from the same bucket
file. It proves that ORC’s column-level statistical index plays
its role, which makes irrelevant column blocks skipped in
query and improves query performance.

However, although query performance has been improved
to some extent, the dramatic reduction of query reading is not
proportional to the improvement of query speed. Theoreti-
cally, according to the amount of disk read, the query speed
should be increased by up to 50 times. Considering that the
TEZ engine this experiment adopts still uses theMap-Reduce
framework, the overall start-up and intermediate running
costs of the framework are expensive (including network IO
time, read-write intermediate file time). Adding the condition
that queries of long-term CDRs are simple, they explained
the reason for relatively poor retrieval performance. If the
experiment adopts a more efficient querying engine with low
costs that are compatible with Hive, the improvement should
be significant.

The result of the second set is shown in Fig. 16. The
purpose of the second set test is to compare the query

FIGURE 17. Records read amount.

FIGURE 18. Accumulated CPU time consumed.

performance of the optimization group and the control group
when the bucket number is cannot be predicted. As can be
noticed, the overall query performance has been improved
slightly, by about 10%. Since the bucket number cannot
be predicted, the system reads more data, but the size of
the bucketed group still reduces by about 70% on average.
To find out which factor (bucketing or sorting) plays a more
important role in the reduction of reading bytes, we create a
Bucketing tablewithoutmultiple key columns sorting and test
it with query 8 and 9. The result shows that the size difference
of reading between this only bucketed table and the optimized
group is reduced by about 37%. Therefore, it can be inferred
that sorting plays a major role in reducing the amount of
reading. About the poor performance improvement, after
observing other statistic information, it is spotted that the
difference of query time of the query 8 and 9 between the
two groups is small while the reading amount differs greatly
which proved that the reading time is not the bottle affecting
the performance and other system cost should be the main
reason for performance degradation in this case.

Fig. 17 and Fig. 18 are supplementary experiments that
support retrieval performance improvement by reducing the

VOLUME 8, 2020 441



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

reading amount and saving CPU running time. Fig. 16 shows
an obvious reduction of the number of the reading records
of set 1 queries which is decreased to about 4.2% on average
except for query 7 and the same number of reading records of
set 2 queries. Query 7 only read 0.005% data and the bar in the
figure can be hardly seen. Fig. 17 shows that Bucketing saves
an average of more than 90% of CPU time of set 1 queries and
the time does not differ much between the different groups
of set 2 queries that saving about 14% CPU running time
on average. This fact also supports that in set 2 queries,
except for CPU running time and data reading timementioned
above, other system costs should be the main factor for poor
performance improvement.

E. OTHER DISCUSSION
The experiment result proves that the DCB scheme can bring
remarkable improvement both on compression and retrieval.
To maximize the performance of the DCB scheme, the other
two factors should be considered.

First, the number of buckets determines how much data
can be read during Tablesample that further determines the
retrieval performance. The more buckets there are, the fewer
records will be allocated in each bucket, so that the fewer
records will be processed in query and finally achieving a
higher querying speed. However, when there are too many
buckets, a large number of small files will be generated.
Under this situation, firstly, the compression ratio of a bucket
file will be reduced for there is less redundancy. Secondly,
Hadoop is not suitable for storing a large number of small
files, which will cause a large number of disk fragments,
affect the efficiency of system IO, and impose a huge bur-
den on Namenode. Therefore, setting the number of buck-
ets reasonably can find the proper balance between query
performance and storage efficiency, and optimize the overall
performance of the system. We suggest that the bucket file
size is just smaller than the HDFS block size to minimize the
IO cost.

Second, the overall data size has a great impact on per-
formance. In our scheme, bucket size is relatively fixed
(approximately equal to HDFS block size) which means
when querying on larger data, since we only need to access
one bucket in a query, we still just need to read similar size of
data to complete the query. Thus, we can save more time than
the conventional scheme when doing retrieval on larger data.
Moreover, CDRswith longer periods have higher ACDwhich
means better the compression rate will be. Therefore, our
scheme is especially useful for massive data storage. In our
experiment, the data presents a medium city with about a
million people’s CDRs in a month. In China, there are over
100 cities have more than a million population and there
6 month’s CDRs need to be stored which means there exists
much larger data. We estimate CDRs with 6 months is easy
to reach ACD30 or further and the compression rate will
reach 10% or better. We do believe that our contribution will
help the operators save more costs and help the government
increase the efficiency of enforcement.

V. RELATED WORK
About CDRs storage schemes, there is little research.
Researchers of [2] studied the security requirements of CDR
retention ten years ago. In their paper, they discuss the impor-
tance of the retention task regarding politics, privacy, non-
repudiation, integrity, performance and cost requirements.
Finally, several protection schemes for long-term data storage
are proposed from the security level. However, the scheme
mainly focuses on how to prevent CDRs from row changing,
unauthorized row creating and row deleting attacks, etc. while
it does not consider the performance of retrieval and storage.
Similarly, the authors of [31] proposed a management system
that suggests moving CDRs to a trusted third party to store
while do not give an efficient storage scheme either. Com-
pared to our contributions, we implemented a prototype of a
high-performance CDRs storage system.

Besides, the followings are the most related work focusing
on improving storage efficiency and retrieval performance
that enlightened our work.

About local sorting, to improve the storage performance
of structured data, the authors in [32] proposed a solution
based on multiple key columns sorting, KCGS-Store. Test on
TPC-H and HttpLog datasets shows that the file format has
been improved in query speed, compression ratio and loading
time compared with the ordinary Hive file format. In [33],
the authors studied the compression strategy of HBase and
proposed a compression storage strategy based on sorting in
the region, which can sort data before compression and then
select the appropriate compression strategy after sorting. The
strategy has been tested on the TPC-DS dataset and achieves
a compression rate of 34%.

About Hive bucketing, the authors of [34] studied the
performance of Hive for different file formats and different
compression algorithms supported by Hive. By adjusting
the configuration of the Hive, especially setting the number
of Maps and Reduces and adopting the Bucketing method,
the efficiency of the Hive can be increased by up to 30%.

VI. CONCLUSION AND FUTURE WORK
This paper proposed a novel DCB scheme, in which a
Hive-based extended hash storage, other than the traditional
sequential storage, is employed. The experiments demon-
strated that the proposed DCB scheme can significantly
improve the retrieval speed of CDRs while ensuring a high
compression ratio. In addition, this scheme is extensible. For
example, it can be applied to the email, SMS, and other
XDRs storage scene because they have similar characteris-
tics of two-party communication. Also, we put forward an
evaluation index ACD to predicate the compression effect on
CDRs. Other researchers can calculate the ACD in their data
to predict DCB performance on the data. Furthermore, our
scheme is more effective in larger CDRs storage scenes that
means the retrieval speed will be improved further.

In the future, we will make a study on the query of
unpredictable bucket number and try to improve its query
efficiency. In addition, the system startup cost of the MR

442 VOLUME 8, 2020



X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

framework in Hive is expensive. Different computing engines
(such as Spark) will be investigated for different data volume
queries in an attempt to achieve better query performance.

REFERENCES
[1] Data Retention. Accessed: 2019. [Online]. Available: https://en.m.

wikipedia.org/wiki/Data_retention
[2] F. Vancea, C. Vancea, D. E. Popescu, D. Zmaranda, and G. Gabor, ‘‘Secure

data retention of call detail records,’’ Int. J. Comput. Commun., vol. 5, no. 5,
pp. 961–967, Dec. 2010, doi: 10.15837/ijccc.2010.5.2260.

[3] S. P. Menon and N. P. Hegde, ‘‘A survey of tools and applications in big
data,’’ in Proc. IEEE 9th Int. Conf. Intell. Syst. Control (ISCO), Coimbat-
ore, India, Jan. 2015, pp. 1–7.

[4] P. Jayawardhana, D. Perera, A. Kumara, and A. Paranawithana,
‘‘Kanthaka: Big data caller detail record (CDR) analyzer for near real
time telecom promotions,’’ in Proc. 4th Int. Conf. Intell. Syst., Mod-
elling Simul., Bangkok, Thailand, Jan. 2013, pp. 534–538, doi: 10.1109/
ISMS.2013.40.

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop dis-
tributed file system,’’ in Proc. IEEE 26th Symp. Mass Storage Syst. Tech-
nol. (MSST), May 2010, pp. 1–10.

[6] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, ‘‘Hive: A warehousing solution over a map-
reduce framework,’’Proc. VLDBEndowment, vol. 2, no. 2, pp. 1626–1629,
Aug. 2009, doi: 10.14778/1687553.1687609.

[7] M.N. Vora, ‘‘Hadoop-HBase for large-scale data,’’ inProc. Int. Conf. Com-
put. Sci. Netw. Technol., Harbin, China, Dec. 2011, pp. 601–605, doi: 10.
1109/ICCSNT.2011.6182030.

[8] H. Y.Wang and C.W. Fu, ‘‘Compression strategies selection method based
on classification of HBase data,’’ J. Commun., vol. 37, no. 4, pp. 12–22,
2016.

[9] H. Xue, ‘‘Research on storage and retrieval optimization of bigdata,’’
M.S. thesis, Dept. Info. Sw. Eng., Univ. Electron. Sci. Technol. China.,
Chengdu, China, 2018.

[10] Y. F. Li, J. J. Le, D. H. Chen,M.Wang, andB. Zhang, ‘‘PageFile: The return
of classical page storage structure on MapReduce framework,’’ J. Internet
Technol, vol. 18, no. 1, pp. 65–75, 2017.

[11] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, ‘‘RCFile:
A fast and space-efficient data placement structure in MapReduce-
based warehouse systems,’’ in Proc. IEEE 27th Int. Conf. Data Eng.,
Hannover, Germany, Apr. 2011, pp. 1199–1208, doi: 10.1109/ICDE.2011.
5767933.

[12] F. Gao, A. Dutta, and J. J. Liu, ‘‘Content-based textual big data analysis and
compression,’’ in Proc. Int. Conf. Comput. Big Data (ICCBD), Charleston,
Sc, USA, 2018, pp. 1–7, doi: 10.1145/3277104.3277107.

[13] D. Dong and J. Herbert, ‘‘Record-aware two-level compression for big tex-
tual data analysis acceleration,’’ in Proc. IEEE 7th Int. Conf. Cloud Com-
put. Technol. Sci. (CLOUDCOM), Vancouver, BC, Canada, Nov./2015,
pp. 9–16, doi: 10.1109/CloudCom.2015.32.

[14] D. Dong and J. Herbert, ‘‘Record-aware compression for big textual data
analysis acceleration,’’ in Proc. IEEE Int. Conf. Big Data, Santa Clara,
CA, USA, Oct. 2015, pp. 1183–1190, doi: 10.1109/BigData.2015.
7363872.

[15] S. B. Elagib, A.-H. A. Hashim, and R. F. Olanrewaju, ‘‘CDR analysis
using big data technology,’’ in Proc. Int. Conf. Comput., Control, Netw.,
Electron. Embedded Sys. Eng. (ICCNEEE), Khartoum, Sudan, Sep. 2015,
pp. 467–471, doi: 10.1109/ICCNEEE.2015.7381414.

[16] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and
C. Bear, ‘‘The vertica analytic database: C-store 7 years later,’’Proc. VLDB
Endowment, vol. 5, no. 12, pp. 1790–1801, Aug. 2012, doi: 10.14778/
2367502.2367518.

[17] (2019). Optiva. [Online]. Available: https://en.wikipedia.org/wiki/Optiva
[18] S. Yang, B. Wang, H. Zhao, Y. Gao, and B. Wu, ‘‘DisTec: Towards a

distributed system for telecom computing,’’ in Cloud Computing (Lecture
Notes in Computer Science), vol. 5931. Berlin, Germany: Springer, 2009,
ch. 19, pp. 212–223, doi: 10.1007/978-3-642-10665-1_19.

[19] E. Bouillet, R. Bouillet, V. Kumar, L. Mignet, S. Nathan, A. Ranganathan,
D. S. Turaga, O. Udrea, and O. Verscheure, ‘‘Processing 6 billion
CDRs/day: From research to production (experience report),’’ in Proc. 6th
ACM Int. Conf. Distrib. Event-Based Syst. (DEBS). New York, NY, USA:
ACM, 2012, pp. 264–267, doi: 10.1145/2335484.2335513.

[20] J.-C. Tseng, H.-C. Tseng, C.-W. Liu, C.-C. Shih, K.-Y. Tseng, C.-Y. Chou,
C.-H. Yu, and F.-S. Lu, ‘‘A successful application of big data storage
techniques implemented to criminal investigation for telecom,’’ in Proc.
15th Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS), Hiroshima,
Japan, Sep. 2013, pp. 1–3.

[21] P. Valduriez, ‘‘Parallel database systems: Open problems and new issues,’’
Distrib. Parallel Databases, vol. 1, no. 2, pp. 137–165, Apr. 1993, doi: 10.
1007/BF01264049.

[22] C. Şenbalcı, S. Altuntaş, Z. Bozkus, and T. Arsan, ‘‘Big data platform
development with a domain specific language for telecom industries,’’
in Proc. High Capacity Opt. Netw. Emerg./Enabling Technol., Magosa,
Cyprus, Dec. 2013, pp. 116–120, doi: 10.1109/HONET.2013.6729768.

[23] A. Bwambale, C. Choudhury, and S. Hess, ‘‘Modelling long-distance
route choice using mobile phone call detail record data: A case study of
Senegal,’’ Transportmetrica A, Transp. Sci., vol. 15, no. 2, pp. 1543–1568,
Nov. 2019, doi: 10.1080/23249935.2019.1611970.

[24] C. Doyle, Z. Herga, S. Dipple, B. K. Szymanski, G. Korniss,
and D. Mladenic, ‘‘Predicting complex user behavior from CDR
based social networks,’’ Inf. Sci., vol. 500, pp. 217–228, Oct. 2019,
doi: 10.1016/j.ins.2019.05.082.

[25] H. Aksu, L. Korpeoglu, and O. Ulusoy, ‘‘An analysis of social net-
works based on tera-scale telecommunication datasets,’’ IEEE Trans.
Emerg. Topics Comput., vol. 7, no. 2, pp. 349–360, Apr./Jun. 2019,
doi: 10.1109/TETC.2016.2627034.

[26] G. Chen, S. Hoteit, A. C. Viana, M. Fiore, and C. Sarraute, ‘‘Enriching
sparse mobility information in call detail records,’’ Comput. Commun.,
vol. 122, pp. 44–58, Jun. 2018, doi: 10.1016/j.comcom.2018.03.012.

[27] E. Thuillier, L. Moalic, S. Lamrous, and A. Caminada, ‘‘Clustering weekly
patterns of human mobility through mobile phone data,’’ IEEE Trans.
Mobile Comput., vol. 17, no. 4, pp. 817–830, Apr. 2018, doi: 10.1109/
TMC.2017.2742953.

[28] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson, O. O’Malley,
J. Pandey, Y. Yuan, R. Lee, and X. Zhang, ‘‘Major technical advancements
in apache hive,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014,
pp. 1235–1246.

[29] M. Rodrigues, M. Y. Santos, and J. Bernardino, ‘‘Big data processing tools:
An experimental performance evaluation,’’ WIREs Data Mining Knowl.
Discov, vol. 9, no. 2, Mar. 2019, Art. no. e1297, doi: 10.1002/widm.1297.

[30] S. Ladymon. LanguageManual DDL BucketetTables. Accessed: 2016.
[Online]. Available: https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+DDL+BucketedTables

[31] A. Kushwaha, R. Das, and C. Sharma, ‘‘Trusted third party-based CDR
management system,’’ J. Telecom., Electron. Comput. Eng., vol. 6, no. 1,
pp. 43–46, 2014.

[32] T. Xu, ‘‘Storage and querying optimization for large scale structured data,’’
Ph.D. dissertation, Dept. Comput. Sci. Technol., Tsinghua Univ., Beijing,
China, 2016.

[33] J. Sun and T. Lu, ‘‘Optimization of column-oriented storage compression
strategy based onHBase,’’ inProc. Int. Conf. Big Data Artif. Intell. (BDAI),
, Beijing, China, Jun. 2018, pp. 24–28, doi: 10.1109/BDAI.2018.8546673.

[34] M. Zhang, F. Liu, Y. Lu, and Z. Chen, ‘‘Workload driven comparison
and optimization of hive and spark SQL,’’ in Proc. 4th Int. Conf. Inf. Sci.
Control Eng. (ICISCE), Changsha, China, Jul. 2017, pp. 777–782, doi: 10.
1109/ICISCE.2017.166.

XI PENG received the B.Sc. degree from the
College of Mathematics and Informatics, South
China Agricultural University, Guangzhou, China,
in 2017. He is currently pursuing the master’s
degree with the Graduate Faculty of the China
Academy of Telecommunication Technology,
Beijing, China. His current research interests
include big data analysis in communication
systems and deep learning.

VOLUME 8, 2020 443

http://dx.doi.org/10.15837/ijccc.2010.5.2260
http://dx.doi.org/10.1109/ISMS.2013.40
http://dx.doi.org/10.1109/ISMS.2013.40
http://dx.doi.org/10.14778/1687553.1687609
http://dx.doi.org/10.1109/ICCSNT.2011.6182030
http://dx.doi.org/10.1109/ICCSNT.2011.6182030
http://dx.doi.org/10.1109/ICDE.2011.5767933
http://dx.doi.org/10.1109/ICDE.2011.5767933
http://dx.doi.org/10.1145/3277104.3277107
http://dx.doi.org/10.1109/CloudCom.2015.32
http://dx.doi.org/10.1109/BigData.2015.7363872
http://dx.doi.org/10.1109/BigData.2015.7363872
http://dx.doi.org/10.1109/ICCNEEE.2015.7381414
http://dx.doi.org/10.14778/2367502.2367518
http://dx.doi.org/10.14778/2367502.2367518
http://dx.doi.org/10.1007/978-3-642-10665-1_19
http://dx.doi.org/10.1145/2335484.2335513
http://dx.doi.org/10.1007/BF01264049
http://dx.doi.org/10.1007/BF01264049
http://dx.doi.org/10.1109/HONET.2013.6729768
http://dx.doi.org/10.1080/23249935.2019.1611970
http://dx.doi.org/10.1016/j.ins.2019.05.082
http://dx.doi.org/10.1109/TETC.2016.2627034
http://dx.doi.org/10.1016/j.comcom.2018.03.012
http://dx.doi.org/10.1109/TMC.2017.2742953
http://dx.doi.org/10.1109/TMC.2017.2742953
http://dx.doi.org/10.1002/widm.1297
http://dx.doi.org/10.1109/BDAI.2018.8546673
http://dx.doi.org/10.1109/ICISCE.2017.166
http://dx.doi.org/10.1109/ICISCE.2017.166


X. Peng et al.: Hive-Based Retrieval Optimization Scheme for Long-Term Storage of Massive CDRs

LIANG LIU received the M.S. degree from
Sichuan University, Chengdu, China, in 2010.
He is currently an Assistant Professor with the
College of Cybersecurity, Sichuan University. His
current research interests include big data analysis,
malicious detection, network security, and artifi-
cial intelligence.

LEI ZHANG received the M.S. and Ph.D. degrees
in computer science and technology from Sichuan
University, Chengdu, Sichuan, China, in 2010 and
2015, respectively. He is currently an Assistant
Researcher with the College of Cybersecurity,
Sichuan University. His research interests include
big data analysis, machine learning, and mobile
security.

444 VOLUME 8, 2020


