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ABSTRACT Device-to-device (D2D) communications have been regarded as a promising technology to
meet the dramatically increasing video data demand in the 5G network. In this paper, we consider the power
control problem in a multi-user video transmission system. Due to the non-convex nature of the optimization
problem, it is challenging to obtain an optimal strategy. In addition, many existing solutions require
instantaneous channel state information (CSI) for each link, which is hard to obtain in resource-limited
wireless networks. We developed a multi-agent deep reinforcement learning-based power control method,
where each agent adaptively controls its transmit power based on the observed local states. The proposed
method aims to maximize the average quality of received videos of all users while satisfying the quality
requirement of each user. After off-line training, the method can be distributedly implemented such that all
the users can achieve their target state from any initial state. Compared with conventional optimization based
approach, the proposed method is model-free, does not require CSI, and is scalable to large networks.

INDEX TERMS Multi-user video transmission, multi-agent deep reinforcement learning, power control,
quality of experience.

I. INTRODUCTION
Due to the popularization of wireless multimedia commu-
nication services and applications, such as mobile TV, 3D
video, 360-degree video, multi-view video, and augmented
reality (AR), there is an explosive growth of mobile data
traffic. It is expected that the mobile traffic will increase
seven-fold from 2017 to 2022 [1]. Moreover, 82% of the
mobile data will be video related by 2022 [1]. The dramat-
ically increasing video data demand brings great challenges
to the present and future wireless networks [2].

Device-to-device (D2D) communications have been
regarded as an emerging 5G communication technology to
meet the increasing data demand [3]–[5]. In D2D communi-
cations, nearby devices can establish local links so that traffic
flows directly between them instead of through a base station
(BS). As a result, the system spectrum efficiency and the
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system coverage can be potentially improved. Also, delay can
be significantly reduced. However, interference management
is becoming a challenging problem with the presence of
D2D links [6]. Specifically, in a multi-user communication
network, a transmitter may increase its transmit power to
ensure a better video quality for the corresponding receiver,
but at the same time, it may degrade the performance of the
links it interferes with.

Transmit power control, as a physical layer issue, has been
well studied since the first generation cellular networks [7].
Many centralized interference management methods have
been developed. The weighted minimum mean square
error (WMMSE) algorithm [8] and fractional program-
ming (FP) algorithm [9] are typical centralized algorithms.
These algorithm often require precise channel state infor-
mation (CSI) for all the links, which will incur consid-
erable signaling overhead. Moreover, the complexity of
centralized algorithm increases with the number of users,
bringing about heavy computational pressure on the power
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controller. To reduce the signaling overhead and better adapt
to large scale networks, a series of distributed algorithms have
been developed. For example, in [10], the power allocation
problem in cognitive wireless network was formulated as
a noncooperative game. A stochastic power allocation with
conjecture-based multi-agent Q-learning approach was pro-
posed. The authors in [11] proposed a Stackelberg game
based power control scheme for D2D communication under-
lay cellular networks. By introducing a new co-tier price fac-
tor, the distributed power control algorithm can mitigate the
cross-tier interference effectively. Despite their good perfor-
mance, current solutions often require frequent information
exchange and cannot guarantee an optimal performance.

Meanwhile, we have observed that these physical layer
technologies generally aim to optimize the transmission data
rate or bit error rate (BER), they do not improve the user’s
quality of service (QoS) or quality of experience (QoE)
directly, when users are watching a specific video. Given
the same transmission bandwidth, different videos generally
have different qualities. As an application layer performance
metric, video quality directly reflect the user satisfaction
level in contrast to physical layer metrics. In future mobile
networks, it is more important to develop a cross-layer
interference management approach that jointly considers the
physical layer issues as well as the user’s requirement and
experience [12], [13]. Motivated by this observation, some
cross-layer video transmission designs have been proposed.
For example, the authors in [14] designed a quality-driven
scalable video transmission framework in a non-orthogonal
multiple access (NOMA) system and proposed a subopti-
mal power allocation algorithm. This algorithm leverages
the hidden monotonic property of the problem and it has a
polynomial time complexity. The recent work [15] proposed
a spatial modulation (SM) and NOMA integrated system
for multiuser video transmission. Efficient algorithms are
proposed to perform optimal power control so that the user’s
QoE can be maximized. A novel cross-layer optimization
framework is proposed in [16] for scalable video transmission
over OFDMAnetworks. The proposed iterative algorithm can
jointly maximize the achievable sum rate and minimize the
distortion among multiple videos. In our recent work [17],
a cross-layer optimization framework for softcast video trans-
mission is developed and analyzed. Compared with physical
layer-only designs, such cross layer optimization for video
transmissions help users enjoy a better perceived video qual-
ity. Despite the success of these algorithms, they require that
every user to have full knowledge of the CSI for all the links,
which may be infeasible in practice. Besides, the formulated
problem is generally non-convex. The developed method
often lead to a sub-optimal solution.

Recently, machine learning (ML) has achieved great suc-
cess in a variety of fields, such as computer version and
speech recognition. Deep reinforcement learning (DRL), as a
powerful ML technique, has show high potential for many
challenging tasks, such as human-level control [18] and com-
puter games [19]. In DRL, the agent considers the long-term

reward, rather than simply obtaining the instant maximum
reward. This is quite important for resource optimization
problems in wireless networks, where the channel state
changes rapidly. There is now an increasing interest on incor-
porating DRL into the design of wireless networking algo-
rithms [20], such asmobile off-loading [21], dynamic channel
access [22], [23], mobile edge computing and caching [24],
[25], dynamic base station on and off [26], TCP congestion
control [27], and resource allocation [28]–[31].

In particular, the authors in [28] consider the problem of
power control in a cognitive radio system consisting of a
primary user and a secondary user. With DRL, the secondary
user can interact with the primary user efficiently to reach
a target state after a few number of steps. Another work
in [29] demonstrates the potential of DRL for power control in
wireless networks. Instead of searching for the near-optimal
solution by solving the challenging optimization problem,
the authors develop a distributed dynamic power control
scheme. Thismethod ismodel-free and the system’sweighted
sum rate can be maximized. The authors in [30] investigated
the spectrum sharing problem in vehicular networks with a
DRL based solution. The multiple vehicle-to-vehicle (V2V)
agents dynamically allocate their power and spectrum in a
cooperate way so that their sum capacity can be maximized.

In this paper, we consider the power allocation and interfer-
ence management problem in a multi-user video transmission
system from the point of a cross-layer optimization. To the
best of our knowledge, this is the first work that attempts to
integrate DRL for interferencemanagement to improve users’
video viewing quality. The main contributions of this paper
are summarized as follows.
• The proposed algorithm is based on multi-agent deep
Q-learning, which amenable to distributed implemen-
tation. It is model-free and does not require labeled
training data. It can be applied to arbitrary network
configurations.

• Each agent does not need to know other agents’ CSI. The
complexity of the proposed algorithm does not increase
with the network size. This method can be applied to
very large networks.

• This work is a cross layer design which considers both
the physical layer issues as well as the application layer
video-related design factors. By properly designing the
reward function, users can actually work in a cooperative
manner to achieve a high level of satisfaction.

The remainder of this paper is organized as follows. The
system model and the problem formulation are discussed in
Section II. In Section III, we develop a multi-agent DRL
algorithm for power control. Simulation setup is provided
in Section IV. Experimental results are given in Section V,
followed by conclusions in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. PHYSICAL LAYER MODEL
We consider a wireless network consisting of N users, where
all the users share a common spectrum resource. As shown
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FIGURE 1. System model for a radio network with multiple video users
(N = 2).

in Fig. 1, each user consists of a transmitter and receiver pair.
Each receiver requests a specific video from its corresponding
transmitter. We assume a cooperative system that different
users can exchange information with each other, including
channel gain, power control vectors, and some acknowl-
edgment (ACK) signals. The information exchange process
can be implemented to occur once per time slot, either in
a wireless or a wired manner. Conventional technologies,
such as Zigbee [32], can be used to convey this information
to other users in a timely fashion. Note that Zigbee uses
a different frequency, hence it generates no interference to
the video users. The users dynamically adjust their transmit
power based on the information collected from their neighbor
users. Each user has a minimum QoE requirement for the
received video. We aim to develop an optimal power control
policy so that their combined QoE is maximized and all the
users’ minimum QoE requirements are satisfied.

Let pi, i = 1, 2, . . . ,N , denote the transmit power of
user i. Let hij be the channel gain from transmitter Tx i to
receiver Rx j, i, j ∈ {1, 2, . . . ,N }. The signal-to-noise-plus-
interference ratio (SINR) at receiver i can be computed as

SINRi =
|hii|pi∑

j6=i |hji|pj + σ
2
i

, i, j ∈ {1, 2, . . . ,N }, (1)

where σ 2
i is the noise power at receiver i. We consider a

free-space propagation model. So the channel gain is

hij =
(

λ

4πdij

)2

, (2)

where λ is the signal wavelength and dij is the distance
between transmitter Tx i and receiver Rx j. We denote the
distance matrix as D = [dij].

Since all the users share the same frequency spectrum for
video transmissions, they have the same bandwidth B. The
data transmission rate for user i can be expressed as

Ri(p) = B log2 (1+ SINRi) , (3)

where p = [p1, p2, . . . , pN ] is the transmit power allocation
vector. It can be seen that the transmission rate of each user
is determined by the transmit power allocation vector.

B. VIDEO TRANSMISSION MODEL
For video applications, PSNR is a common objective perfor-
mance measure, which is highly correlated to user-perceived
video quality. The relationship between PSNR value Q and
distortion is given by

PSNR = Q = 10 log10

(
2552

MSE

)
, (4)

where the mean-squared-error (MSE) is used to characterize
distortion.

In [33], the author propose a general semi-analytical rate-
distortion (R-D) model, which has been verified for scalable
video coding (SVC) in [34]. With this model, the relationship
between the rate and distortion at the encoder side can be
predicted. Specifically, the video coding rate for user i can
be expressed as a function of PSNR Qi as follows.

Fi(Qi) =
θi

255210−Qi/10 + αi
+ βi, Qi ≥ Qi,min, (5)

where Qi,min is the minimum PSNR value corresponding to
theminimum rateFi,min. The parameters θi, αi and βi depends
on the video content, encoder, and the RTP packet loss rate.
These parameters can be obtained with a curve-fittingmethod
over at least six empirical R-D samples [34], [35] and a
relevant number of iterations, to achieve a high accuracy.

The authors in [36] further simplify this model to reduce
complexity by eliminating the parameter αi, i.e.,

Fi(Qi) =
θi

255210−Qi/10
+ βi, Qi ≥ Qi,min. (6)

In this case, only four R-D samples are sufficient to deter-
mined the model. In this paper, we adopt the simplified
model, although the developed method also applies to any
other R-D models.

Without loss of generality, we assume that the overhead
introduced by the network stack layers (e.g., header and
trailer bits) is constant, so we ignore this overhead for sim-
plification. As a result, the physical layer rate (3) is assumed
to be equal to the transmission rate at the application layer (6),
i.e., Ri(p) = Fi(Qi). The relationship between the PSNR of a
received video and its corresponding transmit power can thus
be expressed as

Qi(p) = F−1i (Ri(p))

= −10 log10

(
θi

Ri(p)− βi

)
+ 20 log10 255. (7)

C. QUALITY-DRIVEN POWER ALLOCATION PROBLEM
The ultimate goal of power control is to improve the overall
video quality of all users. We formulate this problem as
follows.

max
p

Q(p) =
1
N

N∑
i=1

Qi(p) (8)

s.t. 0 ≤ pi ≤ pmax , ∀i (9)

Qi ≥ Qi,min, ∀i, (10)
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where Qi(p) is given in (7). Note that (9) is the system power
constraint and (10) is the video quality constraint, which
depends on a variety of factors such as the video content,
encoder setting, and the user’s quality requirement.

Based on (3) and (6), it can be seen that PSNR is a mono-
tone function in terms of SINR. The quality constraint (10)
can thus be replaced by the corresponding SINR constraint.
To simplify expression, we rewrite Problem (8) as follows.

max
p

φ

(
f1(p)
g1(p)

,
f2(p)
g2(p)

, . . . ,
fN (p)
gN (p)

)
(11)

s.t. 0 ≤ pi ≤ pmax , ∀i (12)

SINRi(p) ≥ SINRi,min, ∀i, (13)

where φ(x) is an increasing function on RN
+, expressed as

φ(x) = −
10
N

log10

N∏
i=1

(
θi

B log2(1+ xi)

)
+

20
N

log10 255,

(14)

and

fi(p) = |hii| · pi (15)

gi(p) =
∑
j 6=i

|hji| · pj + σ 2
i . (16)

It can be seen that Problem (11) actually belongs to the
class of generalized linear fractional programming (GLFP)
problems. In addition, combining together with the structure
of functions fi(x) and gi(x), this problem is actually non-
convex [37]. Generally speaking, there is no efficient solu-
tions to find the global optimal solution within polynomial
time.

III. THE MULTI-AGENT DEEP REINFORCEMENT
LEARNING APPROACH
In the proposed multi-user video transmission system,
the transmitter of each user dynamically adjusts its transmit
power based on the observed environment state. The action
taken at the next time slot depends on the current observa-
tions, hence it can be modeled as a Markov Decision Process
(MDP). We develop a multi-agent deep reinforcement learn-
ing approach to solve the problem.

A. OVERVIEW OF DEEP REINFORCEMENT LEARNING
Reinforcement learning (RL) is an effective technique to
solve the MDP problems. In RL, agents learn an optimal pol-
icy through interactions with the environment, by receiving
an intermediate reward together with a state update after tak-
ing each action. The received reward as well as the observed
new state will help adjust the control policy. The process will
continue until an optimal policy is found.

Themost representative RL algorithm is Q-learning, where
the policy is updated by an action-value function, referred to
as the Q-function. Let S denote the set of possible states and
A denote the set of discrete actions. The policy π (s, a) is the
probability of taking an action a ∈ A when given a state

s ∈ S. At time instant t , the agent takes action at ∈ A when
observing a state st ∈ S. Then the agent receives a reward r t

and the next state st+1 is observed. The Q-learning algorithm
aims to maximize a certain reward over time. For example,
we can define the reward function as

Rt =
∞∑
τ=0

γ τ r t+τ , (17)

where γ ∈ (0, 1] is a discount scalar representing the tradeoff
between the immediate and future rewards. γ = 0 means
we only care about the immediate reward. A lager γ means
earlier period rewards play a more important role.

Under a policy π (s, a), the Q-function of the agent with
action a and state s is defined as

Qπ (s, a) = Eπ [Rt |st = s, at = a]. (18)

Q-learning aims to maximize the Q-function (18). The opti-
mal action-value function, Q∗(s, a) , maxπ Qπ (s, a), obeys
the Bellman optimality equation, as

Q∗(s, a)

= Est+1
[
r t+1 + γ max

a′
Q∗(st+1, a′)|st = s, at = a

]
, (19)

where st+1 is the new state after executing the state-action
pair (s, a). Let q(s, a) be the state action-value function in the
iteration process. Q-learning updates q(st , at ) as follows.

q(st+1, at+1)

← q(st , at )+δ
[
r t+1+γ max

a′
q(st+1, a′)−q(st , at )

]
, (20)

where δ is the learning rate.
Q-learning uses a Q-table to approximate the Q-function.

When the state and action spaces are discrete and small, learn-
ing the optimal policy π is possible with Q-learning. How-
ever, when the state and action spaces become continuous
and large, the problem becomes intractable. Deep Q-learning
utilizes a deep Q-Network (DQN), i.e., a deep neural network
(DNN), to approximate the mapping table. DQL inherits the
advantages of both RL and deep learning.

Suppose the DQN is expressed as q(:, :,2t ), where2t are
the parameters of the DQN.As the quasi-static target network
method implies [18], we define two DQNs: the target DQN
with parameters2t

target and the trained DQNwith parameters
2t
train. 2

t
target is updated to be equal to 2t

train once every Tu
time slots. Using the target network can help stabilize the
overall network performance. Instead of training with only
the current experience, the DQN uses a randomly sampled
mini-batch from the experience replay memory, which stores
the recent tuples (st , at , r t , st+1).

With experience replay, the least squares loss of training
DQN for a sampled mini-batch Dt can be defined as

L(2t
train)

=

∑
(st ,at ,r t ,st+1)∈Dt

(
ytDQN (r

t , st+1)−Q(st , at ;2t
train)

)2
, (21)
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where the target output is

ytDQN (r
t , st+1) = r t + γ ·maxa′Q(s

t+1, a′,2t
target ). (22)

This experience replay strategy ensures that the optimal pol-
icy will not lead to a local minimum. In each training step,
the stochastic gradient descent algorithm is used to minimize
the training loss (21) over the mini-batch Dt .

B. MULTI-AGENT DRL FOR RESOURCE ALLOCATION
In the resource sharing scenario illustrated in Fig. 1, multiple
users attempt to transmit video data to the target receivers,
which can be modeled as a multi-agent DRL problem. Each
user is an agent and interacts with the unknown communi-
cation environment to gain experiences. The experience is
then used to guide the transmit power control policy. At the
first glance, the power allocation problem seems to be a com-
petitive game. If each agent maximizes its transmit power,
the other users may receive severe interference. In this paper,
we turn this competitive game into a cooperative game by
properly designing the reward function. This way, the global
system performance can be optimized.

The multi-agent RL based approach is divided into two
phases: (i) the offline training phase and (ii) the online imple-
mentation phase. We assume that the system is trained in
a centralized way but implemented in a distributed manner.
To be more specific, in the training phase, each agent adjusts
its actions based on a system performance-oriented reward.
In the implementation phase, each agent observes its local
states and selects the optimal power control action.

As shown in Fig. 2, each agent n receives a local obser-
vation of the environment and then takes an action. These
actions form a joint action vector. The agent then receives a
joint reward and the environment evolves to the next state.
The new local states are observed by the corresponding
agents. When the reward is shared by all the agents, the coop-
erative behavior is encouraged.

FIGURE 2. The multi-agent DRL model.

For each agent, the power control process is an MDP.
Independent Q-learning [38] is one of the most widely used
methods to solve the MDP problem with multiple agents.
In independent Q-learning, each agent learns a decentralized
policy based on its local observation and action, treating
other agents as part of the environment. Note that, each agent
would face a non-stationary problem as other learning agents
are updating their policies simultaneously. One promising

solution is to use single agent-DQN, which computes the
joint actions for all agents [39]. However, the complexity
will grow proportional to the size of the state-action space.
Moreover, the single agent approach is not suitable for dis-
tributed implementation, which may limit its use in large
networks. Recently, there has been several multi-agent DRL
variants, however, there is no theoretical guarantees despite
their promising empirical performance [40], [41]. In this
paper, we limit the convergence analysis by providing simu-
lation results in Section V, which is also employed in similar
prior works [42], [43]. Specifically, we investigate the impact
of the learning rate on the convergence performance.

C. MDP ELEMENTS
As depicted in Fig. 2, we proposed a multi-agent DRL
approach where each user serves as an agent. In order to
utilize the DRL for power control, the state space, the action
space, and the reward function need to be properly designed.

1) STATE SPACE
At time slot t , the observed state for each agent is defined
as st = {[I t1, I

t
2, . . . , I

t
N ], p

t
i , 0

t
i }, where I

t
i is the indicator

function, which shows whether the quality requirement of
user i is satisfied or not. Specifically, it is defined as

I ti =

{
1, if Qti > Qi,min
0, otherwise,

(23)

pti is agent i’s current transmit power and 0ti is the total inter-
ference that comes from the other agents, which is defined
as

0ti =
∑
j 6=i

|hji| · ptj + σ
2
i . (24)

Note that for each agent, pti and 0
t
i are local information that

is readily available (no need for exchange).

2) ACTION SPACE
We assume that the transmitter of each agent chooses its
transmit power from a finite set consisting of L elements,

A =
{
pmax
L
,
2pmax
L

, . . . , pmax

}
, (25)

where pmax is the peak power constraint for each user. As a
result, the dimension of the action space is L. The agent is
only allowed to pick an action ati ∈ A to update its transmit
power. Increasing the size of action space may potentially
increase the overall performance, meanwhile it also brings a
larger training overhead and system complexity.

3) REWARD DESIGN
One reason that makes DRL appealing is its flexibility in
handling the hard-to-optimize objective function. When the
system reward is properly designed according to the objective
function, the system performance can be improved. For our
cross-layer video quality optimization problem, the objective
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is to maximize the averaged users’ quality while also satisfy-
ing the power constraints.

To achieve this goal, we define the reward function as
follows [44]

r t =
1
N

∑
i

qti , (26)

where

qti =

{
Qti , if I ti = 1
−100, otherwise,

(27)

such that the user’s video quality constraint (10) is satisfied.
So far we assume all the agents share the same reward r t

and the same action space st . In practice, such knowledgemay
be obtained at some additional communication cost. For the
state space signal, the agents only need to monitor the ACK
signal sent by each other to infer if the quality requirement is
satisfied. The communication cost would be extremely low.
For reward function design, each agent computes its own
quality based on (1), (3), and (7), and then broadcast this
information to other agents via message passing [30]. For
large networks, the transmission of the exact quality value
may occupy considerable wireless resources. Amore feasible
solution is that different agents observe only its nearby users’
ACK signals and take the average quality among its neighbor-
ing users as the reward function. For example, we may design
the state observed by agent i as

sti =
{
[I tn|n ∈ Ni(K )], pti , 0

t
i
}
, (28)

whereNi(K ) denotes the nearestK receivers (including agent
i itself) of agent i. The reward function for each user can be
designed as

r ti =
1
K

∑
j∈Ni(K )

qtj . (29)

This assumption is reasonable because in large networks,
only nearby D2D users are in the same interference domain.

D. LEARNING ALGORITHM
1) TRAINING STAGE
We leverage deep Q-learning with experience replay to train
multiple agents for optimal power control. It has been shown
that Q-learning will converge to the optimal policy with prob-
ability 1 [45]. In deep Q-learning, DQN is used to approxi-
mate the action-value function. We assume that each agent
maintains a dedicated DQN that takes an input of the current
state and outputs the value functions corresponding to all
actions.

The DQN is trained through multiple episodes. In each
episode l, all agents concurrently explore the state-action
space with the ε-greedy policy, i.e., the agent chooses the
action that maximizes the estimated state-action value with
probability εl and chooses a random action with probabil-
ity 1 − εl . The ε-greedy policy helps achieve a balance
between exploitation of the current best Q-value function

Algorithm 1 Multi-Agent DRL Training Algorithm
1: Start environment simulator, generating channels;
2: Initialize Q-networks for all agents randomly;
3: Initialize p for all agents, and obtain s0;
4: for each training episode do
5: Randomly initialize the agents’ transmit power;
6: for each step do
7: for each agent i do
8: observe sti ;
9: choose action ati according to the ε-greedy

policy;
10: end for
11: All agents take actions and receive reward r t+1;
12: for each agent i do
13: Update state st+1i ;

14: store
(
sti , a

t
i , r

t+1, st+1i

)
in replay memory

Di;
15: end for
16: for each agent i do
17: Uniformly sample mini-batches from Di;
18: minimizing error between Q-network and the

target network with stochastic gradient methods;
19: end for
20: if the QoE of each user is satisfied then
21: Break;
22: end if
23: end for
24: end for

and exploration of a better option. Each episode consists
of a maximum T steps. In each step t , all agents collect
and store the state action and reward tuple, (sti , a

t
i , r

t , st+1i ),
in the experience replay. In each step, a mini-batch Dt is
uniformly sampled from the replay memory. If all the users’
video quality requirements are satisfied, the system randomly
initialize the transmit power of all users and goes to the next
episode. The training algorithm is presented in Algorithm 1.

In the training stage, the agent reaches their target state
if the action remains unchanged in the next state st+1i . It is
easy to show that the next state st+1i is also a goal state. The
agent will stay on the target state until the transmission is
completed. As a result, the policy will converge, and we will
obtain the largest estimated Q value.

2) IMPLEMENTATION STAGE
During the implementation stage, each agent observes
the environment state and then selects an action, which
maximizes the state-action value according to the trained
Q-network. Afterwards, all agents transmit their video data
with a proper power determined by their selected actions.
The implementation algorithm is summarized in Algorithm 2.
In most of the cases, each agent can reach their target state
within 1 step. To solve the non-convergent problem, we add
a testing loop. That is, if the agent cannot reach the target
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Algorithm 2 DRL-Based Power Control Algorithm
Initialize the environment, agents randomly select initial
power, and obtain the initial state s0;
1: for each agent i do
2: for each step do
3: Select ai = argmaxa∈A Qi(s0, a;2∗i );
4: if the quality requirement of each user is satisfied

then
5: Break;
6: end if
7: end for
8: end for
9: Obtain the optimal power allocation p =

[a1, a2, . . . , aN ];

state, all the agents will explore the taken action based on the
current state until all the agents’ minimum quality is satisfied.

Since the training procedure can be performed offline over
different episodes for different network topologies, video
quality requirements, video types, and channel conditions,
the heavy training complexity should not be a problem in
practice. Meanwhile, the online implementation complexity
is extremely low, which enables many real-time applications.
In practice, the trained DQN can be updated only when
the network topology and video sequences are dramatically
changed.

IV. SYSTEM SETUP
We next carry out experiments to validate the performance of
the proposed DRL-based power control method. The max-
imum power (in Watt) is set to pmax = 0.4 and L is 10.
The bandwidth is set to B = 500kHz and the cell carrier
frequency is set to 2.4GHz. The noise power density for each
user is −174dBm/Hz. The distance between the transmitter
and the receiver of each agent is fixed to be 50m. The agents
are randomly located in a square area of 500m × 500m.

A. VIDEO CONFIGURATION
For simplicity, we assume our video library contains
2 video sequences in the common intermediate format
(CIF). One video sequence is ‘‘Foreman,’’ which has a low
spatial-temporal content complexity. The other is ‘‘Football,’’
which has a high spatial-temporal content complexity [35].
Each sequence is encoded by the High Efficiency Video
Coding (HEVC) software [46]. We use the default low delay
configurations to operate the encoder with both intra encod-
ing and motion compensation. The group of picture (GOP)
size is 4.

We enable rate control and change the target bit rate. Given
a target bit rate, the video sequences are encoded into bit
streams. We average the MSE between the reconstructed
frame and the original frame over all the 20 frames. The
PSNR value is then calculated based on (4). Based on the
obtained samples, we estimate the video sequence parameters

{θi, βi} with a curve-fitting method. The estimated values for
these parameters are listed in Table 1 and the corresponding
rate-distortion curves are presented in Fig. 3.

TABLE 1. Optimal parameters for the two video sequences.

FIGURE 3. Rate-distortion curve for the two video sequences.

It can be seen that different video sequences generally
exhibit quite different behaviors. For example, the rate of
video ‘‘Football’’ increases rapidly with increased PSNR
value, while the video sequence ‘‘Foreman’’ grows quite
slowly. With the same transmission rate (e.g., 500kbps),
the user who requests video sequence ‘‘Football’’ has a
PSNR value of 29dB, while the users who request video
sequence ‘‘Foreman’’ can enjoy a video quality up to around
41dB. Hence, simply perform physical layer resource opti-
mization may not be optimal. A cross-layer optimization is
indispensable.

B. DRL PARAMETERS
In our experiments, we choose a deep neural network (DNN)
to approximate the action-value function. The DNN consists
of three fully connected hidden layers, while each layer con-
tains 32, 32, and 16 neurons, respectively. The rectified linear
units (ReLUs) are used as the activation function. We adopt
the Adam algorithm for loss optimization. The replay mem-
ory size is set to 200. The batch size is set to 8. The probability
of exploring new actions linearly decreases with the number
of episodes, from 0.9 to 0 for the first 1000 episodes. Algo-
rithm 1 is used to train the network andAlgorithm 2 is used for
distributed implementation. The hyper-parameters are listed
in Table 2.

V. SIMULATION RESULT AND DISCUSSIONS
A. TWO USERS
First of all, we consider the simplest case where there are two
users. The distance matrix is randomly generated. For this
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TABLE 2. DRL hyper-parameters.

experiment, the distance matrix is generated as

D =
[
50 275
294 50

]
. (30)

The layout of the two users is shown in Fig. 4. The channel
fading follows the free space propagation model, which is
defined in (2). We also assume that the two users request
video sequences ‘‘Football’’ and ‘‘Foreman’’ respectively.
The quality requirementQi,min for both videos is set to 42dB.
Our aim is to ensure that the average quality of all the users

is maximizedwhile each user’s minimumquality requirement
is also satisfied. Fig. 5 shows the training loss calculated
by (21) for different δ values. It can be seen that with a large
learning rate, the training loss converges to 0 quickly, while
with a smaller learning rate value, the loss may converge
slow. For example, when δ = 0.01, even after 1500 episodes,
the training loss still does not converge to 0.Meanwhile, when
δ is moderate, e.g., δ = 0.5, the training loss is generally
very small across all the episodes. This is also confirmed by
the training reward for different values of δ plotted in Fig. 6.
When δ = 0.01, the reward does not converge to a positive
value, which means there is a penalty induced by that situa-
tion such that the user’s quality requirement is not satisfied.
If we choose δ to be 0.5 or 1, the training reward will stay
at a stable state. However, the reward value corresponding to
δ = 0.5 is slightly larger than the reward value corresponding
to δ = 1. Based on these observations, a moderate value
of learning rate is preferred. In our experiments, we choose
δ = 0.5.
Fig. 7 presents the two users’ video quality performance

versus the number of training episodes. We observe that at
the beginning of the training stage, the users’ video quality
fluctuates slightly. This is because at first the ε value is
large, the agents tend to explore new actions. As with more
iterations, ε starts to decrease from 0.9 to 0. During this
stage, the agent keeps on exploring the unknown environment
while also exploiting the gained knowledge to train the tar-
get network. After 1000 episodes, the value of ε decreases
to 0, the agent will stop exploring the environment; instead,
it will choose the actions that have achieved the maximum
state-action values. As a result, the quality curves for the two
users remain stable.

We next consider the distributed implementation stage.
Note that the training stage may involve a high computational

FIGURE 4. Layout of the video users used in the simulations.

complexity. After the training process is done offline, the dis-
tributed online deployment should be very easy and fast.
Fig. 8 demonstrates the performance of the proposed method.
As benchmarks for the proposed algorithm, we introduced
two baseline algorithms:

1) Random power method: each user randomly selects a
transmit power from A;

2) Maximum power method: each user transmits its video
sequences at the maximum power pmax .

We perform 1000 simulations and the users’ PSNR values
for the first 25 simulations are plotted in Fig. 8. In each
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FIGURE 5. Loss function versus the number of training episodes (N = 2).

FIGURE 6. Reward versus the number of training episodes (N = 2).

FIGURE 7. Users’ QoE versus the number of training episodes (N = 2).

testing episode, the agent initializes the state by randomly
generating transmit powers. Then both agents observe the
state and take action according to the state-action value.
Simulation results show that the agents can converge to the
optimal action with 1 step from any initial state. In this
process, no channel estimation is needed and no iterations
are required. Hence this approach is quite fast. Moreover,
with the DRL-based approach, both users’ required quality

FIGURE 8. Users’ QoE versus the number of testing episodes (N = 2).

are satisfied. As a comparison, the maximum power method
and the random power method can only guarantee one user’s
quality requirement, while the other user’s quality is below
the minimum requirement.

To better compare these algorithms, we define the success
rate as the ratio of the number of successful trials to the total
number of tests. In all the 1000 simulations, the proposed
DRLmethod achieves a success rate of 100%, but the success
rate of the random power method is only 3% and the success
rate of the maximum power method is 0. In practice, when
the number of users is small and the action space is small,
the users can randomly choose powers by trial and error and
eventually obtain a feasible solution if the feasible solution
exists. However, frequent information exchange and complex
iterations are usually required, which would pose additional
delays. When the network size grows large and the number
of action space becomes large, the random power allocation
method will no longer work. We will demonstrate this point
in the next subsection.

B. LARGER NUMBER OF USERS
Now we consider the case of 5 users in the system; the layout
of the users is shown in Fig. 4(b). The distance matrix is
randomly generated as

D =


50 361.9 362.9 275.7 95.2

279.1 50 201.3 170.8 294.1
301.7 131 50 62.5 261.7
289.2 133.9 56.9 50 248.8
53.0 318.1 308.8 221.8 50

 . (31)

We assume that the first user requests video sequence ‘‘Foot-
ball’’ with a minimum quality requirement of 34dB and the
rest four users request the video sequence ‘‘Foreman’’ with a
minimum quality requirement of 40dB. The training episode
is set to be 10000. ε is linearly decreased from 0.9 to 0 for the
first 3000 episodes.

The training loss and the training reward are depicted
in Fig. 9 and Fig. 10, respectively. It can be seen that after
around 3000 episodes, the training loss converges to 0. The
reward approximates 40, which means there is no penalty and
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FIGURE 9. Loss function versus the number of training episodes (N = 5).

FIGURE 10. Reward versus the number of training episodes (N = 5).

FIGURE 11. Users’ QoE versus the number of testing episodes with the
proposed method (N = 5).

all the users’ quality requirements are satisfied in the training
stage. In the distributed implementation stage, we perform
1000 testing episodes and the agents initialize their states
randomly in each episode. The PSNR performance of each
user for the first 25 episodes is depicted in Fig. 11. We find
that all the agents can observe their local environments and
reach their target QoE within 1 step. The success rate of
the proposed multi-agent DRL approach has a success rate

FIGURE 12. Users’ QoE versus the number of testing episodes with the
random power method (N = 5).

FIGURE 13. Users’ QoE versus the number of testing episodes with the
proposed method. (N = 20).

of 100% across all the testing episodes. As a comparison,
the random power method and the maximum power method
has a success rate of 0. We depicted the performance of the
random powermethod in Fig. 14. In practice, for the proposed
multi-agent DRL approach, we find that the agents may face a
non-stationary problem, i.e., the trained DQN for each agent
may not be able to reach the target state within 1 step. For
example, when we set the learning rate δ = 0.1, in most of
the cases, the agent can reach a target state within 1 step with
the trained DQN from arbitrary initial states. However, there
are a few cases when agent cannot reach the target state within
1 step. This may be caused by the experience replay sampling
process. The sampled DQN from the experience replay may
not reflect the current dynamics. So far, there is no theoretical
solutions which can solve this problem. Possible heuristic
solutions include adding the training ε into the state [30],
finding a proper value of the learning rate or in the testing
stage we perform more iterations until the obtained state is
feasible.1

1We add iterations in Algorithm 2 for each testing episode. If the current
state is not the target state, all the agents perform a further action based on
the current step until they reach the target state. In each iteration, only ACK
signals are needed; other agents’ quality requirements are not needed. So the
communication cost is low compared to the training process.
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FIGURE 14. Users’ QoE versus the number of testing episodes (N = 20)
with the random power allocation method. (N = 20).

Now we consider a more challenging task where there are
20 users as shown in Fig. 4(c). Their locations are randomly
generated. For simplicity, we assume that all of users request
the same video sequence ‘‘Foreman’’ and their minimum
quality requirement is set to 36dB. To better control the
complexity, we assume that each agent only observe state
from the nearest 5 neighbors, i.e., K = 5. The corresponding
testing stage is shown in Fig. 13. Due to space limitation,
we only plot 5 users’ PSNR values. Actually, all the 20 users’
video quality requirements are satisfied and their average
quality is maximized. As a comparison, we present the PSNR
for the random power allocation method in Fig. 14, where
the users’ PSNR values are obviously not stable. In some
cases, the user’s PSNR falls below 30dB. The success rates of
both the random power allocation method and the maximum
power allocation method are 0.

VI. CONCLUSION AND FUTURE WORK
In this paper, we studied the quality-aware power allocation
problem for multi-user video streaming. We developed a dis-
tributed model-free power allocation algorithm, which help
maximize the users’ target quality. The proposedmethod does
not require explicit channel state information, which would
save significant resources. Experiment results showed that the
developed multi-agent DRL approach can guarantee that all
the users achieve their target quality requirements within few
steps and the users’ average quality is maximized. For future
investigations, possible directions include

1) the randomness of the layout of the D2D channels and
the content of the requested videos could be considered
in the training process. The agent will take the channel
state and the video contents as local state information.
Efficient training algorithms need to be developed so
that users can take action based on the local observation
and the users’ average quality could be maximized.

2) Currently, we start the training process based on the
assumption that there exists at least one feasible solu-
tion. Theoretical methods should be provided to guar-
antee a quick examination to check if there exists a
feasible solution before the training process.

3) Usersmaywork on different channels in practice. In the
future, a DRL based joint spectrum and power alloca-
tion method could be developed.
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