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ABSTRACT Predicting attention is a popular topic at the intersection of human and computer vision.
However, even though most of the available video saliency data sets and models claim to target human
observers’ fixations, they fail to differentiate them from smooth pursuits (SPs), a major eye movement type
that is unique to perception of dynamic scenes. In this work, we strive for a more meaningful prediction and
conceptual understanding of saliency in general. Because of the higher attentional selectivity of smooth
pursuit compared to fixations modelled in traditional saliency research, we refer to the problem of SP
prediction as “‘supersaliency”’. To make this distinction explicit, we (i) use algorithmic and manual annota-
tions of SPs and fixations for two well-established video saliency data sets, (ii) train Slicing Convolutional
Neural Networks for saliency prediction on either fixation- or SP-salient locations, and (iii) evaluate our
and 26 publicly available dynamic saliency models on three data sets against traditional saliency and
supersaliency ground truth. Overall, our models outperform the state of the art in both the new supersaliency
and the traditional saliency problem settings, for which literature models are optimised. Importantly, on two
independent data sets, our supersaliency model shows greater generalisation ability than its counterpart
saliency model and outperforms all other models, even for fixation prediction. Furthermore, we tested an
end-to-end video saliency model, which also showed systematic improvements when smooth pursuit was
predicted either exclusively or together with fixations, with the best performance achieved when the model
was trained for the supersaliency problem. This demonstrates the practical benefits and the potential of

principled training data selection based on eye movement analysis.

INDEX TERMS Eye movements, saliency, smooth pursuit prediction.

I. INTRODUCTION

Saliency prediction has a wide variety of applications, be it
in computer vision, robotics, or art [1], ranging from image
and video compression [2], [3] to such high-level tasks as
video summarisation [4], scene recognition [5], or human-
robot interaction [6]. Its underlying idea is that in order to
efficiently use the limited neural bandwidth, humans sequen-
tially sample informative parts of the visual input with the
high-resolution centre of the retina, the fovea. The prediction
of gaze should thus be related to the classification of infor-
mative and uninformative video regions. However, humans
use two different processes to foveate visual content. During
fixations, the eyes remain mostly stationary; during smooth
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pursuit (SP), in contrast, a moving target is tracked by the
eyes to maintain foveation. Notably, SP is impossible without
such a target, and it needs to be actively initiated and main-
tained. For models of attention, this is a critical distinction:
Because the eyes are stationary (““fixating’”) in their default
state, “spurious” fixations may be detected even if a subject
is not attentively looking at the input; SP, however, always
co-occurs with attention. In addition, visual sensitivity seems
to be improved during SP (e.g. higher chromatic contrast
sensitivity [7] and enhanced visual motion prediction [8]).
The ultimate goal of all eye movements and perception is
to facilitate action in the real world. In a seminal paper [11],
Land showed that gaze strategies, and SP in particular, play a
critical role during many everyday activities. Similar results
have been found for driving scenarios, where attention is
crucial. Studies show that tangential [12] and target [13]
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FIGURE 1. Empirically observed neurological differences between
fixation and smooth pursuit: Large brain areas (highlighted) show
significantly increased activation levels during pursuits compared to
fixations (detected by [9]) in the studyforrest data set [10]; none
demonstrate the inverse effects. A set of representative slices along
orthogonal planes for a model brain is presented in this figure (slice
numbers labelled on the figure) for the visualisation of the differences
between fixation and pursuit conditions. Significance was determined via
analysing the “standard score”, or “Z-score” values.

locations during curve driving are ‘““fixated” with what actu-
ally consists, in part, of SP. In natural driving, roadside objects
are often followed with pure SP, without head motion [14].
Following objects that are moving relative to the car with
gaze (by turning the head, via an SP eye movement, or a
combination of both) is a clearer sign of attentive viewing,
compared to the objects of interest crossing the line of sight.

In practice, it is difficult to segment the — often noisy —
eye tracking signal into fixations and SPs, and thus many
researchers combine all intervals where the eyes are keeping
track of a point or an object into “fixations” [15]. Nev-
ertheless, it is well established that e.g. individuals with
schizophrenia show altered SP behaviour [16], [17], and
recently new methods for gaze-controlled user interfaces
based on SP have been presented [18]-[20]. This demon-
strates some of the practical benefits of carefully separating
the eye movements that make up the human gaze behaviour.

FIGURE 1 and FIGURE 2 show two analyses corroborat-
ing the importance of SP for models of attention in the context
of a more tractable task of video watching. In FIGURE 1,
data from the publicly available studyforrest data set' [10],
which combine functional brain imaging and eye tracking
during prolonged movie watching, were comparatively eval-
uated for SP vs. fixation episodes in a preliminary study. The
highlighted voxels show that large brain areas are more active
during SP compared to fixations; notably, no brain areas were
more active during fixation than during SP. In other words,
SP is representative of greater neurological engagement. The
sparser selectivity of SP is demonstrated in FIGURE 2, where
the relative share of SP and fixation gaze samples is plotted
for 50 randomly selected clips from Hollywood2 [22]. Even

IThese data were obtained from the OpenfMRI database. Its accession
number is ds000113d.
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FIGURE 2. Behavioural differences between fixation and smooth pursuit:
Saliency metrics typically evaluate against fixation onsets, which,

as detected by a traditional approach [21] (green line), are roughly
equally frequent across videos. However, applying a more principled
approach to separating smooth pursuit from fixations [9] reveals great
variation in the number of fixation (red bars) and pursuit (blue bars)
samples (remaining samples are saccades, as well as blinks and other
unreliably tracked samples).

though the number of traditionally detected fixations (but not
their duration) is roughly the same for all clips, the amount of
SP ranges from almost zero to half of the viewing time.

Taken together, these observations let us hypothesise that
SP is used to selectively foveate video regions that demand
greater cognitive resources, i.e. contain more information.
In practice, automatic pursuit classification as applied to the
studyforrest and Hollywood2 data sets may not be perfect,
but the results in FIGURE 1 corroborate that even with
potentially noisy detections, SP corresponds to higher brain
activity, and thus to more meaningful saliency.

Therefore, explicitly modelling SP in a saliency pipeline
should benefit the classification of informative video regions.
Beyond a better understanding of attention, there might
also be direct applications of SP prediction itself, e.g. in
semi-autonomous driving (verification of attentive supervi-
sion), telemedicine (monitoring of SP impairment as a vul-
nerability marker for schizotypal personality disorder [23],
e.g. during TV or movie watching [17]), or gaze-based inter-
action (analysis of potential distractors in user interfaces
for AR/VR).

Despite the fundamental differences between SP and
fixations, however, available saliency data sets ignore this
distinction, and the computational models naturally follow
suit [24], [25]. In fact, not one of the video saliency models
we came across mentions the tracking of objects performed
via SP, and the only data set we found to purposefully attempt
separating SP from fixations is GazeCom [21], which simply
discarded likely pursuits in order to achieve cleaner fixation
detection.

We argue that processing the eye tracking recordings in
a systematic and comprehensively described way in order
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FIGURE 3. Overview of the proposed pipeline.

to extract moments of attention, be that fixations or smooth
pursuits, is a vital first step in any pipeline of modelling
human attention. This would allow for saliency to be treated
not as a purely computational challenge of predicting some
heat map frames for a video input, but as a task that could
help us better understand human perception and attention.

In this manuscript, we extend our previous work [26]
and make the following contributions: First, we introduce
the problem of smooth pursuit prediction — supersaliency,
so named due to the properties separating it from tradi-
tional, fixation-based saliency (e.g. see FIGURE 1 and FIG-
URE 2). In this problem setting, the saliency map values
correspond to how likely a certain input video location is
to induce SP. We then provide automatically labelled [9],
large-scale training and test sets for this problem (building on
the Hollywood2 data set [22]), as well as a manually labelled,
smaller-scale test set of more complex scenes in order to
test the generalisability of saliency models (building on the
GazeCom data set [21], [27]). For both, we provide SP-only
and fixation-only ground truth saliency maps. We also discuss
the necessary adjustments to the evaluation of supersaliency
(and video saliency in general) due to its high inter-video
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variance, introducing weighted averaging of individual clip
scores.

Furthermore, we propose a deep dynamic saliency model
for (super)saliency prediction, which is based on the slic-
ing convolutional neural network (S-CNN) architecture [28].
After training our proposed model for both saliency and
supersaliency prediction on the same overall data set,
we demonstrate that our models excel at their respective
problems in the test subset of the large-scale data set, com-
pared to over two dozen literature models. Finally, we show
that training for predicting smooth pursuit reduces data set
bias: The supersaliency-trained model better generalises to
two independent sets (without any additional training) and
performs best even for traditional saliency prediction. We
demonstrate the same pattern with an additional, end-to-end
video saliency model we introduce in this work.

The overview of the (super)saliency modelling pipeline we
are proposing in this work can be seen in Figure 3.

Il. RELATED WORK
Predicting saliency for images has been a very active research
field. A widely accepted benchmark is represented by the
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MIT300 data set [29], [30], which is currently dominated
by deep learning solutions. Saliency prediction for videos,
however, lacks an established benchmark. It generally is a
challenging problem, because, in addition to larger compu-
tational cost, objects of interest in a dynamic scene may be
displayed only for a limited time and in different positions
and contexts, so attention prioritisation is more crucial.

Taking this prioritisation principle to the extreme, works on
salient object detection typically attempt to identify an object
of interest in each frame (usually the same throughout a pro-
cessed video clip). Saliency prediction, on the contrary, is not
attempting to identify a single attention centre in the video,
but aims at predicting the overall distribution of attention in
the video as a heat map sequence. The salient object detection
task is, therefore, much closer to segmentation at its core,
with the added aspect of automatically selecting the dominant
object in the scene. Despite the difference in problem for-
mulations, both video saliency prediction and salient object
detection essentially belong to the class of video-to-video
transformation tasks, so some methodology can be shared
between the two. We therefore include several works on both
problems in our literature overview, when the methods are
either directly or potentially applicable to the problem posed
in this study.

Somewhat bridging these two saliency-related areas, [31]
enabled attention shifting in the domain of salient object
detection. That work directly tied the annotated objects of
interest to human gaze directions, and therefore allowed for
the objects to become or stop being salient as the scene
unfolds.

A. SALIENCY PREDICTION

A variety of algorithms has been introduced to deal with
human attention prediction [1]. Video saliency approaches
broadly fall into two groups: Published algorithms mostly
operate either in the original pixel domain [2], [24], [32],
[33] and its derivatives (such as optic flow [34] or other
motion representations [35]), or in the compression domain
[25], [36], [37]. Transferring expert knowledge from images
to videos in terms of saliency prediction is consistent with
pixel-domain approaches, and the mounting evidence that
motion attracts our eyes contributed to the development of
compression-domain algorithms.

Traditionally, from the standpoint of perception, saliency
models are also separated into two categories based on
the nature of the features and information they employ.
Bottom-up models focus their attention (and assume human
observers do the same) on low-level features such as lumi-
nance, contrast, or edges. For videos, local motion can also be
added to the list, together with the video encoding informa-
tion. Hence, all the currently available compression-domain
saliency predictors are effectively bottom-up.

Top-down models, on the contrary, use high-level, seman-
tic information, such as concepts of objects, faces, etc. These
are notoriously hard to formalise. One way to do so would
be to detect certain objects in the video scenes, as was done
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in [22], where whole human figures, faces, and cars were
detected. Another way would be to rely on developments in
deep learning and the field’s endeavour to implicitly learn
important semantic concepts from data. In [38], either RGB
space or contrast features are augmented with residual motion
information to account for the dynamic aspect of the scenes
(i.e. motion is processed before the CNN stage in a hand-
crafted fashion). The work in [39] uses a 3D CNN to extract
features, plus an LSTM network to expand the temporal
span of the analysis. Other researchers use further additional
modules, such as the attention mechanism [40] or object-to-
motion sub-network [41]. In [42], a modified convolutional
LSTM (using multi-scale dilations) is employed to accurately
detect salient objects in video sequences. In a similar vein
of research, [43] also modified the typical convolutional
LSTM structure for video-to-video prediction by developing
a parallel multi-dimensional extension of this structure. This
modification allows for a much more complete utilisation of
the relevant past information for each pixel. While our work
does not focus on the architecture design, it would doubtlessly
be interesting to explore the effects of systematically differ-
entiating between fixations and smooth pursuits in the context
of saliency prediction with a wider spectrum of computational
models (our work tested two different approaches).

Whereas using a convolutional neural network in itself
does not guarantee the top-down nature of the resulting
model, its multilayer structure fits the idea of hierarchical
computation of low-, mid-, and high-level features. A work
by Krizhevsky et al. [44] pointed out that while the first con-
volutional layers learned fairly simplistic kernels that target
frequency, orientation, and colour of the input signal, the
activations in the last layer of the network corresponded to a
feature space, in which conceptually similar images are close,
regardless of the distance in the low-level representation
space. Another study [45] concluded that, just like certain
neural populations of a primate brain, deep networks trained
for object classification create such internal representation
spaces, where images of objects in the same category get
similar responses, and images of differing categories get
dissimilar ones. Other properties of the networks discussed in
that work indicate potential insights into the visual processing
system that can be gained from them.

B. VIDEO SALIENCY DATA SETS

A broad overview of existing data sets is given in [46]. Here,
we dive into the aspect particularly relevant to this study — the
identification of “‘salient” locations of the videos, i.e. how did
the authors deal with dynamic eye movements. For the most
part, this question is addressed inconsistently. The majority
of the data sets either make no explicit mention of separating
smooth pursuit from fixations (ASCMN [47], SFU [48], two
Hollywood2-based sets [22], [49], DHF1K [40]) or rely on
the event detection built into the eye tracker, which in turn
does not differentiate SP from fixations (TUD [50], USC
CRCNS [51], CITIUS [24], LEDOV [41]). IRCCyN/IVC
(Video 1) [52] does not mention any eye movement types at
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all, whereas IRCCyN/IVC (Video 2) [53] only names SP in
passing.

There are two notable exceptions from this logic. First,
DIEM [54], which comprises video clips from a rich spec-
trum of sources, including amateur footage, TV programs,
and movie trailers, so one would expect a hugely varying
fixation—pursuit balance. The respective paper touches on
the properties of SP that separate it from fixations, but in
the end only distinguishes between blinks, saccades, and
non-saccadic eye movements, referring to the latter as generic
foveations, which combine fixations and SPs.

GazeCom [21], on the other hand, explicitly acknowledges
the difficulty of distinguishing between fixations and smooth
pursuits in dynamic scenes. The used fixation detection algo-
rithm employed a dual criterion based on gaze speed and dis-
persion. However, the recently published manually annotated
ground truth data [27] show that these coarse thresholds are
insufficient to parse out SP episodes.

Part of this work’s contribution is, therefore, to provide a
large-scale supersaliency (SP) and saliency (fixations) data
set based on Hollywood2, as well as establishing a pipeline
for (super)saliency evaluation.

Ill. SALIENCY AND SUPERSALIENCY

In this section, we describe the methodology behind the
(super)saliency prediction in this work. Our approach relies
on two main components: A large-scale data set of human
video free-viewing, where the raw eye tracking data are avail-
able, and a computational model. Such data set would allow
us to analyse the gaze recordings to parse out the episodes of
either fixations or smooth pursuits. The detected samples of
the two eye movements can be then directly used to train the
proposed model.

A. DATA SETS AND THEIR ANALYSIS

GazeCom [21], which we used because it is the only
saliency data set that also provides full manual annotation
of eye movement events [27], [55], contains eye tracking
data for 54 subjects, with 18 dynamic natural scenes used
as stimuli, around 20 seconds each. At over 4.5 total hours
of viewing time, this is the largest manually annotated eye
tracking data set that accounts for SP. A high number of
observers and the hand-labelled eye movement type informa-
tion make this a suitable benchmark set. FIGURE 4a displays
an example scene, together with its empirical saliency maps
for both fixations and smooth pursuits, and the same frames
in saliency maps predicted by different models.

Hollywood2 [22], selected for its diversity and the sheer
amount of eye tracking recordings, contains about 5.5 hours
of video (1707 clips, split into training and test sets), viewed
by 16 subjects. The movies have all types of camera move-
ment, including translation and zoom, as well as scene
cuts. While the full training subset was used, we randomly
selected 50 clips from the test subset (same as in FIGURE 2)
for testing all the models. Example frames and respective
(super)saliency maps can be seen in FIGURE 4b. Since
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manual labelling is impractical due to the data set size (over
70h of total viewing time), we used our publicly available
toolbox [27] implementing a state-of-the-art SP and fixation
detection algorithm [9], [55]. A large-scale evaluation of this
toolbox was performed in [56], where it demonstrated excel-
lent performance when compared to the GazeCom ground
truth data, and generalised well to an independent data set.

CITIUS [24] was recently used for a large-scale evaluation
of the state of the art in connection with a novel model
(AWS-D). It contains both real-life and synthetic video
sequences, split into subcategories of static and moving cam-
era. For our evaluation, we used the real-life part, CITIUS-R
(22 clips totalling ca. 7 minutes, 45 observers). Only fixation
onset and duration data are provided by the authors, so SP
analysis was impossible.

By definition, fixations are almost stationary, so that a
single point (usually, mean gaze position placed at temporal
onset) sufficiently describes an entire fixation. In line with
the literature, we evaluated the prediction of such fixation
onsets in the “onset” condition (detected by a standard algo-
rithm [21] for GazeCom and Hollywood?2, provided with the
data set for CITIUS-R). Notably, the reference models are
likely optimised for this problem setting.

To describe the trajectory of an SP episode, however, all its
gaze samples need to be taken into account. Accordingly, both
the GazeCom ground truth and the toolbox [27] we used for
Hollywood?2 provide sample-level annotations. These annota-
tions were used for evaluating the prediction of pursuit-based
attention in the “SP”’ condition, i.e. model predictions were
tested against the set of individual pursuit gaze samples. The
“FIX” condition utilised individual fixation samples as well
(similar to [54]), and is, in principle, not very different from
“onset”. By directly mirroring the implementation of the
“SP” condition, however, it allowed for a fairer comparison
between the two.

B. SLICING CNN SALIENCY MODEL
We adopted the slicing convolutional neural network
(S-CNN) architecture [28]. To achieve saliency prediction,
we extended patch-based image analysis (e.g. [57] for
image saliency, and [38] for individual video frames) to
subvolume-based video processing. This way, we are still
able to capture motion patterns, while maintaining a rel-
atively straightforward binary classification-based architec-
ture — (super)salient vs. non-salient subvolumes. Initially,
we did not use more complex end-to-end approaches in order
to keep the proof-of-concept implementation of fixation- and
pursuit-based training as straightforward as possible, without
intermediate steps of having to convert locations of cor-
responding samples into continuous saliency maps. These
steps would introduce additional data parametrisation and,
potentially, biases into the pipeline. However, we additionally
validate the idea of supersaliency prediction with an end-to-
end model in Section IV.

S-CNN [28] takes an alternative approach to extract-
ing motion information from a video sequence. Instead of
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handcrafted motion descriptors [38], 3D convolutions [58],
or recurrent structures [39], S-CNN achieves temporal inte-
gration by rotating the feature tensors after initial individual
frame-based feature extraction. This way, time (frame index)
is one of the axes of the subsequent convolutions. The archi-
tecture is based on VGG-16 [59], with the addition of dimen-
sion swapping operations and temporal pooling. The whole
network would consist of three branches, in each of which the
performed rotation is different, and the ensuing convolutions
are performed in the planes xy (equivalent to no rotation), xt,
or yt (branches are named respectively). Due to the size of
the complete model, only one branch could be trained at a
time. We decided to use the xz-branch for our experiments
(see FIGURE 5), since it yielded the best individual results
in [28], and the horizontal axis seems to be more important
for human vision [60] and SP in particular [61]. We also
tested the other branches separately and the late fusion of their
results, but the xr branch was the best individual performer,
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FIGURE 5. The xt branch of the S-CNN architecture for binary salient vs.
non-salient video subvolume classification. Temporal integration is
performed after the swap-xt operation via the convolutions operating in
the xt plane and temporal pooling.
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and the fusion did not produce sufficient performance gains
to justify the tripled computation time. Therefore, we do not
report these results in this paper. Similarly, our preliminary
tests with 3D-CNN architectures, similar to results in [28],
led us to opt for the better-performing S-CNNs instead.

As input to our model, we used RGB video subvol-
umes 128 px x 128 px x 15 frames (px denoting pixels)
around the pixel to be classified. Similar subvolumes were
used in [62] for unsupervised feature learning. Unlike [38],
we did not extract motion information explicitly, but relied
on the network architecture entirely without any further input
manipulations in order to achieve a simpler data processing
pipeline.

To go from binary classification to generating a continuous
(super)saliency map, we took the probability for the positive
class at the soft-max layer of the network (for each respective
surrounding subvolume of each video pixel). To reduce com-
putation time, we only did this for every 10" pixel along both
spatial axes. We then upscaled the resulting low-resolution
map to the desired dimensions. For GazeCom and Holly-
wood2, we generated saliency maps at 640 x 360 px, whereas
for CITIUS-R, the original resolution of 320 x 240 was used.

C. TRAINING DETAILS

Out of 823 training videos in Hollywood2, 90% (741 clips)
were used for training and 10% for validation. Before
extracting the subvolumes centred around positive or nega-
tive locations of our videos, these were rescaled to 640 x
360 pixels size and mirror-padded to reduce boundary effects.
In total, the 823 clips contain 4,520,813 unique SP and
10,448,307 unique fixated locations. To assess the influ-
ence of the eye movement type in the training data, we fit-
ted the same model twice for two different purposes. First,
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we trained the S-CNN SP model for predicting supersaliency,
so the positive locations were those where SP had occurred.
Analogously, for the S-CNN FIX model predicting purely
fixation-based (i.e. excluding SP) saliency, the input video
subvolumes where observers had fixated were labelled as
positive.

For both S-CNN SP and S-CNN FIX, the training set con-
sisted of 100,000 subvolumes, half of which were positives
(as described above, randomly sampled from the respective
eye movement locations in the training videos), half negatives
(randomly selected in a uniform fashion to match the number
of positive samples per video, excluding the subvolumes
already in the positive set). For validation, 10,000 subvol-
umes were used, same sampling procedure as for the training
set.

Convolutional layers were initialised with pre-trained
VGG-16 weights, fully-connected layers were initialised ran-
domly. We used a batch size of 5, and trained both models
for 50,000 iterations with stochastic gradient descent (with
momentum of 0.9, learning rate starting at 10~* and decreas-
ing 10-fold after every 20,000 iterations), at which point both
loss and accuracy levelled out.

D. ADAPTIVE CENTRE BIAS

Since our model is inherently spatial bias-free, as it deals
purely with individual subvolumes of the input video,
we applied an adaptive solution to each frame — the gravity
centre bias approach of Wu et al. [34], which emphasises not
the centre of the frame, but the centre of mass in the saliency
distribution. At this location, a single unit pixel is placed on
the bias map, which is then blurred with a Gaussian filter
(o equivalent to three degrees of the visual field was chosen)
and normalised to contain values ranging from O to the highest
saliency value of the currently processed frame. Each frame
of the video saliency map was then linearly mixed with its
respective bias map (with a weight of 0.4 for the bias, and
0.6 for the original frame, as in [34]).

IV. VALIDATION WITH A MORE COMPLEX MODEL

As discussed in Section II-A, more sophisticated architec-
tures have been developed over time to better handle both
the spatial and the temporal aspects of deep video process-
ing. While the slicing CNN model we used in Section III-B
allowed us to avoid any additional steps when going from
concept to implementation, end-to-end architectures provide
a more modern and efficient tool for saliency prediction.

In order to investigate whether the benefits of supersaliency
hold for an end-to-end model, we implemented an architec-
ture combining two recent works: (i) the fully-convolutional
deep DenseNet from [63] for efficient information extraction
from each 2D frame, and (ii) the introduction of several
convolutional LSTMs into an encoder-decoder network [64]
for temporal integration. Thus, we replaced the encoder part
of the network in [64] with a DenseNet structure as in [63],
keeping the decoder simple. The dense blocks were modified
to process the video frames in a time-distributed fashion
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FIGURE 6. The outline of the end-to-end architecture we used for
additional testing of our pipeline. In this scheme, “c” stands for the
concatenation operation, “+" - for addition. In our experiments, ground
truth saliency is provided as related to solely fixations, solely smooth
pursuits, or both eye movements together.

(i.e. identical operations applied to all frames). The model
is sketched in FIGURE 6. A detailed model description can
be found in the supplementary material.

A. TRAINING DETAILS

The Hollywood? training set was randomly subdivided in the
following way: 770 clips (ca. 200,000 frames) were used
for training, 53 clips (ca. 15,000 frames) — for validation.
The ground truth saliency map sequences were generated
in the same way as for evaluation (see Section V-B). For
this experiment, we trained the model to predict the saliency
maps produced either for fixation or smooth pursuit samples
only, or for the combination of both. The first two conditions
correspond to purely fixation-based (traditional) saliency and
purely pursuit-based supersaliency; the latter is very simi-
lar to only removing the saccades, and aggregating all the
remaining gaze samples, as e.g. in [54].

We used Kullback-Leibler divergence as loss on the
three-dimensional tensors of saliency (time x x X y),
and trained the model for 10 epochs (500 iterations in
each) with Adam optimiser [65] with default parameters
(cf. Keras 2.2.4). The final model was selected based on the
validation loss. Due to GPU memory constraints, we lim-
ited the input to this relatively large model to sequences
of 12 frames (at 128 x 72 px) and used a batch size of 4.
During training, the model produced sequences of 12 cor-
responding saliency frames for each input sequence. During
testing, no video subdivision was performed.

Since this model operated on relatively low-resolution
clips, we did not expect its saliency prediction to achieve
benchmark-beating performance, but separately evaluated
it and used its results to support our argument about the
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potential of the supersaliency problem setting, and the impor-
tance of the smooth pursuit eye movement for saliency in
general.

V. EVALUATION

A. REFERENCE MODELS

We compared our approach to a score of publicly avail-
able dynamic saliency models. For compression domain
models, we followed the pipeline and provided source code
of Khatoonabadi et al. [25], generating the saliency maps for
all videos at 288 pixels in height, and proportionally scaled
width for PMES [66], MAM [67], PIM-ZEN [68], PIM-MCS
[69], MCSDM [70], MSM-SM [71], PNSP-CS [72], and a
range of OBDL-models [25], as well as pixel-domain GBVS
[32], [73] and STSD [74]. Instead of the static AWS [75]
that was used in [25], we evaluated AWS-D [24], its recent
extension to dynamic stimuli (for GazeCom, after downscal-
ing to 640 x 360 px due to memory constraints, other data
sets — at their original resolution). We also computed the three
invariants (H, S, and K) of the structure tensor [76] at fixed
temporal (second) and spatial (third) scales. For Hollywood2,
the approach of Mathe and Sminchisescu [77], combining
static (low-, mid-, and high-level) and motion features, was
evaluated as well.

Deep models for saliency prediction on videos are much
scarcer than such models for static images. As of yet,
the problem of finding reference models in this domain
is further confounded by the absence of publicly avail-
able code or data of some approaches, e.g. [39], and the
popularity of salient object detection approaches and data
sets, e.g. [78]-[80]. Included in our set of reference models
are two recent approaches: DeepVS (OMCNN-2CLSTM)
[41] — code available via [81] — and ACLNet [40] — code
available via [82]. We ran both with default parameters on
all three data sets.

B. BASELINES

The set of baselines was inspired by the works of
Judd et al. [29], [30]: Chance, Permutation, Centre, One
Human, and Infinite Humans (as a limit). The latter two
cannot be computed unless gaze data for each individual
observer are available (i.e. not possible for CITIUS). All the
random baselines were repeated five times per video of each
data set. The ground truth saliency maps were obtained via
superimposing spatio-temporal Gaussians at every attended
location of all the considered observers. The two spatial
sigmas were set to one degree of visual angle (commonly used
in the literature as the approximate fovea size, e.g. [29], [83];
[77] uses 1.5°). The temporal sigma was set to a frame count
equivalent of 1/3 of a second (so that the effect would be
mostly contained within one second’s distance).

C. METRICS
For a thorough evaluation, we took a broad spectrum of
metrics (all computed the same way for fixation samples
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and onsets — saliency — and smooth pursuit samples — super-
saliency — for the data sets described in Section III-A),
mostly based on [83]: AUC-Judd, AUC-Borji, shuffled
AUC (sAUC), normalised scanpath saliency (NSS), his-
togram similarity (SIM), correlation coefficient (CC), and
Kullback-Leibler divergence (KLD), as well as Information
Gain (IG) [84]. We additionally computed balanced accuracy
(same positive and negative location sets as for AUC-Borji;
accuracy at the equal error rate point).

In our implementation of SAUC and IG, in order to obtain
salient locations of other clips, we first rescaled their tem-
poral axes to fit the duration of the evaluated clip, and then
sampled not just spatial (like e.g. [24]), but also temporal
coordinates. This preserves the temporal structure of the
stimulus-independent bias: E.g. the first fixations after stim-
ulus display tend to have heavier centre bias than subsequent
ones in both static images [85] and videos [86].

For GazeCom and Hollywood2, we fixed all saliency maps
to 640 x 360px resolution during evaluation, either for
memory constraints, or for symmetric evaluation in case of
differently shaped videos. For CITIUS, the native resolution
of 320 x 240 px was maintained.

1) METRIC AVERAGING

Due to its selectivity (i.e. observers can decide not to pursue
anything), SP is sparse and highly unbalanced between videos
(see FIGURE 2). Simply averaging the performance scores
across all videos of the data set could introduce artefacts for
many metrics. For AUC-based metrics, for example, there
exists a “perfect” aggregated score, which could be com-
puted by combining the data over all the videos before com-
puting the metric, i.e. merging all positives and all negatives
beforehand. This is, however, not always possible, as many
models use per-video or even per-frame normalisation as the
final step, either to allow for easier visualisation, or to use the
full spectrum of the 8-bit integer range, if the result is stored
as a video. To demonstrate this averaging problem, we ran-
domly sampled non-trivial subsets of video clips (100 times
for all the possible subset sizes) of all three utilised test sets,
and computed per-clip AUC-Borji and SAUC scores for our
S-CNN SP model (without any normalisation of its outputs).
We combined these via either regular or weighted (according
to the number of SP- or fixation-salient locations samples,
depending on the problem setting) averaging. This combina-
tion is then compared to the perfect score, as described above.
We found that averaging per-video AUC scores is a signif-
icantly poorer approximation of the ideal score than their
weighted mean (p < 0.01, for (super)saliency prediction on
GazeCom and Hollywood?2, see Table 1).

We will, therefore, present the weighted averaging results
for supersaliency prediction. Since fixations suffer from this
problem to a lesser extent, this adjustment is not essential
there. However, in the data sets with great variation of fixation
samples’ share (e.g. Hollywood2: 30% to 78% in our 50-clip
subset), we would generally recommend using weighting for
fixation prediction evaluation as well. Conventional mean
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TABLE 1. Means and standard deviations of the absolute error of “perfect AUC” estimation with regular and weighted averaging, as well as one-sided
two-sample Kolmogorov-Smirnov test p-values (with the null hypothesis that regular averaging, as a way to estimate the perfect AUC score, produces
absolute errors that are smaller than or equal to those of weighted averaging). Except for CITIUS-R, weighted averaging always demonstrates a

statistically significant (p « 0.01) advantage over regular averaging.

Statistic Absolute error GazeCom Hollywood?2 (50 clips) CITIUS-R
properties SP FIX onsets SP FIX onsets onsets
AUC-Borji mean (regular averaging) 0.038 0.011 0.012 0.022 0.017 0.018 0.0125
mean (weighted averaging) 0.011 0.01 0.01 0.008 0.012 0.009 0.0135
SD (regular averaging) 0.03 0.007 0.008 0.009 0.009 0.008 0.0079
SD (weighted averaging) 0.01 0.007  0.007 0.004 0.004 0.004 0.0075
p-value 9e-205  4e-16  8e-16 | 0e+00  0e+00  0e+00 0.92
sAUC mean (regular averaging) 0.039 0.013  0.014 0.038 0.029 0.031 0.0173
mean (weighted averaging) 0.015 0.011 0.011 0.011 0.015 0.012 0.0169
SD (regular averaging) 0.031 0.008  0.009 0.016 0.014 0.013 0.0092
SD (weighted averaging) 0.014 0.008  0.008 0.006 0.005 0.005 0.0089
p-value le-137  4e-20  2e-25 0e+00  0e+00  0e+00 0.02

results for fixations are, nevertheless, presented for compa-
rability with the literature (weighted results reveal a similar
picture).

2) CROSS-AUC

Another point we raise in our evaluation is directly dis-
tinguishing SP-salient from fixation-salient pixels based on
the saliency maps. To this end, we introduced cross-AUC
(xAUC): The AUC is computed for the positive samples’
set of all pursuit-salient locations, with an equal number
of randomly selected fixation-salient locations for the same
stimulus used as negatives. The baselines’ performance on
this metric will be indicative of how well the targets for these
two eye movements can be separated (in comparison to the
separation of salient and non-salient locations). If a model
scores above 50% on this metric, it on average favours (i.e.
assigns higher saliency scores to) pursuit-salient locations
over fixation-salient ones (since SP is chosen as the pos-
itive class). For the purpose of distinguishing the two eye
movement types, the scores of 70% and 30% are, however,
equivalent: Such scores would reveal that a model favours
either SPs over fixations, or vice versa, respectively, with
the same bias from not displaying any preference whatsoever
(and the corresponding xAUC of 50%).

VI. RESULTS AND DISCUSSION
A. SLICING CNN RESULTS
We tested the outputs of 26 published dynamic saliency mod-
els, including two deep learning-based solutions, as well as
our own S-CNN models — SP and fixation predictors both
with and without the additional post-processing step of grav-
ity centre bias. For brevity and because there is no principled
way of averaging different metrics numerically, we present
the results as average ranks (over the 9 metrics we used —
see Section V-C) in Table 2. Complete tables of all metric
scores for all 7 data types (corresponding to the columns of
Table 2) and 35 baselines and models can be found in the
supplementary material.

Traditional saliency prediction commonly evaluates only
one sample per fixation, as we did in the “onset” condition.
For supersaliency, however, all gaze samples need to be
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predicted individually, and for consistency we did the same
for fixations in the “FIX’’ condition. In principle, this should
give greater weight to longer fixations with more samples,
but our results show that differences between evaluating in
the “FIX” and “onset” conditions are small in practice
(cf. respective columns in Table 2).

On average, our pursuit prediction model, combined with
adaptive centre bias (S-CNN SP + Gravity CB), performs
best, almost always making it to the first or the second
position (and always in the top-4). Remarkably, this holds
true both for the prediction of smooth pursuits and the pre-
diction of fixations, despite training exclusively on SP-salient
locations as positive examples. The success of our pursuit
prediction approach in predicting fixations can be potentially
attributed to humans pursuing and fixating similar targets, but
the relative selectivity of SP allows the model to focus on the
particularly interesting objects in the scene. Even without
the gravity centre bias, both our saliency S-CNN FIX and
supersaliency S-CNN SP models outperform the models from
the literature on the whole, with their average rank at least two
positions better than that of the next best model (ACLNet).

The fact that all our S-CNN models consistently outperform
the traditional ““shallow” reference models for both saliency
and supersaliency prediction on all data sets demonstrates the
potential of deep video saliency models. This is in line with
the findings in e.g. [39], [87], where a deep architecture has
shown superior fixation prediction performance, compared to
non-CNN models. On Hollywood2, due to the very centre
biased nature of the gaze locations [21], for example, only
the deep learning models (S-CNN, ACLNet, and DeepVS)
rank higher than the Centre Baseline or achieve non-negative
information gain scores (cf. Table 2 and the tables in the
supplementary material).

Only in the fixation prediction task on the Hollywood2 data
set, the results of our best model are inferior to the two
deep reference approaches (and only to those) — DeepVS and
ACLNet. On both other data sets (GazeCom and CITIUS-R),
as well as for supersaliency prediction on Hollywood2, our
model is outperforming all reference algorithms. The two
evaluated deep literature approaches are particularly weak on
the GazeCom data set, and especially in the task of predicting
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TABLE 2. Evaluation results, presented as the mean of rank values for all the metrics we compute (except for xAUC). “Onset” refers to evaluation against
fixation onsets (“traditional” saliency). Where marked with *, ranking was computed for the weighted average of the scores. The rows with gray
background correspond to baselines. Top-3 non-baseline results in each category are boldified.

Model GazeCom Hollywood2 (50 clips) | CITIUS-R | average rank
SP* FIX onmset | SP* FIX  onset onset
Infinite Humans 1.0 1.0 1.0 1.0 1.0 1.0 = 1.0
S-CNN SP + Gravity CB 4.9 2.9 2.9 4.0 5.1 5.0 33 4.0
S-CNN FIX + Gravity CB 122 28 2.8 53 4.6 4.1 3.9 5.1
S-CNN SP 3.0 4.4 4.1 6.2 7.6 7.4 4.8 54
S-CNN FIX 9.1 4.6 4.8 7.7 6.7 6.8 5.6 6.4
ACLNet 243 110 10.7 4.3 2.9 34 3.3 8.6
DeepVS (OMCNN-2CLSTM) | 254 9.8 11.0 5.0 4.7 4.7 8.2 9.8
GBVS 1.1 112 10.1 11.6  11.3 11.1 7.6 10.6
OBDL-MRF-O 138 122 119 137 133 11.8 9.9 12.4
OBDL-MRF-OC 151 139 13.7 148 142 12.9 11.2 13.7
AWS-D 149 79 7.4 240 18.0 18.2 7.2 14.0
OBDL-MRF-TO 186 139 1438 126 143 15.2 13.3 14.7
OBDL-MRF 189 160 163 138 113 12.8 13.7 14.7
Centre 294 168 164 9.6 10.3 10.1 10.6 14.7
OBDL-MRF-T 231 132 149 126 122 15.1 15.3 15.2
One Human 187 192 22,6 | 11.1 9.8 10.6 — 15.3
OBDL-T 137 15.1 12.4 179 187 18.6 11.1 15.3
OBDL-MRF-C 163  16.1 16.0 159 159 14.2 13.1 15.4
OBDL-MRF-TC 206 129 142 | 128 168 17.1 15.6 15.7
OBDL-S 147 19.8 184 | 19.1 20.2 19.9 17.3 18.5
Mathe — — — 20.7 217 21.9 — 21.4
Invariant-K 11.3 208 19.6 | 302 25.0 25.0 20.8 21.8
STSD 180 216 216 | 274 254 25.1 18.0 22.4
OBDL 224 232 224 | 229 229 22.8 20.8 22.5
PMES 11.8 27.8 270 | 220 27.0 27.4 27.0 24.3
PIM-ZEN 136 264 263 | 240 26.6 27.1 26.8 24.4
PIM-MCS 143 259 261 | 258 267 27.2 26.2 24.6
Invariant-S 28.6 219 222 | 320 277 27.2 22.8 26.0
MSM-SM 168 33.1 323 | 21.7 284 27.2 25.4 26.4
PNSP-CS 139 287 287 | 28.1 30.1 30.1 27.2 26.7
Permutation 334 293 294 | 2777 234 22.3 24.8 272
MCSDM 134 284 283 | 307 31.0 31.6 28.1 274
Invariant-H 29.8 237 244 | 333 309 30.9 25.8 28.4
Chance 310 280 28.0 | 324 318 31.9 28.2 30.2
MAM 279 31,6 321 | 283 326 322 31.1 30.8

pursuit-based supersaliency. Qualitatively, we observed that
their predicted saliency distributions tend to miss moving
salient targets, unless these are close to the centre of the
frame.

Both with and without the gravity centre bias, our super-
saliency S-CNN SP models perform better than our respective
saliency S-CNN FIX models (with the difference in average
rank values of ca. one position). We emphasise that these
models were only trained on the Hollywood?2 training set. On
the Hollywood?2 test set, maybe not surprisingly, the fixation-
predicting models perform better for fixation-based saliency
and SP-predicting models perform better for pursuit-based
supersaliency. On the two other data sets, however, the mod-
els that were trained for SP prediction generally perform
better than their fixation-trained counterparts, indicating their
greater generalisation capability.

To find informative video regions, we use humans as a
yardstick, since they clearly excel at real-world tasks despite
their limited perceptual throughput. Smooth pursuit is more
selective than fixations and thus likely restricted to particu-
larly interesting objects. The use of such sparser (yet more
densely concentrated [27]), higher-quality training data could

VOLUME 8, 2020

explain the superior generalisability of the supersaliency
models to independent data sets.

For visual comparison, example saliency map sequences
are presented in FIGURE 4a and FIGURE 4b for select
GazeCom and Hollywood?2 clips, respectively. It can be seen,
for example, that our S-CNN FIX model differentiates well
between fixation-rich and SP-rich frames in an example Hol-
lywood2 clip.

B. END-TO-END VALIDATION

To additionally highlight the importance of pursuit and
supersaliency in the context of a more state-of-the-
art-like architecture, we trained a model encompass-
ing both DenseNet and convolutional LSTM elements
(see Section IV) in several set-ups: While keeping the
training pipeline the same, we differently generated the
ground truth saliency maps. We examined three conditions:
(i) fixation-only attention, (ii) fixation- and pursuit-based
attention, and (iii) pursuit-only attention. Taking the perfor-
mance in the first condition as a baseline, we plot the absolute
improvements of the saliency metrics in other conditions in
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FIGURE 7. Absolute improvement in the scores of our end-to-end saliency prediction model (see Section IV) due to the type of training data used (see x
axis). FIGURE 7a reports the improvements of fixation-based saliency prediction, while FIGURE 7b depicts the same improvements for pursuit-based
supersaliency prediction. Including pursuit-based attention into training (FIX+SP condition) is beneficial for the vast majority of metrics, compared to
training for predicting purely fixation-based attention (FIX condition). Notably, training the model for the supersaliency problem directly (SP condition)
always benefited our model, when tested for both the traditional saliency (7a) and supersaliency (7b) tasks.

FIGURE 7 (full absolute performance scores can be found in
the supplementary material).

In these plots, the models trained in one of the three
conditions are tested on the task of either fixation prediction
(FIGURE 7a) or smooth pursuit prediction (FIGURE 7b). For
both of the tasks, on GazeCom and Hollywood2 data sets
alike, the values of performance measures are almost always
improved when pursuit samples are added to fixation-only
attention modelling (transition from “FIX” to “FIX4-SP”
conditions in the figures). Most importantly, performance of
the model is invariably and noticeably improved when only
pursuit samples are used for training. Only AUC-Judd on
the GazeCom data set is just slightly improving between
these conditions, because the metric is not class-balanced
and is saturating at high saliency map resolutions. Evaluation
at a lower resolution of saliency maps yields much more
noticeable performance improvements for AUC-Judd as well
(data not shown).

The results on CITIUS-R are qualitatively and
quantitatively similar, and are not depicted for better fig-
ure readability. This again points to the greater across-data set
generalisation capability of a model that was trained to predict
supersaliency maps, compared to an identically trained model
for saliency map prediction.

C. DISTINGUISHING FIXATION AND PURSUIT TARGETS

In the task of separating SP- and fixation-salient locations
(the xAUC metric), most models yield a result above 0.5 on
GazeCom, which means that they still, by chance or by
design, assign higher saliency values to SP locations (unlike
e.g. the centre baseline with XAUC score of 0.44, which
implies that fixations on this data set are more centre biased
than pursuits). Probably due to their emphasis on motion
information, the top of the chart with respect to this metric
is heavily dominated by compression-domain approaches
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(top-7 non-baseline models for GazeCom, top-4 for
Hollywood2, cf. tables in the supplementary material). Even
though in the limit (Infinite Humans baseline) this metric’s
weighted average can be confidently above 0.9, the best
model’s (MSM-SM [71]) result is just below 0.74 for Gaze-
Com, and below 0.6 for Hollywood2. This particular aspect
needs more investigation and, possibly, dedicated training:
Notably, the models proposed in this work were not trained to
maximise X AUC, but rather to achieve better general-purpose
saliency prediction, conditioned on one eye movement type
or the other.

D. GENERAL IMPLICATIONS

The work presented here points out a major methodological
concern: While smooth pursuit comprises a significant part
of the viewing behaviour, is has never been systematically
analysed in the context of saliency prediction. This lack of
specialised analysis means that the gaze samples correspond-
ing to the form of attention expressed as smooth pursuit will
be either discarded in the analysis, or labelled inconsistently.

Analysing attention means analysing both fixations and
smooth pursuits, with a caveat: Fixations are not always
intentional and can correspond to inattentive viewing or mind
wandering [88], [89]. Typical works on saliency prediction
only talk about fixations, never accounting for what can be
called their attentiveness. Our work, on the contrary, demon-
strates that using only smooth pursuit gaze samples — i.e.
those when the eye movements reveal attentive viewing by
following a moving target — can help improve on traditional
saliency approaches.

This, however, is not the end of the story: We only consider
pure eye movement information to uncover something about
the observer’s attention. Instead, e.g. pupil size can be used to
infer attention (see e.g. [90] for a review of the works on con-
necting pupil size dynamics to a variety of perception aspects;
[91], [92]), though the analysis might be more complex. If an
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EEG signal is recorded simultaneously with eye tracking
data, this can be analysed to infer periods of attentive viewing
as well [93], [94]. Recent technological advancements have
enabled simultaneous fMRI and eye tracking recording [10],
[95], which could open the next frontier for analysing atten-
tion allocation with the help of brain imaging.

Directly tying together pursuit, saliency, and brain activity,
albeit with synthetic stimuli and single-neuron recordings,
[96] examined neuron spiking in monkeys, comparing the
extent to which different regions in the brain encode visual
saliency (in a low-level sense). Generalising such conclusions
to more naturalistic [97] and realistic visual stimuli would
require a better method to analyse naturally occurring smooth
pursuit, and could further our understanding of what exactly
contemporary saliency models learn.

VIl. CONCLUSION

In this paper, we introduced the concept of supersaliency
— smooth pursuit-based attention prediction. We argue that
pursuit exhibits properties that set it apart from fixations in
terms of perception and behavioural consequences, and that
predicting smooth pursuit should thus be studied separately
from fixation prediction. To this end, we provide our pipeline
and the ground truth for saliency and supersaliency problems
for the large-scale Hollywood2, as well as for the man-
ually annotated GazeCom at https://gin.g-node.
org/MikhailStartsev/supersaliency.

To better understand a model’s behaviour on supersaliency
data, we introduced the cross-AUC metric that assesses
an algorithm’s preference for pursuit vs. fixation locations,
thus describing its ability to distinguish between the two.
Whereas the human data showed that there are clear system-
atic differences between the two target types, it remains an
open question how to reliably capture these differences with
video-based saliency models.

Finally, we proposed and evaluated a deep saliency model
with the slicing CNN architecture, which we trained for both
smooth pursuit and fixation-based attention prediction. In
both settings, our model outperformed all 26 tested dynamic
reference models. Importantly, training for supersaliency
yielded better results even for traditional fixation-based
saliency prediction on two additional independent data sets.
The same trend was observed with an additionally intro-
duced deep end-to-end saliency model, further validating our
conclusions that supersaliency demonstrates better general-
isability. These findings demonstrate the potential of smooth
pursuit modelling and prediction.
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