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ABSTRACT Liquid rocket engines (LREs) are the main propulsive devices of launch vehicles. Due to the
complex structures and extreme working environments, LREs are also the components prone to failure. It is
of great engineering significance to develop fault detection technologies which can detect fault symptoms
in time and provide criteria for further fault diagnosis and control measures to avoid serious consequences
during both the ground tests and flight missions. This paper presents a novel fault detection method based
on convolutional auto-encoder (CAE) and one-class support vector machine (OCSVM) for the steady-state
process of LREs. We train the CAEs by normal ground hot-fire test data of a certain type of large LRE
for automatic feature extraction. Then the obtained features are used to train the OCSVMs to accomplish
the fault detection task. The results demonstrate that the proposed method outperforms traditional redline
system (RS), adaptive threshold algorithm (ATA), and back-propagation neural network (BPNN). We also
study the effect of sample sizes and domain knowledge on the performance of the proposed method. The
results suggest that appropriate measures that enrich the effective information content in the training data,
such as increasing sample size and introducing domain knowledge, can further improve the performance of
the proposed fault detection method.

INDEX TERMS Convolutional auto-encoder, one-class support vector machine, liquid rocket engine,

steady-state process, fault detection.

I. INTRODUCTION

As an irreplaceable propulsive device, the liquid rocket
engine (LRE) is one of the most critical components of the
launch vehicle. The complex structures and extreme working
environments make LREs the most vulnerable subassemblies
and prone to failure [1]. Since the 1960s, with the develop-
ment of major projects with milestone significance, such as
manned moon landings and space shuttles, more attention
has been paid to the reliability and security of LREs [2], [3].
Currently, health monitoring technology has become one of
the important and effective means to ensure the safe and
reliable operation of LREs. And the fault detection theories
and methods, as the basis of health monitoring, have always
been the research focus in this field [4].
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At present, fault detection algorithms for LREs can basi-
cally be classified into the threshold detection methods,
whose key research contents are the generation of monitoring
indicators and the determination of thresholds, among which
the former mainly includes the methods based on mathemat-
ical model and signal processing, and the latter generally
relies on expertise and engineering experience. Meanwhile,
with the development of data mining and machine learning
(ML), related fault detection algorithms are also emerging
[5]-[9]. However, almost all the above methods need the
selection of monitoring parameters and the extraction of
artificial designed fault features from the original data to
effectively characterize the engine faults, which is usually
time-consuming, labor-intensive, less portable, and highly
depend on domain knowledge [10].

Since proposed by Hinton and Salakhutdinov [11] and
Hinton et al. [12] in 2006, deep learning (DL) has got much
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attention and been widely studied in many fields, such as
science, business, and government [13]. Many breakthroughs
have been achieved with the help of DL in various tasks,
e.g., image recognition [14], [15], speech recognition [16]
and natural language processing [17], [18]. In recent years,
the significant advantages of DL in automatic feature extrac-
tion of high-dimensional data have gradually attracted the
attention of the community of system health monitoring
(SHM). Though some attempts have been made [19]-[23],
the research of DL in SHM is still preliminary. Most of
the studies focus on the fault detection, diagnosis and per-
formance degradation assessment of some critical compo-
nents, e.g., bearings and gearboxes [24]. There is little
applied research on DL for the health monitoring of complex
systems, especially in the aerospace industry. Cortes and
Rabelo [25] conducted a preliminary study on the architecture
for monitoring and anomaly detection for space systems,
which planned to incorporate more advanced algorithms for
anomaly detection as well as new algorithms based on DL.
Yan and Qu [26] introduced stacked denoising auto-encoders
to solve the aero-engine sensor fault diagnosis problem. Miao
et al. [27] established a method based on deep long short-
term memory (LSTM) networks for joint learning of degrada-
tion assessment and remaining useful life prediction of aero-
engines. Wu et al. [28] put forward a method based on the
deep belief network (DBN) for aero-engine condition moni-
toring. The demonstration was carried out on the maintenance
data of CF6-80C2AS5 civil aircraft engines. Che et al. [29]
proposed a DBN-based aero-engine fault fusion diagnosis
model and validated its effectiveness by the simulation data
of the Pratt & Whitney JT9D-74R engine. Liu and Li [30]
provided a brief introduction to the research progress made
by the United Technologies Corporation (UTC) in the use
of DBN for aero-engine fault prediction. As far as we know,
there has been no published literature on the DL application
to the health monitoring of LREs.

One-class classification (OCC) algorithms are commonly
used in areas such as outlier/novelty detection and concept
learning, where the negative class is either absent, poorly
sampled or not well defined [31]. Among them, methods
based on one-class support vector machine (OCSVM) are
noticeable and have shown great potential in fault detec-
tion. Sarmiento et al. [32] proposed a method based on
OCSVM and principal component analysis (PCA) to detect
faults in reactive ion etching systems through optical emis-
sion spectroscopy data. Shin et al. [33] applied OCSVM
to fault detection and classification in electro-mechanical
machinery from vibration measurements and compared it
with multilayer perception (MLP). Results showed that the
performance of OCSVM with appropriate parameters was
superior to that of MLP. Mahadevan and Shah [34] realized
fault detection based on OCSVM and demonstrated its effec-
tiveness on the benchmark Tennessee Eastman problem and
an industrial real-time semiconductor etch process dataset.
Huang et al. [35] provided a method for mechanical fault
detection of high voltage circuit breakers based on OCSVM
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and wavelet time-frequency entropy (WTFE). Anaissi et al.
[36] adopted an OCSVM method with an automated param-
eter tuning algorithm for damage detection and demonstrated
its effectiveness by the successful implementation in sensing
data collected from the Sydney Harbour Bridge and vehicle-
mounted sensors. In these research work, the fault detection
process is usually assisted by certain feature extraction or
selection methods, such as PCA [32] and WTFE [35]. How-
ever, it often seems insufficient to base the feature extraction
on artificial design and expertise when facing an extremely
complex system whose physical and chemical processes are
too intricate to be fully understood.

The contribution of our work is twofold. First, we propose
a fault detection method for the steady-state process of LRE
based on convolutional auto-encoder (CAE) and OCSVM.
We use CAE to extract features from normal data automat-
ically, and train the OCSVM as the fault detector by the
extracted features. Then we integrate the well-trained CAE
and OCSVM to establish the fault detection method. The
effectiveness of the method is verified by the ground hot-fire
test data of a large LRE. Second, we elaborate on the effect
of sample sizes and domain knowledge on the fault detection
performance and conduct the comparative study with other
traditional methods.

The rest of the paper is organized as follows. We explain
the problem background in section 2, which is a brief
description of the LRE and the ground hot-fire test data.
Section 3 presents the preliminary knowledge about CAE and
OCSVM respectively. Section 4 gives details about the pro-
posed fault detection method for LRE steady-state process.
Section 5 reports the results and discussions. The conclusions
and future works are finally summarized in section 6.

Il. PROBLEM BACKGROUND
In this section, we give a brief introduction to the problem
background. First, the basic structure and operating principles
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FIGURE 1. Main structures and working process of the LRE. (D Gas
generator @ Fuel turbine ® Fuel pump @ Oxidizer turbine ® Oxidizer
pump © Turbine exhaust pipe @ Thrust chamber).

3145



IEEE Access

X. Zhu et al.: Steady-State Process Fault Detection for LREs Based on CAE and OCSVM

TABLE 1. Information of data from the 10 ground hot-fire tests.

Operating condition Test No. Remarks
Normal 01, 02,03, 04 _
05, 06,07, 08

During the LRE test, most of the monitoring parameters plunged around 42.5s. The LRE was shut down at

09 43.2s and the whole test was not complete. The post-analysis results showed that the machining residuals in
the pipeline blocked the venturi in the oxidizer subsystem, which led to the reduction of the oxidizer flow

Fault . ..

and the decrease of the operating condition.

10 Due to the failure of the fuel turbine end seal, the rotating speed of the fuel turbine exceeded the lower limit
during the test, leading to the automatic emergency shutdown.

TABLE 2. The selected parameters.

No. Parameter (Unit) Symbol | No. Parameter (Unit) Symbol
1 Inlet pressure of valve in front of fuel pump (MPa) Pivtp 12 Outlet pressure of fuel cooling jacket (MPa) Dofej
2 Inlet pressure ofvalv(eNi[rfl’ir)ont of oxidizer pump Pivop 13 Outlet pressure of oxidizer pump (MPa) Poop
3 Inlet pressure of oxidizer turbine (MPa) Diot 14 Outlet pressure of fuel pump (MPa) Dotp
4 Outlet pressure of fuel turbine (MPa) Dot 15 Inlet temperature of valve in front of fuel pump (K) Tivsp
5 Isolation chamber pressure of oxidizer turbine (MPa) Dicot 16 Temperature after fuel pump (K) Ty,
6 Inlet pressure of fuel turbine (MPa) Dt 17 | Inlet temperature of valve in front of oxidizer pump (K) Tvop
7 Chamber pressure of gas generator (MPa) Degq 18 Temperature after oxidizer pump (K) T,,
8 Thrust chamber pressure (MPa) Die 19 Fuel flow rate of LRE (kg/s) my
9 Fuel plenum pressure of gas generator (MPa) Ppgq 20 Oxidizer flow rate of LRE (kg/s) m,
10 Oxidizer plenum pressure of gas generator (MPa) Popag 21 Rotational speed of oxidizer turbine (rpm) n,,
11 Oxidizer plenum pressure of thrust chamber (MPa) Doptc 22 Rotational speed of fuel turbine (rpm) Ngy

of the LRE are described. Then an overview of the involved
ground hot-fire test data is given.

A. DESCRIPTION OF LIQUID ROCKET ENGINE

Fig. 1 shows the main structures and working process of a
large LRE with the gas generator cycle. The LRE mainly
comprises a gas generator, a fuel turbine, a fuel pump,
an oxidizer turbine, an oxidizer pump, a turbine exhaust pipe,
and a thrust chamber. The related propellant feed system
and control system are appropriately simplified to make the
schematic diagram more concise.

During the normal operation, a small amount of the pro-
pellant is fed into the gas generator and burnt into high-
temperature and high-pressure gas, driving both the fuel
and oxidizer turbopump components to pressurize the pro-
pellant main feedlines. Then the gas is emitted into the
atmosphere through the turbine exhaust pipe. Most of the pro-
pellant enters the thrust chamber to burn and generate thrust.
Wherein, the fuel cools the thrust chamber via cooling chan-
nels in the chamber wall before entering the thrust chamber.

B. DATA DESCRIPTION

The working conditions of simple components, such as bear-
ings, are more stable and the collected data usually have
better repeatability. While for LRE, some design details may
be improved during the whole test period, together with
the complex structures and numerous monitoring parame-
ters, leading to subtle differences and more uncertainties in
working conditions among different tests, which increases the

3146

difficulty of model training. On the other hand, it may help
us to obtain a model with better generalization performance,
so that the model is robust to some normal fluctuations of
working conditions within a certain range.

The data used here come from 10 ground hot-fire tests of a
large LRE, including the steady-state process data of 8 normal
tests and 2 fault tests with the sampling frequency of 50Hz.
The operating conditions and 22 parameters of the LRE tests
are detailed in the following Table 1 and Table 2.

Ill. PRELIMINARIES

In this section, we introduce some preliminary knowledge of
CAE and OCSVM, which are the basic components of the
proposed method.

A. CONVOLUTIONAL AUTO-ENCODER

CAE was first proposed by Masci et al. [37] in 2011 as
an unsupervised feature learning method. It can be regarded
as a special case of the traditional auto-encoder (AE) [38].
Traditional fully-connected AEs generally ignore the two-
dimension structure in the data, which not only causes prob-
lems when dealing with real data but also introduces a large
number of redundant parameters forcing each feature to be
global. While CAE’s weights are shared among all the posi-
tions of the whole input, just like the convolutional neural
network (CNN), which ensures the spatial locality of the
features and greatly reduces the number of parameters in
the network. Retaining the spacial information of the two-
dimension signals makes the extracted features more general.
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According to reference [37], for a single channel input
x, the encoding process for the k-th feature map can be
expressed as:

W = o (x « WK+ %) 1)

where £ is the encoding result, o is an activation function,
which means the rectified linear unit (ReLU) function here,
W is a weight matrix, % donates the convolution operation and
b is the bias.

The decoding process can be expressed as:

y = "(Zkeﬂ W« Wk 4 ¢) )

where y is the decoding result, H is the set of latent fea-
ture maps, W is the weight matrix, which can be obtained
by the flip operation over both dimensions of the weights
W or through training independently, and c is the bias.

The cost function to minimize is usually the mean squared
error (MSE), which is calculated by the input x; and its
reconstruction y; as following:

1
E@=—3 " G-y’ 3)

With the help of the backpropagation algorithm [39],
the gradient of the error function with respect to the parame-
ters can be obtained using the following formula:

JdE (0 -
BV{Ek) =x % ShK + HF % 8y %)

where 8h and 8y are the deltas of the hidden states and the
reconstruction. Then the weights can be updated by stochastic
gradient descent.

Thanks to the rapid development of various open-source
frameworks for DL, researchers do not need to pay too much
attention to the details of the algorithms and can implement
the DL algorithms quickly and accurately. The construction
and training of the CAE model here are completed with the
help of TensorFlow [40], [41], which is one of the most
popular open-source frameworks for ML and DL today.

B. ONE-CLASS SUPPORT VECTOR MACHINE

OCSVM was developed from the classical support vector
machine (SVM) and first proposed by Scholkopf et al. [42]
in2001. As a supervised method, SVM is originally designed
for binary classification problems, where both the well-
prepared positive and negative samples are required to obtain
the discriminating classifiers. In practice, counterexamples
are either rare, entirely unavailable or statistically unrepre-
sentative [43] in many cases, which motivates the develop-
ment of OCC methods.

For LRE fault detection, there are many difficulties in data
preparation, mainly involving the following three aspects.
Firstly, there are so many different types of faults because
of the complex structures and numerous components that it
is almost impossible to guarantee that all kinds of faults have
been included in one dataset. Secondly, due to the extreme
working conditions, the LRE faults always develop rapidly
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FIGURE 2. Principle diagram of OCSVM.

and probably lead to catastrophic consequences. Therefore,
researchers generally do not specially carry out fault exper-
iments. Thirdly, even if a fault occurs during the test, effec-
tive measures will be taken immediately, usually, shutdown,
to prevent the LRE from longstanding operation under fault
conditions and even leading to disastrous consequences. For
the above reasons, there are usually abundant data describing
the normal operation process, while abnormal cases are rare.
The inevitable data imbalance makes OCC methods suitable
to solve LRE fault detection problem.

The basic principle of OCSVM is depicted in Fig. 2. Only
normal data are used as training samples, which are mapped
by the kernel function into high-dimensional space. The ori-
gin is treated as the only abnormal sample point, so that there
is an optimal hyperplane that can separate the origin from the
training samples and maximize the interval.

For a given dataset Z = {zi};’zl ,Zi € R™, nis the size of the
training set. For a kernel function K (Zi, Zj) =¢ @) ¢ (Zj),
where ¢ is the mapping function, the decision function is
given by

[ @) =sgn(w-¢ () —p) (&)

where w is a perpendicular vector to the decision boundary
and p is the bias term, which can be derived from the follow-
ing optimization problem:

I U G
min EIIWII +E;&—p
subjecttow - ¢ (z;) = p —§i, & =0 (6)

here &; is a slack variable allowing points to violate the
boundary constraints, and v is a user-defined parameter to
control the ratio of anomalies in the training set.

To solve this problem, multipliers «;, §; > 0 are introduced

to construct a Lagrangian function as follows [42]:

1 1
L(w§ p,a. )= Iwl*+—3 & —p
=Y W ¢ —p+&)
— Bt )
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Set the partial derivatives of the primal variables to be zeros:

W= aip () ®)

: Zoz, =1 9)

o =——pi=—
With the help of the kernel function, the dual form of the
above optimization problem is as follows:

mlll - E OlOt] Zz,Z]

subject to 0 < «; 5 —

Za, =1 (10)

where K (z;,z) is usually the Gaussian kernel function,
which is as follows:

2
K (21, 2)) = exp (—%) (11)

where o is the width parameter of the Gaussian kernel func-
tion.

For a new point z,,, the decision function is obtained by
solving the dual problem:

n
f@=sen(Y 0K Gz —p)  (12)
where p can be calculated by the following formula:
p = aiK (2 z) (13)
i
More details can be found in the literature [42], [44].

IV. FAULT DETECTION METHOD FOR STEADY-STATE
PROCESS OF LIQUID ROCKET ENGINE

In this section, we develop a fault detection method consisting
of a CAE based feature extraction module and an OCSVM
based fault detection module for the LRE steady-state pro-
cess. In the following, we start by giving an outline of the
whole detection method, and then detail the various aspects
of it.

A. OUTLINE OF FAULT DETECTION METHOD

We propose a fault detection method based on CAE and
OCSVM for the steady-state process of a certain type of large
LRE. Here is the brief introduction of the method and the
details are described in the following parts.

As shown in Fig. 3, the LRE hot-fire test data are collected
by the data acquisition system and then split into samples
after preprocessing. The samples are divided into the training
set, validation set, and test set. The training process includes
two stages. In the first stage, unsupervised learning is utilized
to train the CAE for automatic data feature extraction. In the
second stage, the features of training set extracted by well-
trained CAE are fed into the OCSVM and semi-supervised
learning is performed to obtain the one-class classifier. The
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FIGURE 3. Flow diagram of the proposed fault detection method.

validation set is mainly used for the hyperparameter selec-
tion in both training stages. Finally, the prepared CAE and
OCSVM are connected to form the fault detection method.
The test set is used to demonstrate the validity and evaluate
the performance of the proposed fault detection method.

B. DATA PREPROCESSING

The LRE hot-fire test process can generally be divided into
the startup phase, the steady-state phase and the shutdown
phase. We only consider the steady-state phase here, so the
data of the other two phases in the original data are removed.
The data of the steady-state phase are preprocessed as fol-
lows.

1) SAMPLE SPLITTING METHOD

In the practical LRE test, the duration of each test is different,
resulting in different data lengths. Besides, the data collected
in one single test are too much to use directly. Therefore, the
raw data need to be split into samples with a smaller size for
further processing.

CAE aims to perform dimensionality reduction on data
during feature extraction. So, the sample size is generally
designed to be 2¢ or a multiple of 24, which usually helps
to improve the model performance. To explore the effect of
the sample sizes on the method performance, we construct
datasets with sample size 24 x 22, 48 x 22 and 96 x
22 respectively, where 24, 48 and 96 represent the number
of consecutive sampling points in each sample, and 22 rep-
resents the number of parameters. Samples are obtained with
the overlap strategy [45], as shown in Fig. 4. The shift is set
to 1, which means that two contiguous samples differ by only
one sampling point, which is 0.02s.

2) ZERO PADDING
As mentioned before, the size of the samples prefers 2¢ or the
multiple of 2¢. So, we add a column of zeros on each side of
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FIGURE 4. Schematic diagram of the sample splitting method with
overlap strategy.

the sample, namely zero padding, which makes the sample
size 24 x 24,48 x 24 and 96 x 24 respectively.

Zero padding is a small trick frequently used in CNNs to
adjust the sample to an appropriate size. Because the values of
padding are all zeros, no noise is introduced into the original
data.

3) NORMALIZATION

The sample data contain four types of parameters, including
pressure, temperature, mass flow and rotating speed, with
different orders of magnitude from 10~! to 10%. It is neces-
sary to standardize the samples of the raw data. The z-score
normalization [46] is adopted to ensure the same influence of
different parameters on the feature extraction process and the
reliability of the obtained features.

Z-score normalization, also called standardization, is a
classic normalization method to transform the feature com-
ponent x to x’, which is a centered, scaled version of x with
the same size, zero mean and unit variance.

y=""F (14)

o

where @ and o are the mean and standard deviation of
that feature respectively. For matrix, z-score normalization is
computed using the mean and standard deviation along each
column of the matrix.

It is worth noting that the mean and the standard deviation
taken from the training set are used to preprocess all the
samples in the training set, the validation set, and the test set,
to avoid introducing information from the test set during the
training process.

4) SPLITTING STRATEGY FOR DATASETS

For LRE fault detection, the continuity criterion is usually
introduced to reduce the false alarm rate and improve the
robustness of the algorithm, that is, a failure is considered
to occur when the method alarms three times successively.
The disorder of samples and the random division of datasets
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FIGURE 5. Distribution of samples in different datasets.

will make it difficult to judge whether a fault has occurred.
Therefore, the last 10% of the continuous samples from the
8 normal LRE tests are divided into the test set along with
the samples from 2 fault LRE tests. Another 10% of the
continuous samples of the normal LRE tests are chosen as
the validation set and the remaining samples of the normal
LRE tests constitute the training set. As in Fig. 5, the bar
diagram shows the distribution of samples from LRE tests
in different datasets. The lengths of the bar represent the
numbers of samples and three different colors represent the
training set, the validation set, and the test set, respectively.
The exact numbers of samples included in each dataset are
listed in Table 3.

C. FEATURE EXTRACTION BY CONVOLUTIONAL
AUTO-ENCODER

Take the sample size of 96 x 24 as an example, the CAE built
here uses a typical symmetric structure consisting of a coding
process with 5 convolutional layers and a decoding process
with 5 deconvolutional layers, as shown in Fig. 6. During a
sample flows through the CAE, the original sample with the
size of 96 x 24 is converted to the automatically extracted
feature with the size of 3 x 3 x 16 through 5 coding layers,
and then restored to an output with the same size of input via
5 decoding layers. The MSE is used to measure the deviation
between the input and the output. After the unsupervised
learning process, a3 x 3 x 16 feature matrix can be extracted
automatically by the well-trained CAE, which can be further
reshaped into a 144-dimension feature vector as the input of
the OCSVM.

The specific structures of the CAEs adopted for different
input sizes are listed in Table 4. Some adjustments are made
to the first two coding layers and the last two decoding layers
to adapt to different sizes, and the network structures of the

TABLE 3. Number of samples in different datasets.

Training set Validation set Test set
Number of samples 143126 17908 32476
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Input
96-24-1

6:6-:12

Encoding Process

FIGURE 6. Architecture of the CAE with 96 x 24 input.

TABLE 4. Dimensions of each layer of the CAE with different input sizes.

Layers Dimensions
Input 24x24x1 48x24x%1 96x24x%1
Encode 1 24x24x2 48%24x2 48%24%2
Encode 2 12x12%4 24x12%4 24x12%4
Encode 3 12x12%8 12x12%8 12x12x8
Encode 4 6x6x12 6x6x12 6x6x12
Data features 3x3x16 3x3x16 3x3x16
Decode 1 6x6x12 6x6x12 6x6x12
Decode 2 12x12%8 12x12%8 12x12x8
Decode 3 12x12%4 24x12x4 24x12%4
Decode 4 24x24x2 48%24x%2 48x24x%2
Output 24x24x1 48x24x1 96x24x1

other parts are identical. The size of all convolution kernels
is 3 x 3, and the activation functions are ReLLU functions in
all CAEs.

D. FAULT DETECTION BASED ON ONE-CLASS SUPPORT
VECTOR MACHINE

The OCSVM with the Gaussian kernel function is trained
by the features extracted by CAE from the training set, and
the optimal hyperparameters are obtained with the help of
the validation set and grid search method. Finally, the well-
trained CAE and OCSVM are connected in series as the
steady-state process fault detection method. The detection
result is normal (no fault occurs) with the output +1, and
an alarm is raised with the output —1. It is considered that a
fault does occur when the detection method sends out alarms
3 times successively.

E. EVALUATION INDICATORS OF METHOD PERFORMANCE
For fault detection and diagnosis of simple components,
as well as traditional image classification, the labels of the
samples are usually known and definite. Even the samples
in the test set have definite labels. Therefore, the test data
can be used to quantitatively evaluate the performance of
the detection or classification methods by some general
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indicators, such as precision, recall and F-measure [47].
For example, motor bearings were seeded with faults using
electro-discharge machining (EDM) in the most widely
used seeded fault test data provided by the Bearing Data
Center of the Case Western Reserve University. However,
the situation may be much more complicated in practical
applications.

For LRE fault detection, the most important task is to
detect the anomalies and faults occurring during the opera-
tion process as early as possible without false alarms. The
redline system (RS), whose basic principle is to monitor
whether some important operating parameters exceed the
pre-determined limits or thresholds [8], is usually used as a
benchmark method to judge the performance of the proposed
method. It is generally believed that the LRE has failed when
the RS issues an alarm. However, most of the faults do not
occur suddenly. In general, the fault symptoms probably have
appeared before the monitoring parameters exceed the thresh-
olds. But we cannot accurately confirm from which moment
the LRE has started to behave abnormally. Especially in the
early stage of some soft faults, it may be difficult to distin-
guish the fault symptoms from the performance fluctuations
and environmental noise. In this case, the labels of samples
that come from the hot-fire test with fault are unidentified,
especially for the samples from the period before the RS
alarms. So, the mentioned commonly used evaluation indi-
cators are inapplicable here.

Therefore, all the samples from the hot-fire tests occurring
faults are divided into the test set. Meanwhile, about 10% of
the samples from the normal tests are put into the test set.
Two evaluation indicators are involved here. The qualitative
indicator is whether a false alarm is issued on the normal data,
and the quantitative one is the alarm time, which is certainly
the earlier the better, on the data from the hot-fire tests with
fault. The ideal result is that the proposed method does not
cause false alarms on the normal data, and can detect faults
on the data of fault tests as early as possible.
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V. RESULTS AND DISCUSSIONS

To demonstrate its effectiveness, we compare the fault detec-
tion results of the proposed method with that of the red-
line system (RS), adaptive threshold algorithm (ATA) [48]
and back-propagation neural network (BPNN) [49]. We also
investigate the effect of sample sizes and domain knowledge
on the performance of the proposed method. All experi-
ments are run on NVIDIA GeForce GTX 750Ti 2 GB and
the Microsoft Windows 7 operating system. The program-
ming language is Python 3.5. The deep learning library
is TensorFlow-gpu 1.4 and the machine learning library is
scikit-learn 0.20.3.

A. MODEL TRAINING

The training process is critical and directly related to the
performance of the method. Therefore, it is necessary to fur-
ther detail the training process to make the proposed method
clearer.

1) CAE TRAINING

The weights are initialized by the Xavier algorithm [50]
which can help to keep the activation values and back-
propagated gradient values in a reasonable range. Minibatch
gradient descent [51] and Adam [52] are applied compre-
hensively to minimize the reconstruction error, namely the
MSE. In minibatch gradient descent, the error with respect
to some subset of the total training set is computed and used
in the backpropagation, which strikes a balance between the
efficiency and robustness of the algorithm. While vanilla
mini-batch gradient descent is susceptible to saddle points
and ill-conditioning. Adam, a first-order gradient-based opti-
mization algorithm, can effectively overcome the mentioned
shortcomings and has the advantages of high computational
efficiency, little memory requirements and invariance to gra-
dient diagonal rescaling. L? regularization [53], the most
common used regularization method, is applied to improve
the generalization performance of the model by encouraging
the sum of the squares of the parameters to be small. The
hyperparameters, such as initial learning rate and regulariza-
tion rate, are selected with the help of the random search
strategy [54] and determined when the set of hyperparameters
minimizes the loss on the validation set.

Take the dataset with the sample size of 24 x 24 as an
example, the loss curves of the CAE training process with
optimal hyperparameters are depicted in Fig. 7. It can be
seen that the losses on both the training set and validation set
drop rapidly with the increase of training epochs in the early
stage of the training process. After 1000 epochs of training,
the losses are gradually stable and the training process can be
stopped.

2) OCSVM TRAINING

OCSVM is established and trained with the help of the
OneClassSVM function in scikit-learn toolkit [55]. The grid
search strategy is used for the optimization of two critical
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FIGURE 7. Loss curves of the CAE training process.

hyperparameters, namely the gamma and nu. The former,
gamma, is a parameter in the Gaussian kernel function, which
determines the distribution of data after mapping to a new
feature space. It also affects the number of support vectors
and further affects the speed of training and prediction. nu
indicates the upper bound on the fraction of training errors
and a lower bound of the fraction of support vectors.

Fig. 8 shows the variation of training results with the two
hyperparameters, gamma and nu. Logarithmic transforma-
tion is done to the hyperparameters and the training results,
namely the number of false negatives, to make the trends
clearer. As can be seen in Fig. 8(a) and (b), OCSVM can
get better results on the validation set within a relatively
wide range of nu when gamma is small. While in the ideal
situation, we expect that OCSVM can perform well on both
the validation set and the training set. In combination with
Fig. 8(c) and (d), the choices of hyperparameters are limited
in a narrow range when the number of false negatives is
required to be small enough on the training set as well.
In fact, the hyperparameters are probably can be selected
from the yellow dashed area in Fig. 8(d). Further, we prefer
to choose a hyperparameter combination with a larger gamma
which usually means better generalization performance. The
hyperparameter selections for all experiments in this paper
follow such procedures and guidelines.

B. EXPERIMENT RESULTS

In this section, two sets of experiments are designed and
discussed to study the influence of sample sizes and domain
knowledge on fault detection results.

1) EFFECT OF SAMPLE SIZES

Since the number of monitoring parameters are fixed,
the sample size here refers to the sample length. Three cases
with sample lengths of 24, 48 and 96 are discussed, which
means that 24, 48 and 96 consecutive sampling points are
included in the samples of each case. Considering that the
acquisition frequency is 5S0Hz, samples in three cases contain
information collected within 0.48s, 0.96s and 1.92s respec-
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FIGURE 8. Training results with different hyperparameters.

tively. Intuitively, a larger sample size means that a single
sample contains more information, which should lead to bet-
ter detection performance.
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FIGURE 9. Detection results of Test09.

The sample to be detected is fed into the model and the
detection results can be directly output. According to the
continuity criterion, three consecutive output of —1 indicates
that the system is in a failure mode. Results show that the
method can achieve no false alarms on normal data by rea-
sonably selecting the hyperparameters. The following mainly
discusses the detection results of the 2 fault test runs.

The detection results are shown in Fig. 9 and Fig. 10.
For Test09, the detection method alarms at 42.74s when the
sample length is 24. As the sample length increases, all the
samples from the steady process of Test 09 are judged as -
1, which can be seen in Fig. 9(b) and (c). It means that the
fault is detected at the very beginning of the LRE steady-state
process. From Table 1, we know that the fault was caused by
the machining residual in the pipeline, which was probably
produced during the stage of machining or assembling. So,
the residual was probably to have been in the pipeline from
the beginning, not generated in the middle of the test run.
At the start of the hot-fire test, the dispersed residual could
only have a limited impact on certain parameters. However,
as the test ran, the residual might flow with the propellant
and gather together at specific locations (here, the venturi),
causing more serious problems (here, the venturi was blocked
and the working conditions declined rapidly). For Test10,
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FIGURE 10. Detection results of Test10.

the longer the sample length is, the earlier the fault is detected.
Especially when the sample length is 96, the detection time
is advanced about 2 seconds, which is a great improvement
for LRE fault detection. It is worth noting that, as can be
seen from Fig. 10(c), the outputs become +1 after the 273.6s
alarm, and the detection method alarms again at 275.52s. This
indicates that the incipient fault has a limited influence on the
system performance and some fluctuations may be caused on
some parameters around the normal range. However, as the
fault develops, the fault characteristics become more and
more obvious, and the detection results are more definite and
stable.

In general, as the sample size increases, the detection
method greatly enhances the fault detection capability during
the test run.

When compared with the previous methods, such as RS,
ATA, and BPNN, the proposed method can achieve at least
comparable results, as shown in Table 5 and Fig. 11. With the
increase of the sample length, the advantages of the proposed
method gradually emerge, and there is a significant advance
in the fault detection time.

2) EFFECT OF DOMAIN KNOWLEDGE
We also study the influence of domain knowledge on the per-
formance of the detection method. Domain knowledge here
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TABLE 5. Comparison of fault detection results.

Test CAE-ISVM
I\?s RS ATA BPNN | with different sample lengths
) 24 48 96

01 43.21 42.8 42.8 42.74 10.04 10.04
02 275.80 275.5 275.8 275.8 275.6 273.6

refers to some simple knowledge about the LRE structure.
Specifically, the data collected by different sensors is rear-
ranged according to the relationship between the monitoring
parameters and LRE structures. Generally, the degree of cou-
pling among parameters is higher when these parameters have
closer relationships in structure. So, the general principle is to
put parameters belonging to the same components or subsys-
tems together according to the LRE structural composition,
namely the domain knowledge.

The process of parameter rearrangement mainly follows
three principles. Firstly, the parameters belonging to the
same components are put together, as shown in Fig. 12.
Secondly, the parameters collected along the fuel or oxidizer
flow path are put together. Thirdly, the parameter order is
consistent with the structural and logical relationships among
the parameters. For example, the inlet parameters of the same
components are arranged in front of the outlet parameters,
the turbine parameters are arranged in front of the pump
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TABLE 6. Rearrangement results of 22 parameters.

Initial Order Rearrangement Results
No. Parameter No. Parameter
1 Pivfp 1 Popgg
2 Pivop 2 Prpgg
3 Diot 3 pcg g
4 Port 4 Dift
5 DPicot 5 Do ft
6 Pife 6 Ny
7 pcgg 7 Piv fpr
8 Dtc 8 Tiv o
9 Prpgg 9 Port
10 Povngg 10 Ty
11 pop tc 11 Po fcj
12 Pofcj 12 s
13 poop 13 Diot
14 Po fr 14 Dicot
15 Tiwsp 15 Mot
16 Tfp 16 pi,,op
17 Tivap 17 Tivop
18 Top 18 Poop
19 e 19 Top
20 m, 20 m,
21 Mot 21 Poptc
22 Ny 22 Dec

parameters, and so on. The final rearrangement results are
listed in Table 6.

The detection results are illustrated in Fig. 13 and 14,
and the effect of domain knowledge is depicted in Fig. 15.
For Test09, the detection method sends an alarm at 42.64s
when the sample length is 24, which is slightly improved by
0.1s than that without domain knowledge. When the sample
length increases, the detection method outputs —1 during the
whole detection process. For Test10, when the sample length
is 24 and 48, the fault is detected at 275.64s and 275.58s
respectively, which shows slight improvement compared to
the cases without domain knowledge. The fault is detected
for the first time at 162.68s with sample length 96. It is more
than 100s ahead of that without domain knowledge (273.6s),
which can be considered as a significant improvement. Dur-
ing the entire detection process, it is a remarkable fact that
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FIGURE 13. Detection results of Test09 with domain knowledge.

the detection results transition repeatedly between fault and
normal states, and the detection results are stable to the fault
state until 273.38s. A similar situation occurs without domain
knowledge, but not so obvious, as indicated in Fig. 10(c).
It can be seen that the introduction of domain knowledge
significantly improves the sensitivity of the proposed method
to incipient faults.

C. DISCUSSIONS

The proposed CAE-1SVM method can effectively realize the
fault detection of LRE, and can meet the timeliness require-
ment. Compared with the traditional RS, ATA, and BPNN,
the new method can achieve at least comparable or, in most
cases, better results.

Samples with longer length contain more information
about the LRE operation status. The introduction of domain
knowledge also enriches the information content. Both con-
tribute to the improvement of the detection performance.
In addition to the advancement of detection time, several
other advantages need further explanation.

1) Better anti-noise performance. The proposed method
is more concise in data preprocessing, and no spe-
cial measures are needed to denoise the original data.
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FIGURE 14. Detection results of Test10 with domain knowledge.

The LRE working conditions are usually extreme and
complex so that a large amount of noise is inevitably
introduced to the monitoring system. Two normal-
ized parameter fragments are taken from the original
data of Test04 and TestO7 respectively and depicted
in Fig. 16 and Fig. 17. A lot of noise exists in the
data, and occasionally there are even some invalid data
points with a value of O as shown. The traditional
approaches usually use filters to denoise data, or some
artificially designed algorithms to remove coarse errors
in the data [49]. Mainly thanks to the CAE based auto-
matic feature extraction method, the proposed method
is more robust to noise and accidental errors, so that it
is not necessary to take special denoising measures for
the original data.

2) Better generalization performance. As mentioned,
the working conditions of any two hot-fire tests cannot
be exactly the same, which leads to higher require-
ments on the generalization performance of the fault
detection method. The results show that the proposed
CAE-1SVM method can effectively extract common
features from normal data of multiple test runs and
realize the fault detection of new test runs. However,
previous methods, such as the mentioned RS, ATA, and
BPNN, generally come down to the threshold judgment
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problem. It is usually necessary to make appropriate
adjustments to some key parameters, such as the posi-
tion and the bandwidth of the thresholds, to meet the
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timeliness of fault detection and avoid false alarms
when facing new working conditions, which weakens
the generalization performance of these methods to
some extent.

VI. CONCLUSION AND FUTURE WORKS
This paper proposes a fault detection method combining con-
volution auto-encoder and one-class support vector machine
for liquid rocket engine steady-state process. The automatic
feature extraction is performed by the convolution auto-
encoder. The fault detection is realized by the one-class
support vector machine fed by the extracted features. To the
best of our knowledge, this is the first time to apply deep
learning methods in the field of fault detection for large liquid
rocket engines. The effectiveness of the proposed method is
validated by the real data collected from the ground hot-fire
tests of the large liquid rocket engine, and its performance is
compared with that of the redline system, adaptive threshold
algorithm, and back-propagation neural network. Results
show that the proposed method can effectively detect faults
without false alarms and meet the timeliness requirements.
The effect of sample sizes and domain knowledge on the
performance of the proposed method is also discussed. The
results suggest that both the longer sample length and the
introduction of domain knowledge can help improve the per-
formance of liquid rocket engine fault detection, especially
for the incipient fault detection. Some other advantages of
the proposed method are also discussed further.

This work is only a preliminary attempt for the application
of deep learning in the field of liquid rocket engine fault
detection. There is still much room for improvement.

1) The network scale of the deep learning model is much
larger than the traditional machine learning methods
because of more training parameters and hyperparame-
ters. Therefore, higher requirements on hardware con-
ditions and computing methods are put forward for the
method training and operation. With the rapid devel-
opment of related theories, methods, and hardware for
deep learning, these issues are expected to be resolved
in the near future, especially for the liquid rocket engine
ground tests and post off-line analysis.

2) The convolutional auto-encoder and one-class support
vector machine in the proposed method are training
respectively, which may lead to the mismatch between
the feature extraction process and the need for fault
detection. The advantages of deep learning methods
are not fully utilized. The joint optimization of the
feature extraction and the fault detection process is also
a valuable research direction.

3) The proposed method cannot start to function until the
liquid rocket engine runs into the steady-state process
for a short period of time, because the input of the
method needs data collected within a certain period of
time. It results in a short gap period at the beginning of
the steady-state stage of the LRE operation. The com-
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bined utilization of traditional and DL based methods
can effectively alleviate this problem.

In summary, the proposed fault detection method for LRE
steady-state process is effective. Meanwhile, we believe that
this is just the beginning and there is still a lot of room for
improvement, which is worth further exploration.
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