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ABSTRACT The paper involves the distributed robust adaptive learning coordination control for high-
order nonlinear multi-agent systems, where the leader has nonzero input and followers are subject to input
saturation. To solve the problem, two initial assumptions concerning initial state learning and alignment
initial condition are introduced, and the distributed learning protocols as well as parameter adaptive laws
are designed. It should be noted that the protocols proposed under initial state learning containing the global
information are not fully distributed, while the fully distributed protocols can be obtained by the alignment
initial condition. Through the rigorous analysis, it is proved that each follower can perfectly track the leader
on a finite time interval under both two assumptions. Then, the consensus results under the alignment
initial condition are generalized to formation control and two simulation examples verify the correctness
and feasibility of the proposed algorithms.

INDEX TERMS Adaptive coordination control, iterative learning control, high-order nonlinear multi-agent
systems, input saturation.

I. INTRODUCTION
Over the past several tens of years, great progress has been
made in multi-agent systems (MASs) coordination control,
and scholars investigated the coordination control from dif-
ferent perspectives [1], [2]. As a basic and significant issue in
coordination control, the consensus has gained much atten-
tion from the control community [3], [4], especially the
leader-follower consensus [5], [6] or consensus tracking [7]
which refers to that followers can track a leader in a dis-
tributed fashion. Whereas in earlier researches [1], [3] and
[4], the coupling gains and spectra of graph matrix must
meet some extra requirements, which contained the global
information and did not fully utilize the distributed charac-
teristics of MASs. In order to harness the drawback, some
researchers applied the adaptive control scheme to design
the fully distributed control protocols [8]–[10], where input
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saturation (IS) was not considered. Actually, most physical
systemsmay subject to IS as the capability of actuators is lim-
ited, and this saturated nonlinearity can cause the instability
or damage the control systems performance. Hence, it is more
practical to take into account IS in the analysis of systems.
Fortunately, many efforts have been done regarding MASs
with IS [11]–[13].

However, above literatures were implemented when time
goes to infinity. If a high precision is needed for the dis-
tributed coordination of the MASs with IS from a limited
time horizon, those documents are invalid. Iterative learning
control (ILC) is an effective approach to realize accurate
tracking performance under the repetitive environment [14],
[15]. ILC for an individual system, [16] designed an ILC
algorithm for the uncertain nonlinear systems having IS, and
[17]–[19] proposed the adaptive ILC method for non-linearly
parameterised systems having IS. Nevertheless, the results
of [16]–[19] having IS were performed under the identical
initial conditions (i.i.c) [20] which was a rigorous condition
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and may not be realized in practice. In addition, until now,
ILC has been extensively used to study MASs without IS
[21]–[23] for first- and second-order MASs and [24]–[26] for
high-order nonlinear MASs (HON-MASs), where [21]–[25]
were performed under the alignment initial condition (a.i.c)
(a more practical initial condition), whereas [26] assumed the
initial state learning containing the global information, and
[27] investigated the first-order MASs with IS using a.i.c.

Consequently, based on the aforementioned discussions,
it is highly desirable for us to dispose for the distributed robust
adaptive learning control (DRALC) problem of HON-MASs
with IS by initial state learning and a.i.c. The difficulty lies in
how to construct an appropriate Lyapunov-Krasvoskii func-
tional and deal with input saturation in order to obtain the
fully distributed protocols with filter errors in the framework
of ILC. In this paper, we put forward the DRALC algorithms
for HON-MASs with IS under initial state learning as well
as a.i.c. The nonzero input of the leader is considered. Since
the assumption of initial state learning depends on the global
information, the protocols on this occasion are not fully dis-
tributed. While the fully distributed protocols can be gained
under a.i.c. Through analyzing rigorously, the followers can
exactly follow the leader within a limited time interval. Then,
the consensus results under a.i.c are extended to formation
control. The major highlights fall into three folds.

(1) Different from [11]–[13] for MASs with IS, the perfect
consensus tracking can be achieved on a limited time horizon.

(2) Although there exist many existing literatures on IS
in ILC frame, most of them including [16]–[19] were for
an individual system and under the i.i.c. This paper is first
research on theDRALCprotocols for the HON-MASs having
IS under the initial state learning and a.i.c.

(3) We present a new approach to deal with IS in
HON-MASs, which is unlike the work on ILC-based MASs
without IS [21]–[26].Moreover, in themost relevant literature
[26], it should be noted that the fuzzy approximation tech-
nique was applied to approximate the unknown functions in
the dynamics of followers and the parameter γ in initial state
learningmust satisfy Lemma 2 containing the global informa-
tion related to the topology structure. Therefore, the protocols
designed in [26] were not fully distributed. Nevertheless,
to obtain the fully DRALC consensus protocols, the assump-
tion on initial state learning of this paper is changed into
the a.i.c and the fully distributed formation control is also
investigated.

The rest is displayed as the following. Section 2 states pre-
liminaries and problem formulation. Section 3 demonstrates
the DRALC consensus protocols design and Section 4 is the
extension to formation control under a.i.c. Two simulation
examples are offered in Section 5 and conclusion is given in
Section 6.

II. PRELIMINARIES AND PROBLEM DESCRIPTION
A. PRELIMINARIES
Let G = (V ,E,A) denote an undirected graph, where V =
{v1, · · · , vS} is the set of vertices and E ⊆ V × V is the set

of edges. A = [aij] ∈ RS×S is the weighted adjacency matrix
of the graph G. If there is an edge between agents i and j, that
is,
(
vj, vi

)
∈ E , then aij = aji > 0, otherwise aij = aji = 0.

Moreover, we assume that aii = 0. The set of neighbors of
vi is Si = {vj :

(
vj, vi

)
∈ E}. The Laplacian matrix of G is

L = D−A, whereD = diag{d1, · · · , dS}with di =
∑S

j=1 aij.
A path is a sequence of connected edges in a graph. For the
undirected graph G, the adjacency matrix A is symmetric and
the graph G is connected if there is a path between any two
vertices.

In what follows, we mainly consider Ḡ associated with
the system consisting of S agents whose topology graph is
denoted by G and one leader (labeled as 0). Let b̄i denote the
connection weight between the agent i and the leader. If the
ith agent can obtain information from the leader, then b̄i > 0,
otherwise b̄i = 0. It is obvious thatH = L+B is a symmetric
matrix associated with Ḡ, where B = diag{b̄1, · · · , b̄n}.
Lemma 1 [27]: If the graph Ḡ is connected, then the

symmetric matrix H associated with Ḡ is positive definite.

B. PROBLEM DESCRIPTION
During the kth loop, the dynamics of ith follower are gov-
erned by{

ẋki,s = xki,s+1, s = 1, 2, . . . , n− 1,
ẋki,s = η(x̄

k
i , t)+ sat(u

k
i , u
∗),

(1)

where s = n, i = 1, 2, . . . S; x̄ki = [xki,1, x
k
i,2, . . . , x

k
i,n] ∈ R

n

and uki ∈ R are the states and control input of ith follower,
respectively; η(x̄ki , t) : R

n
× R+ → R is an unknown

time-varying Lipschitz continuously differentiable function
in x̄ki (t), and piecewise continuous in t; sat(uki , u

∗) is a satu-
ration function defined in [16].

Let xks = [xk1,s, x
k
2,s, . . . , x

k
S,s]

T , then the MASs (1) can be
written as{

ẋks = xks+1, s = 1, 2, . . . , n− 1,
ẋkn = η(x

k , t)+ ũk , s = n,
(2)

where η(xk , t) = [η(x̄k1 , t), η(x̄
k
2 , t), . . . , η(x̄

k
S , t)]

T
∈ RS ,

and ũk (t) = [ũk1, ũ
k
2, . . . , ũ

k
S ]
T
∈ RS with ũki = sat(uki , u

∗).
Assumption 1: There exist constants ls > 0 (s =

1, 2, . . . , n) which makes

|η(xs, t)− η(ys, t)| ≤
n∑
s=1

ls |xs − ys| ,

for all xs ∈ Rn and ys ∈ Rn.
The dynamics of the leader are{

ẋ0,s = x0,s+1, s = 1, 2, . . . , n− 1,
ẋ0,n = η(x0, t)+ u0, s = n,

(3)

where x0 = [x0,1, x0,2, . . . , x0,n]T ∈ Rn, u0 ∈ R are the states
and control input of the leader with |u0| ≤ u∗.
Denote the consensus errors as

δki,s(t) = xki,s(t)− x0,s(t), (4)
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and the vector form is

δks (t) = xks (t)− 1Sx0,s(t), (5)

where δks (t) = [δk1,s(t), δ
k
2,s(t), . . . , δ

k
S,s(t)]

T
∈ RS ,

xks (t) = [xk1,s(t), x
k
2,s(t), . . . , x

k
S,s(t)]

T
∈ RS and 1S =

[1, 1, . . . , 1]T ∈ RS .
The ultimate aim of this paper is to find the proper proto-

cols uki for k ∈ Z
+, ∀t ∈ [0,T ] and i = 1, 2, . . . , S, which

can make each follower track the leader exactly on [0,T ]
along the iteration axis, that is, the perfect consensus tracking
is realized, lim

k→∞
δks = 0, ∀t ∈ [0,T ] and s = 1, 2, . . . , n.

Moreover, the distributed errors of ith follower are defined
as

eki,s =
S∑
j=1

aij(xkj,s − x
k
i,s)+ bi(x0,s − x

k
i,s) (6)

and the compact form of the errors is

eks = −(L + B)(x
k
s − 1Sx0,s) = −Hδks , (7)

where eks = [ek1,s, e
k
2,s, . . . , e

k
S,s]

T
∈ RS .

Assumption 2: Assuming the initial learning protocols is

xk+1i,s (0) = xki,s(0)+ βe
k
i,s(0), (8)

where β is a designed parameter.
Lemma 2 [26]: The initial learning protocols can ensure

that lim
k→∞

∥∥δks (0)∥∥2 = 0, if β satisfies ‖I − βH‖2 < 1.

Remark 1: For any iteration, we have
∥∥δks (0)∥∥2 < m with

m being a positive constant.
To design the distributed adaptive ILC protocols, the filter

errors of ith follower are denoted as

σ kei (t) = λ1e
k
i,1 + λ2e

k
i,2 + · · · + λn−1e

k
i,n−1 + e

k
i,n, (9)

where λ1, λ2, . . . , λn−1 are the coefficients of Hurwitz poly-
nomial pn−1 + λn−1pn−2 + · · · + λ1. Then,

σ ke (t) = λ1e
k
1 + λ2e

k
2 + · · · + λn−1e

k
n−1 + e

k
n

= −H (λ1δk1 + λ2δ
k
2 + · · · + λn−1δ

k
n−1 + δ

k
n )

= −Hσ kδ , (10)

where σ ke (t) = [σ ke1 , σ
k
e2 , · · · , σ

k
eS ]

T
∈ RS and σ kδ = λ1δ

k
1 +

λ2δ
k
2 + · · · + λn−1δ

k
n−1 + δ

k
n ∈ R

S .
Furthermore, to promote the subsequent analysis, define

Fk1 = [(δk1 )
T , (δk2 )

T , · · · , (δkn−1)
T ]T ∈ RS(n−1)×1, Fk2 =

[(δ2)T , (δk3 )
T , · · · , (δkn )

T ]T ∈ RS(n−1)×1, h = [0, · · · ,

0, 1]T ∈ R(n−1)×1 and � =
[

0 In−2
−λ1 −λ2 · · · − λn−1

]
∈

R(n−1)×(n−1), then

Ḟk1 = Fk2 = (�⊗ IS )Fk1 + (h⊗ IS )σ kδ . (11)

Since � is Hurwitz, for any constant µ > 0, there exists
Q ∈ R(n−1)×(n−1) and QT

= Q, such that

�TQ+Q� = −µIn−1. (12)

Remark 2: From Assumption 3, it is easy to know that
ek+1s (0)= (I−βH )k+1e0s (0) and δ

k+1
s (0) = (I−βH )k+1δ0s (0),

s = 1, 2, . . . , n. Then, σ k+1δ (0) = (I − βH )k+1σ 0
δ (0) and

Fk+11 (0) = (I − βH )k+1F0
1 (0), which means that σ kδ (0) and

Fk1 (0) are all bounded.
Taking the derivative of σ kδ (t) yields

σ̇ kδ (t) = λ1δ̇
k
1 + λ2δ̇

k
2 + · · · + λn−1δ̇

k
n−1 + δ̇

k
n

= λ1δ
k
2 + λ2δ

k
3 + · · · + λn−1δ

k
n + (ẋkn −1S ẋ0,n)

= λ1δ
k
2 + λ2δ

k
3 + · · · + λn−1δ

k
n

+ (η(xk , t)− 1Sη(x0, t)+ ũk − 1Su0)

= ρk + (η(xk , t)− 1Sη(x0, t)+ ũk−1Su0), (13)

where ρk (t) = λTFk2 ∈ RS and λ = [λ1, λ2, . . . , λn−1]T

∈ Rn−1.

III. DISTRIBUTED ROBUST ADAPTIVE LEARNING
CONSENSUS PROTOCOLS DESIGN FOR
HON-MASS WITH IS
To tackle the consensus problem of the MASs (1) and (3),
the distributed robust learning consensus protocols (DRLCP)
for ith follower are devised as

uki =sat(u
k−1
i , u∗)+φ̂ki (t)σ

k
ei , u−1i (t)=0, ∀t ∈ [0,T ] (14)

and

φ̂ki (t) = sat(φ̂k−1i (t)+ qi(σ kei )
2, φ∗), (15)

where φ̂−1i (t) > 0, φ̂0i (0) > 0, qi > 0 and φ∗ indicates the
saturated bound of φ̂ki .
Remark 3: It should be noted that the DRLCP (14) consists

of two terms. The first term sat(uk−1i , u∗) is used to deal with
the saturation nonlinearity and guarantee the perfect consen-
sus tracking on [0,T ]. The second term φ̂ki σ

k
ei is the adaptive

learning term with time varying coupling gains φ̂ki (t) having
the fully saturation difference learning laws (15), which can
make the DRLCP fully distributed. Meanwhile, from (15), φ̂ki
is obviously bounded, and φ̂0i (0) > 0 can ensure φ̂ki > 0.

The DRLCP (14) can be collectively written as

uk = ũk−1 + 8̂kσ ke = ũk−1 − 8̂kHσ kδ (16)

where uk = [uk1, u
k
2, . . . , u

k
S ]
T
∈ RS , ũk−1 =

[ũk−11 , ũk−12 , . . . , ũk−1S ]T ∈RS with ũk−1i =sat(uk−1i , u∗), and
8̂k
= diag{φ̂k1 (t), φ̂

k
2 (t), . . . , φ̂

k
S (t)} ∈ R

S×S .
Theorem 1: For the MASs (1) and (3) with the connected

topology graph Ḡ, if Assumptions 1 and 2 hold, then the
leader can be perfectly tracked by S followers under the pro-
tocols (14) and adaptive updating laws (15) along the iteration
axis, i.e., lim

k→∞
δks = 0 for ∀t ∈ [0,T ], s = 1, 2, . . . , n.

Besides, the variables involved in the closed loop systems are
all finite.
Proof: At the kth iteration, let us define a Lyapunov func-

tion as

V̄ k
=

1
2
(σ kδ )

THσ kδ +
1
2
(Fk1 )

T (Q⊗ IS )Fk1 . (17)
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Then, the derivative of V̄ k is calculated as

˙̄V
k
= (σ kδ )

TH σ̇ kδ + (Fk1 )
T (Q⊗ IS )Ḟk1

= (σ kδ )
TH [λTFk2+η(x

k , t)−1Sη(x0, t)+ũk−1Su0]

+ (Fk1 )
T (Q⊗ IS )[(�⊗ IS )Fk1 + (h⊗ IS )σ kδ ]

= (σ kδ )
TH [λT (�⊗ IS )Fk1 + λ

T (h⊗ IS )σ kδ ]

+ (σ kδ )
TH [η(xk , t)− 1Sη(x0, t)]

+ (σ kδ )
TH (ũk − uk + uk − 1Su0)

+
1
2
(Fk1 )

T [(Q�+�TQ)⊗ IS ]Fk1+(F
k
1 )
T (Qh⊗IS )σ kδ

= (σ kδ )
THλT (�⊗ IS )Fk1 + (σ kδ )

THλT (h⊗ IS )σ kδ
+ (σ kδ )

TH [η(xk , t)− 1Sη(x0, t)]− (σ kδ )
TH8̂kHσ kδ

+ (σ kδ )
TH (ũk − uk + ũk−1 − 1Su0)

−
1
2
µ(Fk1 )

TFk1 + (Fk1 )
T (Qh⊗ IS )σ kδ , (18)

where

(σ kδ )
TH [η(xk , t)− 1Sη(x0, t)]

=

S∑
i=1

σ kei [η(x0, t)− η(x̄
k
i , t)]

≤

S∑
i=1

∣∣∣σ kei∣∣∣ (l1∣∣∣xki,1−x0,1∣∣∣+l2∣∣∣xki,2−x0,2∣∣∣+· · ·+ln∣∣∣xki,n−x0,n∣∣∣)
=

S∑
i=1

∣∣∣σ kei ∣∣∣ (l1 ∣∣∣δki,1∣∣∣+ l2 ∣∣∣δki,2∣∣∣+ · · · + ln ∣∣∣δki,n∣∣∣)
=

∣∣∣σ ke ∣∣∣T (lT ∣∣∣Fk1 ∣∣∣)+ ln∣∣∣σ ke ∣∣∣T ∣∣∣δkn ∣∣∣
≤

∥∥∥σ ke ∥∥∥ ‖l‖ ∥∥∥Fk1 ∥∥∥+ln ∥∥∥σ ke ∥∥∥ ∥∥∥σ kδ −λTFk1 ∥∥∥
=

∥∥∥−Hσ kδ ∥∥∥ ‖l‖ ∥∥∥Fk1 ∥∥∥+ ln ∥∥∥−Hσ kδ ∥∥∥ (∥∥∥σ kδ ∥∥∥+ ‖λ‖ ∥∥∥Fk1 ∥∥∥)
≤ λmax(H ) ‖l‖

∥∥∥σ kδ ∥∥∥ ∥∥∥Fk1 ∥∥∥
+ lnλmax(H )

∥∥∥σ kδ ∥∥∥ (∥∥∥σ kδ ∥∥∥+ ‖λ‖∥∥∥Fk1 ∥∥∥)
= lnλmax(H )(σ kδ )

Tσ kδ + λmax(H )(‖l‖ + ln ‖λ‖)
∥∥∥σ kδ ∥∥∥ ∥∥∥Fk1 ∥∥∥

≤ lnλmax(H )(σ kδ )
Tσ kδ

+
λmax(H )(‖l‖+ln ‖λ‖)

2
(
∥∥∥σ kδ ∥∥∥2+∥∥∥Fk1 ∥∥∥2)

=
λmax(H )(2ln + ‖l‖ + ln ‖λ‖)

2
(σ kδ )

Tσ kδ

+
λmax(H )(‖l‖ + ln ‖λ‖)

2
(Fk1 )

TFk1 , (19)

and l = [l1, l2, . . . , ln−1]T .
Substituting (19) into (18) results,

˙̄V
k
(t)

≤
λmax(H )(‖l‖ + ln ‖λ‖)− µ

2
(Fk1 )

TFk1 − (σ kδ )
TH8̂kHσ kδ

+ (σ kδ )
THλT (�⊗ IS )Fk1 + (Fk1 )

T (Qh⊗ IS )σ kδ
+ (σ kδ )

T [HλT (h⊗ IS )

+
λmax(H )(2ln + ‖l‖ + ln ‖λ‖)

2
IS ]σ kδ

+ (σ kδ )
TH (ũk−uk + ũk−1 − 1Su0). (20)

At this time, select a Lyapunov-Krasovskii functional as

Ēk (t) = V̄ k
+

S∑
i=1

1
2qi

∫ t

0
(φ̃ki (ρ))

2
dρ

+

S∑
i=1

∫ t

0

1

2φ̂ki (ρ)
(δuki )

2dρ, (21)

where φ̃ki (t) = φ − φ̂ki (t) with φ ∈ [−φ∗, φ∗], and δuki =
uki − u0.
The rest of the proof consists of three parts, i.e., calculating

the difference between Ēk and Ēk−1, obtaining the bounded-
nesses of all variables and proving the consensus results.

Part I. Difference between Ēk and Ēk−1.
Denote 1Ēk (t) as the difference between Ēk and Ēk−1,

we have

1Ēk (t)

= Ēk − Ēk−1

= V̄ k
+

S∑
i=1

1
2qi

∫ t

0
[(φ̃ki )

2
− (φ̃k−1i )

2
]dρ − V̄ k−1

+

S∑
i=1

∫ t

0

1

2φ̂ki
(δuki )

2dρ −
S∑
i=1

∫ t

0

1

2φ̂k−1i

(δuk−1i )2dρ

=

∫ t

0

˙̄V
k
dρ +

S∑
i=1

1
2qi

∫ t

0
[(φ̃ki )

2
− (φ̃k−1i )

2
]dρ

+

S∑
i=1

∫ t

0

1

2φ̂ki
(δuki )

2dρ −
S∑
i=1

∫ t

0

1

2φ̂k−1i

(δuk−1i )2dρ

+ V̄ k (0)− V̄ k−1. (22)

According to (15), it should be noted that φ̂ki ≥ φ̂k−1i , (22)
becomes as

1Ēk ≤
∫ t

0

˙̄V
k
dρ +

S∑
i=1

1
2qi

∫ t

0
[(φ̃ki )

2
− (φ̃k−1i )

2
]dρ

+

S∑
i=1

∫ t

0

1

2φ̂ki
[(δuki )

2
− (δuk−1i )2]dρ

+ V̄ k (0)− V̄ k−1. (23)

Utilizing the algebraic relation (z− k1)2 − (z− k2)2 =
(k2 − k1)[2(z − k1) + (k1 − k2)] and (15), the second term
on the right hand (RHS) of (23) changes into
S∑
i=1

1
2qi

∫ t

0
[(φ̃ki )

2
−(φ̃k−1i )

2
]dρ

=

S∑
i=1

1
2qi

∫ t

0
(φ̂k−1i −φ̂ki )[2(φ − φ̂

k
i )+(φ̂

k
i − φ̂

k−1
i )]dρ

=

S∑
i=1

1
qi

∫ t

0
φ̃ki (φ̂

k−1
i −φ̂ki )dρ−

S∑
i=1

1
2qi

∫ t

0
(φ̂ki − φ̂

k−1
i )

2
dρ
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≤

S∑
i=1

1
qi

∫ t

0
φ̃ki (φ̂

k−1
i −φ̂ki )dρ

=

S∑
i=1

1
qi

∫ t

0
φ̃ki (φ̂

k−1
i +qi(σ kei )

2
−qi(σ kei )

2
−φ̂ki )dρ

=

S∑
i=1

1
qi

∫ t

0
φ̃ki [φ̂

k−1
i +qi(σ

k
ei )

2
−φ̂ki ]dρ−

∫ t

0
φ̃ki (σ

k
ei )

2
dρ.

(24)

In accordance with the saturation function property
(PSF) 3 in [27], it can be obtained that

φ̃ki [φ̂
k−1
i + qi(σ kei )

2
− φ̂ki ]

= (φ − φ̂ki )[φ̂
k−1
i + qi(σ kei )

2
− φ̂ki ]

= [φ − sat(φ̂k−1i + qi(σ kei )
2
, φ∗)]

[φ̂k−1i + qi(σ kei )
2
− sat(φ̂k−1i + qi(σ kei )

2
, φ∗)]

≤ 0. (25)

Hence, according to (24) and (25), we can know that
S∑
i=1

1
2qi

∫ t

0
[(φ̃ki )

2
− (φ̃k−1i )

2
]dρ

≤ −

S∑
i=1

∫ t

0
φ̃ki (ρ)(σ

k
ei )

2
dρ

= −φ

S∑
i=1

∫ t

0
(σ kei )

2
dρ +

S∑
i=1

∫ t

0
φ̂ki (σ

k
ei )

2
dρ

= −φ

∫ t

0
(σ kδ )

T
H2σ kδ dρ +

∫ t

0
(σ kδ )

T
H8̂k (ρ)Hσ kδ dρ.

(26)

From the PSF 1 in [18] and DRLCP (14), the third term on
the RHS of (23) is written as

S∑
i=1

∫ t

0

1

2φ̂ki
[(δuki )

2
−(δuk−1i )2]dρ

≤

S∑
i=1

∫ t

0

1

2φ̂ki
[(uki −u0)

2
−(ũk−1i −u0)

2]dρ

=

S∑
i=1

∫ t

0

1

2φ̂ki
(ũk−1i −u

k
i )[2(u0 − u

k
i )+(u

k
i −ũ

k−1
i )]dρ

=

S∑
i=1

∫ t

0

1

2φ̂ki
(−φ̂ki (ρ)σ

k
ei [2(u0−u

k
i )]dρ

−

S∑
i=1

∫ t

0

1

2φ̂ki
(uki−ũ

k−1
i )2dρ

=

S∑
i=1

∫ t

0
σ kei (u

k
i −u0)dρ−

S∑
i=1

∫ t

0

φ̂ki

2
(σ kei )

2dρ

=

∫ t

0
(σ kδ )

TH (1Su0−uk )dρ−
1
2

∫ t

0
(σ kδ )

TH8̂kHσ kδ dρ.

(27)

Substituting (20), (26) and (27) into (23) leads to

1Ēk (t)

≤
λmax(H )(‖l‖ + ln ‖λ‖)− µ

2

∫ t

0
(Fk1 )

T
Fk1 dρ

+

∫ t

0
(σ kδ )

T
HλT (�⊗ IS )Fk1 dρ

+

∫ t

0
(Fk1 )

T
(Qh⊗ IS )σ kδ dρ

+

∫ t

0
(σ kδ )

T
[HλT (h⊗ IS )

+
λmax(H )(2ln+‖l‖+ln ‖λ‖)

2
IS ]σ kδ dρ

+

∫ t

0
(σ kδ )

T
H (ũk − 2uk + ũk−1)dρ

−
1
2

∫ t

0
(σ kδ )

TH8̂k (ρ)Hσ kδ dρ − φ
∫ t

0
(σ kδ )

T
H2σ kδ dρ

+ V̄ k (0)− V̄ k−1, (28)

and based on PSF 2 in [16] as well as the DRLCP (14),
we have

∣∣uki − ũki ∣∣ ≤ φ̂ki (t) ∣∣σ kei ∣∣, it can be attained that∫ t

0
(σ kδ )

T
H (ũk − 2uk + ũk−1)dρ

= −

∫ t

0
(σ ke )

T
(ũk − 2uk + ũk−1)dρ

=

S∑
i=1

∫ t

0
σ kei (u

k
i − ũ

k
i + u

k
i − ũ

k−1
i )dρ

≤

S∑
i=1

∫ t

0

∣∣∣σ kei ∣∣∣ (∣∣∣ũki − uki ∣∣∣+ ∣∣∣ũk−1i − uki
∣∣∣)dρ

≤

S∑
i=1

∫ t

0

∣∣∣σ kei ∣∣∣ (φ̂ki ∣∣∣σ kei ∣∣∣+ φ̂ki ∣∣∣σ kei ∣∣∣)dρ
= 2

S∑
i=1

∫ t

0
φ̂ki (σ

k
ei )

2dρ

= 2
∫ t

0
(σ kδ )

TH8̂kHσ kδ dρ. (29)

Taking (29) into (28) results

1Ēk (t) ≤
λmax(H )(‖l‖ + ln ‖λ‖)− µ

2

∫ t

0
(Fk1 )

T
Fk1 dρ

+

∫ t

0
(σ kδ )

T
HλT (�⊗ IS )Fk1 dρ

+

∫ t

0
(Fk1 )

T
(Qh⊗ IS )σ kδ dρ

+

∫ t

0
(σ kδ )

T
[HλT (h⊗ IS )

+
λmax(H )(2ln+‖l‖ + ln ‖λ‖)

2
IS ]σ kδ dρ

+ V̄ k (0)−V̄ k−1
+(

3
2
φ∗−φ)

∫ t

0
(σ kδ )

TH2σ kδ dρ.

(30)
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Denoting Z k = [(Fk1 )
T , (σ kδ )

T ]T brings about

1Ēk ≤ −
∫ t

0
(Z k )T�Z kdρ + V̄ k (0)− V̄ k−1, (31)

where, �, as shown at the bottom of this page.
Then, we can select l1, l2, . . . , ln and φ such that � > 0.

In consequence,

1Ēk (t) ≤−λmin(�)
∫ t

0
(Z k )TZ kdρ+V̄ k (0)−V̄ k−1, (32)

where λmin(�) is the minimum eigenvalue of �.
Part II. Boundednesses of all variables.
Let t = T , it can be gained from (32) that

1Ēk (T ) ≤ −λmin(�)
∫ T

0
(Z k )TZ kdρ + V̄ k (0)

≤ V̄ k (0). (33)

That is,

Ēk (T ) ≤ Ēk−1(T )+ V̄ k (0), (34)

and

Ēk (t) = 1Ēk (t)+ Ēk−1(t)

≤ −λmin(�)
∫ t

0
(Z k )TZ kdρ + V̄ k (0)− V̄ k−1

+ V̄ k−1
+

S∑
i=1

1
2qi

∫ t

0
(φ̃k−1i )

2
dρ

+

S∑
i=1

∫ t

0

1

2φ̂k−1i

(δuk−1i )2dρ

≤

S∑
i=1

1
2qi

∫ T

0
(φ̃k−1i )

2
dρ + V̄ k (0)+ V̄ k−1(T )

+

S∑
i=1

∫ T

0

1

2φ̂k−1i

(δuk−1i )2dρ

= Ēk−1(T )+ V̄ k (0)
≤ Ēk−2(T )+ V̄ k−1(0)+ V̄ k (0)
≤ Ēk−3(T )+ (V̄ k−2(0)+ V̄ k−1(0)+ V̄ k (0))
...

≤ Ē0(T )+
k∑
j=1

V̄ j(0)

≤ Ē0(T )+
λmax(H )

2

k∑
j=1

(σ jδ(0))
T
σ
j
δ(0)

+
λmax(Q)

2

k∑
j=1

(F j1(0))
T
F j1(0), (35)

where
k∑
j=1

(σ jδ(0))
T
σ
j
δ(0)

=

k∑
j=1

(σ 0
δ (0))

T
(I − βH )2jσ 0

δ (0)

≤ (σ 0
δ (0))

Tσ 0
δ (0)

k∑
j=1

[ρ(I − βH )]2j

= (σ 0
δ (0))

Tσ 0
δ (0)

[ρ(I − βH )]2

1− [ρ(I − βH )]2
(36)

and
k∑
j=1

(F j1(0))
T
F j1(0)

=

k∑
j=1

(F0
1 (0))

T
(I − βH )2jF0

1 (0)

≤ (F0
1 (0))

TF0
1 (0)

k∑
j=1

[ρ(I − βH )]2j

= (F0
1 (0))

TF0
1 (0)

[ρ(I − βH )]2

1− [ρ(I − βH )]2
. (37)

As a result,

Ēk (t) ≤ Ē0(T )+ S̄, (38)

where

S̄
1
=

[ρ(I − βH )]2

2[1− (ρ(I − βH ))2]
· [λmax(H )(σ 0

δ (0))
Tσ 0

δ (0)+λmax(Q)(F0
1 (0))

TF0
1 (0)].

From (38), it can be intuitively seen that the finiteness of Ēk (t)
can be guaranteed if Ē0(T ) is bounded.
Next, we will prove the finiteness of Ē0(t), and then the

finiteness of Ē0(T ) is obvious. In the light of the definition
of Ēk ,

Ē0
= V̄ 0

+

S∑
i=1

1
qi

∫ t

0
(φ̃0i (ρ))

2
dρ

+

S∑
i=1

∫ t

0

1

2φ̂0i (ρ)
(δu0i )

2dρ. (39)

Taking the derivative both sides of (39) leads to

˙̄E
0
=
˙̄V
0
+

S∑
i=1

1
qi
(φ̃0i )

2
+

S∑
i=1

1

2φ̂0i
(δu0i )

2

� =
[−λmax(H )(‖l‖ + ln ‖λ‖ + µ

2
(In−1 ⊗ IS ) −

1
2
[(Qh⊗ IS )+ (QT

⊗ IS )λH ]

−
1
2
[(Qh⊗ IS )+ (QT

⊗ IS )λH ]
T 2φ − 3φ∗

2
H2
−

(2ln + ‖l‖ + ln ‖λ‖)IS + HλT (h⊗ IS )
2

]
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≤
λmax(H )(‖l‖ + ln ‖λ‖)− µ

2
(F0

1 )
TF0

1

+ (σ 0
δ )
THλT (�⊗ IS )F0

1

+ (F0
1 )
T (Qh⊗ IS )σ 0

δ + (σ 0
δ )
T [HλT (h⊗ IS )

+
λmax(H )(2ln + ‖l‖ + ln ‖λ‖)

2
IS ]σ 0

δ

− (σ 0
δ )
TH8̂0Hσ 0

δ + (σ 0
δ )
TH (ũ0 − u0 + ũ−1 − 1Su0)

+

S∑
i=1

1
2qi

[(φ̃0i )
2
− (φ̃−1i )

2
]+

S∑
i=1

1
2qi

(φ̃−1i )
2

+

S∑
i=1

1

2φ̂0i
[(δu0i )

2
− (δu−1i )2]+

S∑
i=1

1

2φ̂0i
(δu−1i )2

≤ −(Z0)T�Z0
+

S∑
i=1

1
2qi

(φ̃−1i )2 +
S∑
i=1

1

2φ̂0i
u02. (40)

Since (φ̃−1i )2 = (φ− φ̂−1i )2 is a positive constant and u0 is
continuous on [0,T ]. Therefore, there exists

P = max
t∈[0,T ]
1≤i≤S

[
S∑
i=1

1
2qi

(φ̃−1i )2 +
S∑
i=1

1

2φ̂0i (t)
u20] <∞. (41)

It can be easily got that

Ē0(t) ≤
∣∣∣Ē0(0)

∣∣∣+ ∫ t

0

∣∣∣∣ ˙̄E0
∣∣∣∣ dρ

≤
1
2
(σ 0
δ (0))

THσ 0
δ (0)+

1
2
(F0

1 (0))
T (Q⊗ IS )F0

1 (0)

+TP <∞. (42)

Therefore, the finiteness of Ē0(T ) is obtained. In turn, the
finiteness of Ēk is followed. From (17) and (21), we can
acquire that σ kδ and Fk1 are uniformly bounded, then the
finiteness of δks is gained, s = 1, 2, . . . , n. (15) renders the
finiteness of φ̂ki . According to (14), u

k
i is uniformly bounded.

Hence, the boundednesses of all signals in closed loop sys-
tems are realized.

Part III. Consensus analysis
Lastly, the learning consensus property will be verified.

From (33), we can obtain that

Ēk (T ) = Ē0(T )+
k∑
j=1

1Ē j(T )

≤ Ē0(T )−λmin(�)
k∑
j=1

∫ T

0
(Z j)TZ jdρ+

k∑
j=1

V̄ j(0).

(43)

On account of the positiveness of Ēk (T ) and finite-

ness of
k∑
j=1

V̄ j(0), the series
k∑
j=1

∫ T
0 (Z j)TZ jdρ is convergent,

lim
k→∞

∫ T
0 (σ kδ )

T
σ kδ dt = 0 is followed. Also we can check (13)

σ̇ kδ is uniformly bounded on [0,T ]. By virtue of Barbalat-
like Lemma [28], lim

k→∞
σ kδ = 0. Hence, lim

k→∞
δks (t) = 0,

s = 1, 2, . . . , n. That is to say, the leader is perfectly tracked

by each follower along the iteration axis, ∀t ∈ [0,T ]. The
proof is completed. �
Remark 4: Noting that the selection of parame-

ter β in Assumption 2 needs to satisfy the condition
(‖I − βH‖2 < 1) in Lemma 2, which contains the
global information related to the topology graph. Therefore,
the designed protocols under Assumption 2 in Theorem 1 are
not fully distributed. In order to obtain the fully distributed
protocols, another initial condition is proposed as follows.
Assumption 3: The alignment initial condition is satisfied,

that is, xki,s(0) = xk−1i,s (T ), i = 1, 2, . . . , S,s = 1, 2, . . . , n;
and x0,s(0) = x0,s(T ).
Remark 5: It follows from Assumption 3 that xks (0) =

xk−1s (T ). Then, δks (0) = δk−1s (T ), σ kδ (0) = σ k−1δ (T ) and
Fk1 (0) = Fk−11 (T ).
Theorem 2: For the MASs (1) and (3) with the connected

topology graph Ḡ, if Assumptions 1 and 3 hold, then the
leader can be perfectly tracked by S followers under the pro-
tocols (14) and adaptive updating laws (15) along the iteration
axis, i.e., lim

k→∞
δks = 0, ∀t ∈ [0,T ], s = 1, 2, . . . , n. Besides,

the signals in the closed loop systems are all finite.
Proof:Choose the same Lyapunov function and Lyapunov-

Krasovskii functional as in Theorem 1, we have

1Ēk ≤ −λmin(�)
∫ t

0
(Z k )TZ kdρ + V̄ k (0)− V̄ k−1 (44)

Let t = T , it is obtained from Remark 5 and (44) that

1Ēk (T ) ≤ −λmin(�)
∫ T

0
(Z k )TZ kdρ. (45)

That is,

Ēk (T ) ≤ Ēk−1(T ). (46)

and

Ēk = 1Ēk + Ēk−1

≤ −λmin(�)
∫ t

0
(Z k )TZ kdρ + V̄ k (0)− V̄ k−1

+ V̄ k−1

+

S∑
i=1

1
2qi

∫ t

0
(φ̃k−1i )

2
dρ+

S∑
i=1

∫ t

0

1

2φ̂k−1i

(δuk−1i )2dρ

≤ V̄ k−1(T )+
S∑
i=1

1
2qi

∫ T

0
(φ̃k−1i )

2
dρ

+

S∑
i=1

∫ T

0

1

2φ̂k−1i

(δuk−1i )2dρ

= Ēk−1(T )

≤ Ēk−2(T )
...

≤ Ē0(T ). (47)

According to (47), if Ē0(T ) is finite, then the finiteness
of Ēk is ensured. In this case, it is only needed to prove the
finiteness of Ē0(t), then the finiteness of Ē0(T ) is followed.
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On account of the proof of the finiteness of Ē0(t) similar to
Theorem 1, it is omitted here. Last but not the least, we testify
the property of learning consensus. From (45), we know that

Ēk (T ) = Ē0(T )+
k∑
j=1

1Ē j(T )

≤ Ē0(T )−λmin(�)
k∑
j=1

∫ T

0
(Z j)TZ jdρ. (48)

Owing to the finiteness of Ē0(T ) and the positiveness of

Ēk (T ), the series
k∑
j=1

∫ T
0 (Z j)TZ jdρ is convergent, and the rest

is the same as Theorem 1, the perfect consensus tracking can
be achieved. The proof is completed. �
Remark 6: On the one hand, in the proof of Theorem 2,

the condition used in (32) are only for the consensus anal-
ysis and independent of the protocols design. On the other
hand, unlike Assumption 2, Assumption 3 does not utilize
any global information. Thus, the establishment of Theo-
rem 2 does not contain any global information, and the
designed protocols are fully distributed.

IV. FULLY DISTRIBUTED FORMATION CONTROL
ALGORITHM FOR HON-MASS WITH IS
In this part, let us focus on the the formation problem of
HON-MASs with IS. If each follower forms an expected
distance from the leader for t ∈ [0,T ], then it means that
the MASs can realize the leader-follower formation control.

Define

x̄ki,1 = xki,1 −1i, (49)

where 1i is the expected formation space for the leader
from ith follower.
The formation errors of ith follower are

δki,1(t) = x̄ki,1(t)− x0,1(t), (50)

and δki,s(t) are the same as δki,s(t) defined in (4),
s = 2, 3, . . . , n. As such, we can reformulate the formation
problem as the problem of consensus, that is, lim

k→∞
δks = 0.

Besides, the distributed formation errors for ith follower
are

eki,1 =
S∑
j=1

aij(x̄kj,1 − x̄
k
i,1)+ bi(x0,1 − x̄

k
i,1),

eki,s =
S∑
j=1

aij(x̄kj,s − x̄
k
i,s)+ bi(x0,s − x̄

k
i,s), (51)

where s = 2, 3, . . . , n.
Assumption 4: The alignment initial condition is satisfied,

i.e., x̄ki,1(0) = x̄k−1i,1 (T ), xki,s(0) = xk−1i,s (T ), i = 1, 2, . . . , S
and s = 2, 3, . . . , n; and the leader satisfies x0,s(0) = x0,s(T ).
Then, it follows that xks (0) = xk−1s (T ). Then, δks (0) =
δk−1s (T ), σ kδ (0) = σ

k−1
δ (T ) and Fk1 (0) = Fk−11 (T ).

FIGURE 1. Communication topology graph.

FIGURE 2. Evolutions of agents states in Case 1 of Example 1.

Theorem 3: For the MASs (1) and (3) with the connected
topology graph Ḡ, if Assumptions 1 and 4 hold, then S
followers can form the desired formation from the leader
under the DRLCP (14) and adaptive updating laws (15) with
the distributed formation errors (51) along the iteration axis,
∀t ∈ [0,T ], and the variables in the closed-loop systems are
all finite.

V. SIMULATIONS
In the segment, a numerical example and a networked pendu-
lum systems are provided to validate theoretical results under
a.i.c. The networked pendulum systems can be considered as
the MASs. Besides, suppose that there are four followers and
one leader in both two examples. Fig.1 is the communication
topology graph.

From Fig.1, Laplace matrix L and B can be obtained that

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 , B = diag{0, 1, 0, 0}.
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FIGURE 3. Consensus errors in Case 1 of Example 1.

FIGURE 4. Responses of signals in Case 1 of Example 1.

Example 1: The dynamics of four followers are ẋki,1 = xki,2,
ẋki,2 = xki,3, ẋ

k
i,3 = 0.01 cos(xki,1 − xki,2 − xki,3) cos(2 t) +

sat(uki (t), u
∗), where t ∈ [0,T ], T = 2π , k = 35, u∗ = 25,

and x0,1 = 2.3 sin t , x0,2 = 2.3 cos t , x0,3 = −2.3 sin t .
Case 1: Consensus for the HON-MASs of Example 1.

FIGURE 5. Input curves in Case 1 of Example 1.

The initial values are x01 (0) = [0.7, 0.6, 0.8, 1]T , x02 (0) =
[0.7, 0.8, 0.9, 1]T , x03 (0) = [0.7, 0.8, 0.9, 1]T and φ̂01 (0) =
0.5, φ̂02 (0) = φ̂

0
3 (0) = φ̂

0
4 (0) = 0.5. Select q1 = q2 = q3 =

q4 = 3.6, λ1 = 1.8, λ2 = 3 and φ∗ = 250. Figs.2-4 show the
simulation results.

Figs.2-3 demonstrate the involutions of agents states at
the 35th loop and consensus errors of all followers, respec-
tively. It is seen that the leader can be perfectly tracked by
each follower even if there is IS in the dynamics of each fol-
lower. The responses of four followers are displayed in Fig.4,
which indicates that all the variables are bounded. In order
to illustrate the influence of input saturation, Fig.5 shows
the input curves of each follower at the 1st, 3rd, 5th and
20th iterations on [0, 2π ], which means that the control input
of each follower is within the saturation bound u∗ = 25.
Therefore, the results fit into Theorem 2 in the paper.
Case 2: Formation control for the HON-MASs of

Example 1.
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FIGURE 6. Evolutions of agents states in Case 2 of Example 1.

FIGURE 7. Formation errors in Case 2 of Example 1.

Consider the formation control of the HON-MASs and
choose the desired relative distances are 11 = −0.2, 12 =

FIGURE 8. States of all pendulums in Case 1 of Example 2.

FIGURE 9. Consensus errors in Case 1 of Example 2.

−0.4,13 = −0.6, and 14 = −0.8. Other arguments
involved are the same as Case 1.

We learn that four followers can form the expected forma-
tion in Figs.6-7. The validity of this part is obvious.
Example 2: At present, under the repetitive environment,

let us consider a networked pendulum systems [29] com-
prised of four follower pendulums with one leader pendulum
having the communication topology graph Fig.1. Meanwhile,
it is assumed that the dynamics of each follower pendulum
suffer from IS. At the kth loop, the state equations can be
written asẋ

k
i1 = xki2

ẋki2 = −
g
ri
sin xki1 −

hi
mi
xki2 +

1
ri
sat(uki , u

∗),
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FIGURE 10. States of all pendulums in Case 2 of Example 2.

FIGURE 11. Formation errors in Case 2 of Example 2.

where xki1 and x
k
i2 are the position and velocity of ith follower

pendulum, ri means the length of the rod, mi means the mass
of the bob, hi is the friction resistance coefficients and g is the
acceleration of gravity, i = 1, 2, 3, 4, u∗ = 25. In addition,
x0,1 = sin(t) and x0,2 = cos(t).
Case 1: Consensus for the MASs of Example 2 on [0, 2π ].
Take g

ri
= 1, hi

mi
= 1 and 1

mir2i
= 1, the initial states are

x01 (0) = [1, 1.1, 1.2, 1.4]T , x02 (0) = [1.2, 2.2, 2.5, 1]T , and
φ̂01 (0) = 0.4, φ̂02 (0) = 0.3, φ̂03 (0) = 0.4, and φ̂04 (0) = 0.3.
Select q1 = 3.2, q2 = 3.5, q3 = 3.1, q4 = 3.4, λ1 = 33, and
φ∗ = 80. The results for 20 loops are displayed in Figs.8-9,
and the proposed algorithms can perform the networked-
pendulum consensus assignment as well.
Case 2: Formation control of the MASs of Example 2

on [0, 2].

Choosing the desired relative distances are 11 =

0.15,12 = 0.3,13 = 0.45 and 14 = 0.6. Other variables
involved are the same as Case 1.

From Figs.10 and 11, we can see that all the pendulums
form the expected formation, and achieve perfect consensus
of velocity on [0, 2π ].

VI. CONCLUSION
In the paper, the DRLCP for the HON-MASs with IS are
firstly studied under the initial state learning containing the
global information. Secondly, in order to obtain the fully
distributed protocols, the a.i.c is proposed. And the leader can
be perfectly tracked by each follower on a finite time interval
under both two assumptions. Finally, the fully distributed
formation control is researched, and two illustrative examples
display the efficacy and practicability of the algorithms.
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