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ABSTRACT Rail fasteners are the most numerous components in railways and they should be inspected
periodically. Manual inspection is currently a common solution, which is laborious and low-efficient. Some
automatic inspection approaches are proposed. But for ballast railway fasteners inspection, debris, especially
ballast along tracks may cover the fasteners, which is still a tricky problem. In this paper, a real-time
inspection system for ballast railway fasteners based on point cloud deep learning is developed. Dense
and precise point cloud of fastener is obtained from the structured light sensors in the system. The point
cloud of fastener is segmented into different parts to avoid the interference of debris on fasteners. A ballast
fastener point cloud semantic segmentation dataset is created based on automatic annotation method. Several
deep learning point cloud segmentation models are tested in this dataset and PointNet++ is selected to be
deployed in the real-time deep learning module of the system. Field tests on ballast railways show excellent
accuracy and efficiency of this system.

INDEX TERMS Ballast railway fasteners, fastener inspection, deep learning, neural network, point cloud
semantic segmentation.

I. INTRODUCTION
Railway is an important infrastructure for transportation,
comparing with other transportation modes, railway trans-
portation achieves a perfect balance in price, efficiency and
capacity. Rail fasteners are the most numerous parts in a
railway line. In general, there are 4 fasteners in a sleeper and
the distance between consecutive sleepers is about 0.6 m,
so, there are about 6700 fasteners in 1km railway line. The
main functions of rail fasteners are fastening rail tracks onto
sleepers or track slab [1], [2], maintain track gauge [3], [4]
and reduce vibration (ballastless highspeed railway) [5]–[7].
Rail fastener failures, such as missing or broken will greatly
threaten safe operation of trains [8]. Therefore, they must be
inspected periodically. In traditional way, rail fasteners are
inspected manually, which is laborious and time-consuming.
With the increase of labor cost and expansion of railway lines,
there is an urgent need for automatic rail fastener inspection
method.
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In recent years, many researchers have developed various
automatic rail fastener inspection methods. Most methods
are based on two-dimensional vision like images or video,
Marino et al. [9] built a real-time visual inspection system
for hexagonal-head fasteners based on line-scan camera, this
system can detect presence/absence of fasteners with an accu-
racy of 99.6% in detecting visible fasteners and of 95% in
detecting missing fasteners. De Ruvo et al. [10] presented a
fully automatic and configurable real-time vision system able
to detect the presence/absence of fasteners at 187 km/h with
the help of Graphic Processing Unit (GPU) parallel process-
ing. Xia et al. [11] proposed an efficient method to detect
and recognize broken fastener with railway images based
on AdaBoost-based algorithm. Yang et al. [12] presented a
direction field-based method based on images, this method
can be used to detect the absence of fasteners at 400 km/h.
Resendiz et al. [13] proposed amachine vison system consist-
ing of field-acquired video and subsequent analysis, which
can automatically detect defects in fasteners and turnout
components. Feng et al. [14] proposed an automatic visual
inspection system for detecting partially worn and completely
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missing fasteners using probabilistic topic model, which can
simultaneously model diverse types of fasteners with differ-
ent orientations and illumination conditions using unlabeled
data. Gibert et al. [15] proposed an image-based fastener
inspection system using the histogram of oriented gradients
features and a combination of linear Support Vector Machine
(SVM) classifiers, this system can inspect missing or defec-
tive fastener problems with a probability of detection of 98%
and a false alarm rate of 1.23%. The methods above are
all based on two-dimensional vision. To get whole view of
a fastener, these methods acquire vision data from the top,
making them unable to detect loose fasteners. In addition,
two-dimensional vision is susceptible to interference from
rust and stains on fastener surface.

Inspired by vibration-based structural damage inspection
method, some scholars have carried out fastener inspection
method based on vibration. Valikhani and Younesian [16]
proposed a fastener inspection method based on vibration,
an accelerometer is installed on the rail track and its vibration
signal is aroused by hitting a hammer to the track, the loose-
ness of fasteners is inspected by conditional entropy criterion
and the Morlet wavelet transformation. Wei et al. [17] devel-
oped a vibration-based fastener inspection system, the accel-
eration signals are analyzed by wavelet packet analysis and
the location and severity of loose fastener can be worked out.
Vibration-based fastener inspection method need pre-install
accelerometer on rail track and arouse vibration signal by
hammer, which is very low efficiency and not practical.

Some researchers developed fastener inspection method
based on three-dimensional (3D) point cloud from structured
light sensors. These sensors can acquire 3D point cloud
without interference from rust and stains on fastener surface.
Comparing with 2D vision data, 3D point cloud can achieve
more fastener inspection applications, such as loose fastener
detection [18] and fasteners geometric parameters measure-
ment [19]. Zhang et al. [20] developed a structured-light-
based fastener inspection system, with a recognition method
based on neural network, the system achieved good perfor-
mance in inspection missing fasteners. Lorente et al. [21]
presented a fastener inspection system using structured light
sensors to evaluate rail gauge and detect missing fasteners
with iterative closest point (ICP) algorithm.Aytekin et al. [22]
developed a real-time rail fastener detection system to detect
missing hexagonal-headed fasteners with structured light sen-
sors, in this system, an extensive analysis of various methods
based on pixelwise and histogram similarities was conducted.
In our previous work [18], [19], a structured-light-based fas-
tener inspection system called Intelligent Rail Checker (IRC)
was developed, this system could not only detect missing,
defected and loose fasteners, but also measure geometric
parameters of fasteners. This system can achieve 99.8% accu-
racy in detecting missing and defected ballastless railway
fastener. These systems above can achieve good accuracy in
ballastless railway fasteners, but their accuracy in ballast rail
fasteners is lower, main reason causing this problem is that
there are a lot of debris, especially ballast on the fasteners

FIGURE 1. Ballast railway line.

in ballast railway, as it shows in FIGURE 1. Ballast railway
means the subgrade of rail track is ballast, usually used in
railway below 250km/h. For high-speed railway whose speed
is higher than that, the subgrade of rail track is replaced by
track board. So, high-speed railway can be called ballastless
railway.

Ever since Krizhevsky et al. [23] proposed AlexNet,
which focus on image classification with deep convolu-
tional neural networks, deep learning is flourishing in recent
years. From the outset the Deep Learning (DL) models
proposed were focusing on image classification or seg-
mentation, such as VGGNet [24], GoogLeNet [25], Fully
Convolutional Networks (FCN) [26]. Subsequently, DLmod-
els focusing on point cloud classification and segmentation,
such as VoxelNet [27], PointNet [28], PointNet++ [29],
PointCNN [30], were developed. Many researchers have
successfully applied deep learning in many practical appli-
cations. Zhang et al. [31] used improved GoogLeNet and
Cifar10 models to identify maize leaf diseases. Pan et al. [32]
developed an unmanned surveillance system to observe
water levels based on convolutional neural network (CNN).
Haggag et al. [33] proposed a hybrid DL algorithm for
tomato-sorting controllers, this algorithm utilize a combina-
tion of CNN and artificial neural network (ANN).

Many researchers had applied DL technic in railways.
Faghih-Roohi et al. [34] proposed a Deep Convolutional
Neural Network (DCNN) solution to the analysis of image
data for the detection of rail surface defects. Gibert et al. [35]
developed an approach to visual track inspection using mate-
rial classification and semantic segmentation with DCNN,
which allows for the detection of crumbling and chipped
tie conditions. Yin and Zhao [36] proposed an automated
diagnosis network of vehicle on-board equipments for high-
speed train via a deep learning approach. Liu et al. [37] put
forward an automatic fault detection system for the loosed
strands of the railway isoelectric line using Faster region-
based convolutional neural network andMarkov randomfield
model. Wei et al. [38] proposed a fastener defect detection
method based on image processing and deep learning net-
works.

Since DL have been applied successfully in many classifi-
cation and segmentation tasks, we decided to use DL-based
method to achieve higher accuracy in ballast railway fasten-
ers inspection. In ballast railway, debris, especially ballast
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FIGURE 2. The overview of IRC system.

may partially cover fasteners. It will be quite difficult to
classify fasteners with debris and broken fasteners directly.
Therefore, we decide to segment the point cloud of fasten-
ers into different parts to avoid the interference of debris
on fasteners. We modify our previous IRC system to con-
ducted DL-based point cloud segmentation and ballast fas-
tener inspection in real-time. An automatically fasteners’
point cloud annotation method is proposed to offer dataset
for DL-based point cloud segmentationmodels, data augmen-
tation is also used to expand the dataset. Several DL-based
point cloud segmentation models are evaluated in this dataset
and we chose the one with best accuracy running in modified
IRC system. Finally, field tests are conducted on ballast
railway lines to verify the accuracy and efficiency of our
system.

II. SYSTEM ARCHITECTURE
A. SYSTEM OVERVIEW
The overview of IRC system is shown in FIGURE 2. The
yellow cuboid box is the main body of the system, where
most sensors are installed. Two white and red cuboid boxes
on the yellow box are batteries for the system. IRC system
is equipped with quick disassembly structures and pushed
forward on rail tracks manually. The quick disassembly struc-
tures have four bearing wheels and four limit wheels on inner
side of the rail tracks. The two limit wheels on the right side
equipped with pneumatic telescopic rods to ensure all the
limit wheels are closed to rail tracks, preventing the yellow
box from lateral displacement when gauge changes. The sys-
tem is suitable for 1435mm standard gauge and the pneumatic
telescopic rods make the system adapted to ±20mm gauge
change. The whole system weighs about 40kg (including two
batteries) and can be assembled and disassembled by two
workers in 1 minute. An encoder is installed in left bearing
wheels to trigger the structured light sensors installed in the
yellow box, generating dense point cloud of fasteners when
pushing forward.

B. DETAILED ARCHITECTURE
Detailed architecture of the fastener inspection system is
shown in FIGURE 3. There are four commercial structured
light sensors in the system, corresponding to four fasteners
in one sleeper. Two consecutive structured light sensors are

FIGURE 3. Detailed architecture of the system.

FIGURE 4. Original point cloud of the system.

controlled by a controller which is triggered by the encoder
installed in left bearing wheels. All the controllers are con-
trolled by a single board computer where the data from the
structured light sensors can be processed. The processed data
will be sent to deep learning module where point cloud of
fasteners is segmented and will also be sent to data storage
module. Data and control transmission in this system are all
through Ethernet. The controllers are triggered every 1 mm,
generating dense point cloud of fasteners, show as FIGURE 4
(the unit is millimeter).

C. MODULES OF THE SYSTEM
In this part, we provide details of the modules in the system,
including structured light sensors, encoder, single board com-
puter and deep learning module.

1) STRUCTURED LIGHT SENSORS
The structured light sensors used in this system is a commer-
cial structured light sensor from Keyence, more specifically,
Keyence LJ-V7000. The maximum triggering frequency of
this sensor is 4000 Hz. The scan range of the sensor is a sector
of 30 degrees below, the minimum scan distance is 155mm
and the maximum scan distance is 445mm. The repeata-
bility in the vertical and horizontal directions are 0.005mm
and 0.06mm, respectively. The distance between consecutive
points in a frame is 0.3mm. Generally speaking, the farther
scan range of structured light sensor, the lower the accuracy.
This structured light sensor gets a perfect balance between
scan range and accuracy in terms of rail fastener scanning.

2) ENCODER
The encoder is installed in the left bearing wheels and it
will generate triggering signal to two controllers of structured
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light sensors. The trigger distance of the encoder is 1mm,
it means the distance between consecutive data frame is 1mm,
regardless of the movement speed of the whole system. The
distance between consecutive frames is 1mm and the distance
between consecutive points in a frame is 0.3mm. So, the point
cloud of fasteners is very dense (about 330 points per cm2)
and precise, which offers a good foundation for following
process.

3) SINGLE BOARD COMPUTER
The single board computer (Intel ATOM D2550@1.86 GHz)
is the brain of the whole system. It is running Window XP
operation system and online processing program is imple-
mented inside. It sends control signal to the controllers of
structured light sensors and receives data from the controllers.
The received data will be stored into the data storage module
and can also be processed in the single board computer. The
point cloud of fasteners is extracted from the original point
cloud and sent to the deep learning module for segmentation.
The single board computer is also connected to a display
panel to interact with users.

4) DEEP LEARNING MODULE
The deep learning module used in this system is Jetson TX2,
which is an embedded AI computing device from NVIDIA.
It is NVIDIA Pascal architecture with 256 cuda cores inside
and 8 GB graphics memory. It has 2 Denver 64-bit CPUs
andQuad-Core A57Complex. Themodule is runningUbuntu
16.04 operation system, CUDAversion up to 9.0, and cuDNN
version up to 7.0. Jetson TX2 is a small size, power-efficient,
and powerful AI computing device where most deep learning
models can run inside. The point cloud of fasteners will be
segmented in this module.

III. BALLAST RAILWAY FASTENERS
INSPECTION METHODOLOGY
The overall steps of ballast railway fasteners inspection
method are shown in FIGURE 5. Firstly, a point cloud extrac-
tion algorithm is proposed to extract point cloud of fastener
from the original point cloud. Then a fastener point cloud
automatic annotation method based on region growing is
proposed to create a ballast rail fastener point cloud semantic
segmentation dataset. After that, three deep learning point
cloud segmentation models are tested on this dataset and the
one achieves best accuracy is deployed into deep learning
module. At last, fastener inspection method after point cloud
segmentation is presented to get final results of fastener
inspection.

A. FASTENER POINT CLOUD EXTRACTION
In the original point cloud of IRC system, the point cloud of
ballast is also captured. To exclude the interference of unre-
lated point and reduce computational cost, the point cloud of
fasteners should be extracted. The 3-dimensional coordinates
of fasteners’ point cloud are established by 2-dimensional
point cloud from the structured light sensors and point cloud

FIGURE 5. The overall steps of ballast rail fasteners inspection
methodology.

FIGURE 6. Fastener point cloud extraction based on sliding window.

frame number. So, the fasteners’ point cloud can be seen as
matrix structure, where frame number is matrix row, point
number in a frame is matrix column, and height of point is
the value of the matrix at the corresponding position. In this
matrix structure, the point cloud of fasteners can be located
fast and precise.

Rail fasteners are located next to the bottom of rail
track and they are higher than surrounding things like rail
pad or ballast. The distance between consecutive fasteners
is 0.6m, which is a fixed number. The relative distance
between fasteners and track bottom in the original point cloud
is relatively fixed. Considering above characteristics of rail
fasteners, we proposed a sliding-window-based fastener point
cloud extraction method, which is shown in FIGURE 6.

The types of most widely used ballast fastener in China
is WJ5 and WJ2. The width of sliding window is equal to
the width of these two types, which is 150mm. The length
of sliding window is set to 160mm. The location of sliding
window in X direction is shown in FIGURE 6, the sliding
window slides along Y direction. Then calculate the average
height of valid point in the sliding window.

To set the height threshold of sliding window, the original
output of WJ5 and WJ2 fasteners is selected to calculate
average height in sliding window. The result is shown in
FIGURE 7, FIGURE 7 (a) and FIGURE 7 (b) are result of
WJ5 and WJ2 respectively. In this figure, vertical axis is
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FIGURE 7. Average height in sliding window, (a) Type WJ-5 fastener,
(b) Type WJ-2 fastener.

average height and horizontal axis is the frame number where
the center of sliding window located. The average height in
sliding window cyclical increase when there is a fastener
inside. The curve of average height between peaks fluctu-
ates greatly, causing by messy ballast. The height threshold
of sliding window is set to −15mm, the frame numbers
of adjacent intersections between the average height curve
and the threshold are picked out, the mean value of frame
numbers is the center frame of fastener. 150 frames before
and after the center frame are selected as the point cloud of a
fastener.

B. POINT CLOUD SEMANTIC SEGMENTATION DATASET OF
BALLAST RAILWAY FASTENERS
Training of deep learning neural networks for point cloud seg-
mentation requires massive labeled data. Therefore, ballast
railway fasteners point cloud semantic segmentation dataset
should be established first. The original data of the dataset
comes from the extracted point cloud of fasteners above,
where the distance between adjacent frames is 1mm and the
distance between adjacent points in one frame is 0.3mm.
The point cloud is distributed unevenly. To remove redundant
point and reduce the amount of data, the point cloud in same
frame is sampled one point in every three points, generating
1mm∗0.9mm point cloud grid.

The next step is data annotation, which is labor con-
suming and mostly done manually. To avoid manual data
annotation, a region growing based point cloud annotation
method is proposed. The location of growing seed and the
limitation of growing is key point of region growing method.
FIGURE 8 (a) shows the location of growing seeds. Seed A
is located in the rail bottom to annotate the point cloud of
rail bottom. Seed B, C , and D is on upper, middle, and lower
part of the spring bar. The occlusion of the fastener itself
cause discontinuous of the spring bar’s point cloud. So, it’s
necessary to set three seeds on the spring bar. Seed E is on the
middle bolt of fastener. Seed F is on the shoulder of sleeper.
The region growing algorithm used is the same as the one

FIGURE 8. Fastener point cloud annotation based on region growing
(type WJ5), (a) original point cloud and the location of growing seeds,
(b) annotation result.

proposed in our previous work [19]. The growing threshold
of spring bar is set to 0.9mm and the threshold of other parts is
set to 0.5mm. In FIGURE 8 (b), red part is point cloud of rail
bottom, green part is point cloud of spring bar, azure part is
point cloud of middle bolt, blue part is point cloud of sleeper
shoulder, and black part is unlabeled background. For type
WJ2 fasteners, the annotation process is the same, only the
location of growing seeds is slightly different.

In general, there are three types of fastener defect, skewed
spring bar, missing components, and partial fracture spring
bar. Skewed spring bar is caused by the looseness of middle
bolt, when the middle bolt loose to much or missing, spring
bar will be missing as well. The curved part that is in contact
with the base of the fastener (yellow boxes in FIGURE 8(b))
is subjected to huge stress, the spring bar is most likely
to fractured in these places. These defects will cause the
spring bar to lose effect, which will lead to fastener failure
eventually.

To simulate defect fasteners in actual scene and add extra
data to the dataset, we expand the dataset by rotating and
cutting the point cloud of fasteners. Skewed spring bar is
simulated by rotating the point cloud of spring bar around
the center of middle bolt following (1) and (2). In these two
formulas, (x, y) is the original coordinate of point cloud,
(rx0, ry0) is the center of rotation, β is the rotating angle
clockwise, (x0, y0) is the coordinate of point cloud after rota-
tion. The point cloud of spring bar is rotated for 15◦, 30◦,
180◦ clockwise and 15◦, 30◦ counterclockwise.

x0 = (x − rx0)cos β + (y− ry0)sin β + rx0 (1)

y0 = (−x + rx0)sin β + (y− ry0)cos β + ry0 (2)

To simulate partial fracture spring bar fasteners, the point
cloud of spring bar is cut in the curved part. To simulate
miss components fasteners, the point cloud of spring bar and
middle bolt is all removed. The diagram of extra samples
shows in FIGURE 9.

The whole dataset has 1000 normal fasteners, the number
of WJ5 fastener is the same as WJ2 fasteners, 4500 simulated
defect fasteners (5 rotation situations, 2 cutting situations
and 2 removal situations for 250 random selected normal
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FIGURE 9. Samples of defect fastener simulation (type WJ5).

fasteners of each kind). The whole dataset has 5500 fasteners,
20% of fasteners in each case are random selected as testing
set, and the rest fasteners are training set. There are about
60000 points in the point cloud of one fastener, they are
random sorted and save as text file, attributes of each point list
as x, y, z coordinate and label. The length, width and height
range of the point cloud of one fastener is 0 to 0.3m, 0 to
0.24m, and −0.1m to 0.25m respectively.

C. FASTENER POINT CLOUD SEMANTIC SEGMENTATION
BASED ON DEEP LEARNING
Deep learning point cloud semantic segmentation methods
have achieved far better performance than traditionalmethods
like clustering, RANSAC, region grow, andHough transform.
There are three most used point cloud segmentation bench-
marks, S3DIS [39], Semantic3D [40], and ScanNet [41].
S3DIS is a dataset benchmark including point cloud, mesh,
RGB image, and surface normal of large-scale indoor scene.
Semantic3D has more than 4 billion points of outdoor scene,
aiming at point cloud classification and outdoor semantic
segmentation. ScanNet is captured by RGB-D camera, has
more than 1500 indoor scene point cloud with color, aiming
at indoor scene semantic segmentation. It is the most widely
used indoor point cloud segmentation benchmark, but most
deep learning models haven’t used the color in point cloud.
The ballast railway fastener point cloud semantic segmenta-
tion dataset has unordered point cloud and individual fastener
can be seen as an indoor scene, so, it is most similar to Scan-
Net. Three models that achieve high point cloud semantic
segmentation accuracy on ScanNet are chosen to evaluate
their performance on the ballast fastener point cloud semantic
segmentation dataset.

1) POINTNET++
PointNet++ [29] is an extension of PointNet which is novel
type of neural network that directly consumes point clouds.
PointNet either transforms features of individual points inde-
pendently or process global features of the entire point set.
However, in many cases there are well defined distance met-
rics such as Euclidean distance for 3D point clouds collected

by 3D sensors or geodesic distance for manifolds like iso-
metric shape surfaces. PointNet++ learns hierarchical fea-
tures with increasing scales of contexts, just like that in
convolutional neural networks. To deal with non-uniform
densities of point cloud, special layers that are able to intel-
ligently aggregate information from different scales are pro-
posed. PointNet++ can achieve overall accuracy of 84.5% in
semantic segmentation of ScanNet.

2) POINTSIFT
Inspired by the outstanding 2D shape descriptor SIFT,
Jiang et al. design a module called PointSIFT [42] that
encodes information of different orientations and is adap-
tive to scale of shape. Specifically, an orientation-encoding
unit is designed to describe eight crucial orientations, and
multi-scale representation is achieved by stacking several
orientation-encoding units. PointSIFT module can be inte-
grated into various PointNet-based architecture to improve
the representation ability. PointSIFT can achieve overall
accuracy of 86.2% in semantic segmentation of ScanNet.

3) POINTCNN
PointCNN [30] is a simple and general framework for feature
learning from point cloud. Point clouds are irregular and
unordered, thus directly convolving kernels against features
associated with the points will result in desertion of shape
information and variance to point ordering. To address these
problems, an X -transformation is proposed to learn from the
input points to simultaneously promote two causes: the first is
the weighting of the input features associated with the points,
and the second is the permutation of the points into a latent
and potentially canonical order. Element-wise product and
sum operations of the typical convolution operator are subse-
quently applied on the X -transformed features. The proposed
method is a generalization of typical CNNs to feature learning
from point clouds, thus it is called PointCNN. Experiments
show that PointCNN achieves overall accuracy of 85.1% in
semantic segmentation of ScanNet.

These neural networks will be evaluated on the ballast
railway fastener point cloud semantic segmentation dataset
in next section. The one achieves best performance will be
implanted in the Deep learning module of IRC. The seg-
mented point cloud of fastener will be inspected to find out
defected fastener.

D. FASTENER INSPECTION BASED ON ITS SEGMENTED
POINT CLOUD
After point cloud semantic segmentation by deep learning
module, the point cloud of fastener will go through several
steps to inspect defects.

First step is checking the absence ofmiddle bolt of fastener.
Middle bolt is the most important component of a fastener,
if middle bolt is missing, the fastener will lose its function.
The middle bolt is inspected by checking the number of its
points. In the neural networks above, the input point cloud
will be sampled into a certain number to get regularized input

VOLUME 8, 2020 61609



H. Cui et al.: Real-Time Inspection System for Ballast Railway Fasteners Based on Point Cloud DL

FIGURE 10. Spring bar posture evaluation based on PCA.

that adapted to network structure. Therefore, the segmented
point cloud of fasteners will be less than input points. Assume
that the sampling rate of input points is δ, the number of
segmented points has to divided by δ. The area of middle
bolt upper surface is different between WJ5 and WJ2. So,
the number of its points is different as well, a normal middle
bolt ofWJ5 fastener has 800 points while that ofWJ2 has only
300 points. The threshold of the number of middle bolt point
cloud is set to 400 for WJ5 fastener and 150 for WJ2 fastener,
the middle bolt will be considered missing if the number of
its point cloud is lower than its corresponding threshold.

Spring bar is also an important component for a fastener,
it should not only go through point number check, but also
posture check. A normal WJ5 andWJ2 fastener has 5500 and
4450 points in its spring bar respectively. The threshold of
the number of spring bar point cloud is set to 5000 for
WJ5 fastener and 4000 for WJ2 fastener, if the number of
spring bar points is smaller than the threshold, the spring
bar will be considered partial fractured. Otherwise the spring
bar is considered complete, the posture of spring bar will be
evaluated by Principal Component Analysis (PCA), as shows
by FIGURE 10. Then calculate the deviation between the
main direction of spring bar (blue arrow in FIGURE 10) and
the y axis of fastener coordinate, if the deviation angle is
larger than 5◦, the spring bar will be considered skewed.

IV. EXPERIMENTS
Experiments include two parts, the first part is performance
evaluation of deep learningmodels on ballast railway fastener
point cloud segmentation dataset, the other part is field tests
of the fastener inspection system on ballast railway lines.

A. PERFORMANCE EVALUATION OF DEEP LEARNING
MODELS ON OUR DATASET
The performance of deep learning models is evaluated on our
ballast rail fastener point cloud segmentation dataset. The
experiment platform is a PC with Ubuntu16.04 OS, Intel
Xeon W-2145 CPU@3.7GHz, 64GB RAM, and NVIDIA
Titan RTX GPU with 22GB RAM. The software environ-
ments of deep learning models are shown in TABLE 1. The
parameters about size in the models are scaled down to fit

TABLE 1. Software environments of deep learning models.

TABLE 2. The segmentation accuracy of deep learning models in our
dataset.

the size of fastener. Training epoch and batch size of these
models are set to 500 and 32, respectively. Other parame-
ters like training steps, learning rates, and decay rates are
all remain the default settings of each model. The training
time for PointNet++, PointSIFT, and PointCNN is 51 hours,
35 hours, and 45 hours, respectively.

The index of accuracy used are class accuracy (CA) and
overall accuracy (OA), CA is worked out through (3), which
is all the correctly predicted points of this class divided by the
all the predicted points of this class. OA is calculated with (4),
which is correctly predicted points of all classes divided by
all the points in this fastener.

CA =
TP

TP+ FP
(3)

OA =

∑k
i=1 TP∑k

i=1 (TP+ FP)
(4)

The accuracy of deep learning models on ballast rail fas-
tener segmentation dataset shows in TABLE 2. Since rail
fasteners are standard parts, the size and location change
of fastener components in the point cloud is rather small,
all the deep learning models achieve very high accuracy in
our dataset. PointCNN achieves highest OA and CA in rail
bottom, PointSIFT gets highest CA in sleeper shoulder, and
PointNet++ achieves highest CA in spring bar and middle
bolt. Only the point cloud of spring bar and middle bolt is
used in the following fastener inspection, so, PointNet++
is selected and deployed into Jetson TX2 deep learning
module.

FIGURE 11 shows the segmentation result of PointNet++
on skewed fasteners in actual scene. The segmentation result
is basically correct. There are lots of holes in the point
cloud since input point cloud is sampled into a fixed number
to get regularized input that adapted to network structure.
FIGURE 12 shows the segmentation result of PointNet++
on abnormal fasteners in actual scene. FIGURE 12 (a), (c)
are ballast shielding fasteners, the ballast is marked out in red
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FIGURE 11. Segmentation result of PointNet++ on skewed fasteners in actual scene,
(a) skewed WJ2 fastener, (b)skewed WJ5 fastener.

FIGURE 12. Segmentation results of PointNet++ on abnormal fasteners in actual scene, (a) ballast
shielding fasteners, (b) side view of a, (c) ballast shielding fasteners, (d) side view of c, (e) spring bar
missing fastener, (f) side view of e.

frame in FIGURE 12 (b), (d) respectively. The point cloud of
ballast and spring bar is clearly segmented. FIGURE 12 (e)
is spring bar missing fastener, sleeper shoulder is over seg-
mented and middle bolt is not labeled, but no spring bar point
is labeled, which will still be classified as defected fastener
in following inspection process. PointNet++ shows good

generalization ability in new fasteners that not in the ballast
railway fastener segmentation dataset.

To test the time efficiency of trained PointNet++ model,
it is deployed into Jetson TX2, every parameter is the same as
default setup except for the batch size is set to 4, since there
are 4 fasteners in a sleeper. The evaluation of whole ballast
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TABLE 3. The confusion matrix between IRC inspection result and manual inspection benchmark.

FIGURE 13. Misclassified samples by segmentation-based fastener inspection method, (a) normal
WJ2 fastener covered by debris wrongly classified as fractured one, (b) side view of a, (c) normal WJ5
fastener covered by debris wrongly classified as missing component, (d) top view of c, (e) normal
WJ5 fastener covered by debris wrongly classified as skewed one, (f) top view of e.

rail fastener segmentation dataset takes 20s, considering the
dataset has 5500 fasteners, which is 1375 batches, it takes
15ms for one batch.

B. FIELD TESTS OF THE FASTENER INSPECTION SYSTEM
Before field tests of the fastener inspection system, the time
efficiency of the system should be tested first to verify its
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real-time processing ability. While the dataset preparation
process, we got much original point cloud of fasteners. A 2km
railway line was selected and went through fastener inspec-
tion process by the system. The whole inspection process,
including fastener point cloud extraction, segmentation, and
inspection took 305.2 seconds. That is to say the inspec-
tion speed of the system is 6.6 m/s, which is much faster
than walking speed. This fastener inspection system will
ensure real-time processing while pushing manually along
rail tracks.

Two field tests of the fastener inspection system were
conducted on ballast railway lines in Wuhan, China. These
railway lines are new lines and the fasteners are not in the
fastener point cloud segmentation dataset. One test was con-
ducted on railway line with WJ5 fasteners, the other test
was on railway line with WJ2 fasteners. Both tests were
about one kilometer in length. The IRC fastener inspection
system was pushed manually on the rail lines during the
outage time of train in early morning. The fasteners in test
area were inspected manually to get benchmark result and
make efficiency comparison with IRC system. Eventually,
5856 WJ2 fasteners and 6248 WJ5 fasteners were inspected
by both IRC system and human. The IRC systemwas pushing
in walk speed and real-time classification was conducted
on board, total time consumption was 26 minutes. Manual
inspection costed 4 workers about 3 hours and a half to
complete.

The fasteners were classified into four groups, namely,
normal fastener, skewed spring bar fastener, partially frac-
ture spring bar fastener, and missing component fastener.
The decision tree based ballastless rail fastener classification
method in our previous work [18] was also tested in the
same area to make comparison with the segmentation-based
ballast railway fastener inspection method proposed in this
paper.

The confusion matrix of manual inspection and IRC
inspection is shown in TABLE 3. The result of decision tree-
based method and segmentation-based method proposed in
this paper are both used. Many normal fasteners were clas-
sified as skewed and fracture fastener by decision tree-based
method, mainly caused by shielding of ballast, as the case in
FIGURE 12 (c) and (e). Several normal fasteners were clas-
sified as fractured or missing fastener by segmentation-based
method proposed in this paper, as is shown in FIGURE 13.
The misclassified samples are caused by debris that cover
the fastener, FIGURE 13 (a) and (e) is classified as fractured
spring bar fasteners, FIGURE 13 (c) is classified as missing
component fastener, and FIGURE 13 (e) is classified as
skewed spring bar fasteners.

The decision tree based ballastless railway fastener
classification method achieves 95.70% accuracy in bal-
last rail fasteners while segmentation-based method pro-
posed in this paper gets 99.74% accuracy, which is 4.04%
higher. In terms of efficiency, the IRC fastener inspec-
tion system is more than 30 times faster than manual
inspection.

V. CONCLUSION
In this paper, a real-time inspection system for ballast railway
fastener based on point cloud deep learning is developed.
Dense and precise point cloud of fastener is obtained from the
structured light sensors in the system. Since there are lots of
debris, especially ballast covering fasteners in ballast railway.
Instead of directly classification, the fastener’s point cloud is
segmented into different parts according to its components
to avoid the interference of debris on fasteners. A ballast
fastener point cloud semantic segmentation dataset is created
via automatic annotation method. Several deep learning point
cloud semantic segmentation models is tested in this dataset
and PointNet++ is selected to deployed in the deep learn-
ing module of the fastener inspection system. This system
achieved 99.7% accuracy in field test on ballast railways and
its efficiency is far more efficient than manual inspection.
In the future, we plan to gather more fastener data to achieve
balance between negative and positive samples in the dataset,
optimize the deep learning model by applying new activation
functions, and apply this model to thinner point cloud for
transplanting this system to train platform.
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