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ABSTRACT Recently, edge-preserving filters have achieved great success in infrared (IR) and visible (VI)
image fusion field. However, most edge-preserving filters are complex. In this paper, with the side window
filtering technology by which most filters can improve their edge-preserving capabilities, we propose a
general perceptual IR and VI image fusion framework with simple linear filter. Firstly, the source images
are decomposed into edge feature components, hybrid components and base components by using linear
filter and its side window version. Then, these components are combined by max-absolute fusion rule
and improved max-absolute fusion rule. Finally, the fused image is reconstructed by adding all the fused
components. In our experiments, two popular linear filters, i.e., box filter and Gaussian filter, are used to
verify the effectiveness of the proposed framework. Experimental results show that the proposed fusion
framework can obtain better perceptual fusion results than compared methods.

INDEX TERMS Image fusion, side window filtering, linear filter, infrared images, visible images.

I. INTRODUCTION
Visible (VI) images can reflect clear details and back-
ground scenery, which can lead to better situation aware-
ness. Infrared (IR) images can present obvious thermal object
information, which are conducive to object detection and
recognition. Infrared (IR) and visible (VI) image fusion is
an important part of multi-sensor informa-tion fusion, which
benefits many applications [1]. Taking advantage of all the
information of the source image is the main core of image
fusion. However, as for IR and VI image fusion, integrating
all the information of IR and VI images will make the fusion
results visually unpleasing because they are two different
phenomena of the same scene.

In the past decades, many IR and VI image fusion methods
have been proposed, andwe divide them into three categories,
i.e., multi-scale transform (MST)-based methods, deep learn-
ing (DL)-basedmethods, and other methods. DL-basedmeth-
ods [2]–[6] have emerged in recent years. Obviously, these
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methods would achieve better results in the near future. As for
IR and VI image fusion, DL-based methods have some issues
to be addressed. As there are no ground truth images, defining
the fusion results is not an easy task. In addition, training
images are limited. Other methods include gradient transfer-
based methods [7], [8], representation learning-based meth-
ods [9], [10], and etc. However, the fusion results of these
methods are visually unpleasing.

It is well known that MST-based methods [11]–[16] are the
most researched fusion methods. Their main process includes
three steps, i.e., decomposition, fusion, and reconstruction.
MST-based methods can achieve general results in image
fusion domain because their multi-scale processing mecha-
nism is consistent with human visual perception. Generally
speaking, the average fusion rule is used to fuse low-pass
components of the source images. However, it will lead to
low-contrast and poor visual performance of the fused image.
In order to retain the object information of the IR image and
the background information of the VI image simultaneously,
Fu et al. proposed a fusion method based on non-subsampled
contourlet transform (NSCT) and robust principal component
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analysis (RPCA) [11]. They firstly decomposed the source
images into low-pass components and high-pass components
by NSCT. Then RPCA was used to extract the saliency infor-
mation of the source images, and they used it to guide the
fusion of low-pass and high-pass components. Finally, they
reconstructed the fused image by inverse NSCT. However,
their method cannot do well in the low-light circumstances.

Recently, edge-preserving filters such as bilateral fil-
ter (BF) [17], weighted least squares filter (WLSF) [18],
and rolling guidance filter (RGF) [19] are widely used in
MST-based methods [12]–[14] as these filters have good
capabilities of edge-preserving. Ma et al. proposed an IR and
VI image fusion method to address several common defects
of conventional methods [13]. Firstly, the source images were
decomposed by RGF and Gaussian filter. Then, a saliency-
based fusion rule was used to fuse the base layers, and an
optimization-based fusion rule was applied to fuse the de-tail
layers. Finally, the fused image was a linear combination of
the fused base layer and detail layers. To achieve perceptually
better fusion results than conventional MST-based methods,
Zhou et al. proposed a hybrid MST-based method [14]. They
firstly used BF and Gaussian filter to decompose the source
images into edge feature components and texture detail com-
ponents. Then three different fusion rules were adopted to
fuse these components. Finally, the fused image was recon-
structed by adding all the fused components. Indeed, their
method can achieve perceptually better fusion results, and
thus leads to better situation awareness. However, most edge-
preserving filters are complex, especially BF. In this paper,
we demonstrate that just using linear filter can obtain percep-
tual fusion results for IR and VI images with the side window
filtering (SWF) technology.

In CVPR 2019, Yin and Gong et al. proposed a side
window filtering (SWF) framework [20]. Most linear filters
and nonlinear filters can significantly improve their edge-
preserving capabilities by using this framework. This good
property motivates us that using simple linear filter, for
example, box filter [21], can accumulate edge features of
the source images with the SWF technology, and we can
use these edge features to guide the fusion. Firstly, we use
linear filter and its side window version to decompose the
source images into edge feature components, hybrid com-
ponents and base components. Then, max-absolute fusion
rule and improved max-absolute fusion rule are applied
to fuse these decomposed components. Finally, the fused
components are used to reconstruct the fused image. The
effectiveness of the proposed fusion framework is verified
by using two linear filters which are box filter and Gaus-
sian filter. The main contributions of our work are outlined
below.
(1) SWF technology is introduced into IR and VI image

fusion for the first time, by using which most fil-
ters can improve their edge-preserving capabilities
which are conducive to image fusion. For example,
as Gaussian filter has no edge-preserving capability,
the fused images obtained by fusion methods using

decompositionmethods based onGaussian filter gener-
ally suffer from halo artifacts around the strong edges,
especially in IR and VI image fusion. This problem can
be well addressed with the SWF technology.

(2) We propose a general perceptual IR and VI image
fusion framework based on linear filter and SWF tech-
nology to achieve visually satisfactory fusion. To the
best of our knowledge, such a perceptual fusion frame-
work has not been studied yet.

(3) Edge-preserving filters have been widely used in IR
and VI image fusion, but they are complex. This paper
demonstrates that just using simple linear filter can
obtain state-of-the-art performance for the fusion of IR
and VI images with the SWF technology.

The rest of this paper is outlined as follows. We intro-
duce multi-scale decomposition based on linear filter and
SWF technology in Section II. We elaborate on the proposed
fusion framework in Section III. Experiments are conducted
in Section IV. Some conclusions are given in Section V.

II. MULTI-SCALE DECOMPOSITION BASED ON LINEAR
FILTER AND SIDE WINDOW FILTERING TECHNOLOGY
In CVPR 2019, Yin and Gong et al. proposed a side window
filtering (SWF) framework [20]. Under SWF framework,
most filters can significantly improve their edge-preserving
capabilities. Box filtering and Gaussian filtering can be
expressed as (1) and (2), respectively.

IBOX = BOX (I , rbox), (1)

IGAU = GAU (I , rgau, σgau), (2)

where I represents the input image, IBOX and IGAU repre-
sent the filtered output images of box filter and Gaussian
filter respectively, rbox represents the radius of the box fil-
ter, rgau and σgau represent the radius and standard devia-
tion of the Gaussian filter respectively, and BOX and GAU
represent the box filtering function and Gaussian filtering
function, respectively. The SWF versions of box filtering
and Gaussian filtering can be expressed as (3) and (4),
respectively.

IS−BOX = S − BOX (I , rs−box , itenum), (3)

IS−GAU = S − GAU (I , rs−gau, σs−gau, itenum), (4)

where IS−BOX and IS−GAU represent the filtered output
images of SWF versions of box filter and Gaussian filter
respectively, rs−box represents the radius of SWF version of
box filter, rs−gau and σs−gau represent the radius and standard
deviation of SWF version of Gaussian filter respectively,
S −BOX and S −GAU represent the corresponding filtering
functions respectively, and itenum represents the number of
iterations.

Figs. 1 and 2 show the 3− level decomposition using box
filter and its SWF version on a‘‘Camp’’ image pair {IR,VI },
respectively.I iBOX and I iS−BOX (i = 1, 2, 3, I ∈ {IR,VI }) rep-
resent the i − level filtered images obtained by box filter
and its SWF version with itenumi (i = 1, 2, 3), respectively.
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FIGURE 1. 3− level decomposition of the ‘‘Camp’’ IR image using box filter and its SWF version, the grayscale of all the images is
normalized to [0,1] (rbox = 7, rs−box = 7, itenum1 = 2, itenum2 = 7, and itenum3 = 12).

It can be seen from Figs. 1 and 2 that the edge features and
other details in the filtered images obtained by box filter are
successively smoothed, but the edge features in the filtered
images obtained by its SWF version are almost the same.
Based on the above observation, we can accumulate the edge
features by (5).

DiI = I iS−BOX − I
i
BOX (i = 1, 2, 3) , (5)

and the results are shown in Figs. 1 and 2. In addition,
in Figs. 1 and 2, we also show the hybrid components which
are obtained by (6). We named them hybrid components
because they contain not only edge features but also other
details. And IR3BOX and VI3BOX are the base components of
the IR and VI image, respectively.

H i
I = I i−1BOX − I

i
S−BOX

(
i = 1, 2, 3, I = I0BOX

)
. (6)

III. THE PROPOSED FUSION FRAMEWORK
Our proposed fusion framework mainly consists of three
steps: decomposition, fusion, and reconstruction. Fig. 3
shows its schematic diagram. In the next, we use box filter and
its SWF version to illustrate it. In addition to the parameters
to be studied, the other parameter settings in Section III are
consistent with Section IV.

A. DECOMPOSITION
As demonstrated in Figs. 1 and 2, we can decompose
the source images {IR,VI } into three parts, i.e., base
components

{
BIR = IRLBOX ,BVI = VILBOX

}
, hybrid compo-

nents
{∑L

i=1H
i
IR,
∑L

i=1H
i
VI

}
and edge feature components{∑L

i=1D
i
IR,
∑L

i=1D
i
VI

}
, L represents the decomposition

level.

B. FUSION
As our goal is to achieve perceptual fusion results, it is appro-
priate to inject important edge feature components from the
IR image into the VI image, which is demonstrated in [14].
Thus, we use edge feature components to guide the fusion.
Firstly, the initial weights V i (i = 1, 2 . . . L) are obtained
by (7).

V i
=

{∣∣DiIR∣∣− ∣∣DiVI ∣∣ , (∣∣DiIR∣∣− ∣∣DiVI ∣∣) > 0
0, otherwise,

(7)

and we normalize it to [0, 1]. Secondly, a nonlinear function
Sλ (x) is used to adjust the values of V i (i = 1, 2 . . . L) and
the final weightsW i (i = 1, 2 . . . L) are obtained by (8).

Wi = GAU (Sλ(Vi), r, σ ), (8)
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FIGURE 2. 3− level decomposition of the ‘‘Camp’’ VI image using box filter and its SWF version, the grayscale of all the images is
normalized to [0,1] (rbox = 7, rs−box = 7, itenum1 = 2, itenum2 = 7, and itenum3 = 12).

FIGURE 3. The schematic diagram of the proposed fusion framework.
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FIGURE 4. The plots of Sλ (x) with different λ.

where r and σ represents the radius and standard deviation of
the Gaussian filter, and we typically set r = floor (3σ). Note
that we use Gaussian filter to reduce noise and locally smooth
Sλ(Vi). Sλ (x) is defined as (9).

Sλ (x) = arctan(λx)/ arctan(λ), (9)

where x ∈ [0, 1], and λ (λ > 0) is the function parameter.
The plots of Sλ (x) with different λ are shown in Fig. 4.

From Fig. 4, we can find that as λ increases, the func-
tion value Sλ (x) of the same x increases. When λ→ 0,
Sλ (x) → x; when λ → ∞, Sλ (x) → 1, in this
case, the fusion rule tends to be the max-absolute fusion
rule. Thus,λ controls the amount of edge features injected
into the fused image from the IR image. In order to bet-
ter illustrate it, Fig. 5 and Fig. 6 show two fusion exam-
ples using box filter and its SWF version in the proposed
fusion framework with different λ. Note that different λ will
obtain different Wi for the same source images according
to (7)-(9). From Fig. 5 and Fig. 6, we can find that as λ
increases, the edge features labeled by red and green rectan-
gles in Fig. 5(a) and Fig. 6(a) increases in the corresponding
fused images. Finally, we can obtain the fused edge feature
components according to (10).

F iD = WiDiIR + (1−Wi)DiVI (i = 1, 2 . . . L) . (10)

The fused hybrid components are obtained by
F iH = WiH i

IR + (1−Wi)H i
VI (i = 2, 3, . . .L)

F iH =
{
H i
IR,

∣∣H i
IR

∣∣ > ∣∣H i
VI

∣∣
H i
VI , otherwise,

(i = 1)
(11)

In the next, we will explain why we use the max-absolute
fusion rule instead of the weightsW1 to fuse the hybrid com-
ponents at level i = 1. Fig. 7 shows the hybrid compo-nents
and edge feature components of the IR and VI image at level
i = 1. From Fig. 7, we can see that if we use the weights W1
obtained byD1

IR andD
1
VI to fuseH

1
IR andH

1
VI , the small bright

dots in the IR image will be lost to some extent. Fig. 8 shows
the fusion results obtained by using the weights W1 and the
max-absolute fusion rule. As demonstrated in Fig. 8, the small

bright dots are kept well in Fig. 8(d). While in Fig. 8(c),
the two small bright dots in the top left corner (labeled by
blue rectangles) are a little darker, and the small bright dot in
the lower right corner (labeled by red rectangle) is lost.

The fused base component is obtained by (12) and (13).

WB = GAU (Sλ(VL), rB, σB), (12)

FB = WBBIR + (1−WB)BVI , (13)

where σB = 4σ Lgau,and rB = floor (3σB). We set
σB = 4σ Lgau for the following consideration. As shown
in Fig. 9, Fig. 9(a) and Fig. 9(b) tend to be smoother than
Fig. 9(c) and Fig. 9(d), respectively, thus we set a larger σ
value for base component fusion. Fig. 10(c) and Fig. 10(d)
show the fusion results obtained by setting σB = σ and
σB = 4σ Lgau, respectively. Obviously, σB = 4σ Lgau is more
appropriate than σB = σ .

C. RECONSTRUCTION
The final fused image F can be reconstructed according
to (14).

F = FB +
L∑
i=1

F iD +
L∑
i=1

F iH (i = 1, 2 . . . ,L) . (14)

IV. EXPERIMENTS
This section contains four parts including instructions
about the experiments, analysis of parameters, subjective
results and objective results compared with several fusion
methods.

A. INSTRUCTIONS ABOUT THE EXPERIMENTS
1) DATASET
Twenty one pairs of images widely used in IR and VI fusion
field shown in Fig. 11 are adopted in our experiments, and
most of them are downloaded from the TNO dataset [22].
Image pairs 11(i), (l), (m)-(n),and (q) are provided by Zhang,
the first author of [23].

2) COMPARED METHODS AND PARAMETER SETTINGS
In order to verify the effectiveness of our proposed frame-
work, five fusion methods, which can achieve state-of-the-art
results, are selected to compare with our fusion framework.
They are based on NSCT and RPCA (NSCT-RPCA) [11],
gradient transfer fusion (GTF) [7], latent low-rank repre-
sentation(LATLRR) [10], hybrid multi-scale decomposition
(HMSD) [14], and ResNet and zero-phase component anal-
ysis (RESNET) [4]. The methods LATLRR and RESNET
were proposed in just one year. The parameters of these
five methods are set according to the corresponding orig-
inal papers. In our fusion framework, we use two filters,
which are box filter and Gaussian filter, to test in exper-
iments. For convenience, the methods using the box filter
and the Gaussian filter in our fusion framework are named
HBOX and HGAU, respectively. The parameter settings of
our method in Section IV are as follows: for box filter,
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FIGURE 5. (a) and (b) are the IR and VI image respectively, (c) and (h) are the fusion results obtained by the proposed fusion framework using box filter
and its SWF version with different λ, respectively.

FIGURE 6. (a) and (b) are the IR and VI image respectively, (c) and (h) are the fusion results obtained by the proposed fusion framework using
box filter and its SWF version with different λ, respectively.

FIGURE 7. (a) and (b) are the hybrid components of the IR and VI image at level i = 1 respectively, (c) and (d) are the edge feature components of the
IR and VI image at level i = 1, respectively.

rbox = rs−box = 7; for Gaussian filter, rgau = rs−gau =
7, σ i+1

gau
= σ i+1

s−gau
= 2σ i

gau
= 2σ i

s−gau
(i = 1, 2, 3), and

σ 1
gau
= σ 1

s-gau
= 2; and some identical parameters: L = 4,

itenumi = 2 + s (i− 1) (i = 1, 2, 3, 4), λ = 30, r = 3,
σ = 1, σB = 4σ Lgau, and rB = floor (3σB), here s represents
the step size of iteration number and we set it to 5. Note that
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FIGURE 8. (a) and (b) are the IR and VI image respectively, (c) and (d) are the fusion results obtained by using the weights W1 and the max-absolute
fusion rule, respectively.

FIGURE 9. (a) and (b) are the L− level box filtered image of IR and VI image respectively, (c) and (d) are the L− level edge feature components of IR and
VI image, respectively.

FIGURE 10. (a) and (b) are the IR and VI image respectively, (c) and (d) are the fusion results obtained by setting σB = σ and σB = 4σL
gau, respectively.

the parameters rbox = rs−box , rgau = rs−gau, L, and s are
analyzed in Section IV-B, and other parameters are set to their
empirical values [14].

3) EVALUATION METRICS
As there is no evidence that any image fusion evaluation
metric is better than the others, four evaluation metrics are
selected to comprehensively evaluate different methods. They
are correlation-basedmetric (SCD) [24], structural similarity-
based metric(MS−SSIM ) [25], visual information fidelity-
based metric (VIFF) [26], and human visual system (HVS)
models-based metric (QCB) [27]. Metric SCD measures the
sum of correlations of differences between the source images
and the fused image. MetricMS−SSIM measures the amount
of structural information transferred from the source images
to the fused image. Metric VIFF measures the visual infor-
mation fidelity between the source images and the fusion
result. Metric QCB is closely matched to human perceptual
evaluations. As our goal is to achieve percep-tually better

fusion results, the fourmetrics are appropriate. For all the four
metrics, a larger value means a better performance. The codes
for them are publicly available and we keep the values of all
the parameters in them unchanged. In addition, we also use a
metric named Sum to comprehensively evaluate each method
by cumulatively summing the score of each metric of each
method. More details about Sum can be found in [28].

B. ANALYSIS OF PARAMETERS
In this subsection, we analyze the influence of three param-
eters on the fusion performance of our proposed framework,
which are the decomposition level L, the filtering radius r(for
box filter, r = rbox = rs−box ; for Gaussian filter, r = rgau =
rs−gau), and the step size of iteration number s.

As demonstrated in [14],[29],[30], when the decomposi-
tion level L is too large, mis-registration will lead to artificial
effects in the fusion results, especially in multi-focus image
fusion. As we focus on IR and VI image fusion and most
source images are all downloaded from the TNO dataset [22],
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FIGURE 11. Source images used in our experiments.

which are all well registered, we do not consider this problem
in this paper. In addition, as L increases, the computation load
increases. On the other hand, when the decomposition level
L is too small such as 1 or 2, enough spatial details cannot
be extracted well [29], [30]. Fig. 12(a)–(e) show the fusion
results obtained by HBOX with L from 1 to 5, respectively.
It can be found that when L is equal to 1or 2, the mountain
silhouette is not fused well; when L is larger than 3, themoun-
tain silhouettes in Fig. 12(c)–(e) have no obvious difference.
However, the larger the L, the higher the computational cost.
Thus, a compromise on L should be made for the considering
of extracting the spatial details and the computation cost.
In most MST-based methods [14], [29], [30], L is recom-
mended to set to 4.

For the filtering radius r , when the value is too large, the
spatial details cannot be addressed well; when the value is too

small, the thermal object regions which usually have certain
size may not be fused well. Fig. 11(f)–(j) show the fusion
results obtained by HBOX with r equal to 3, 5, 7, 9, 11,
respectively. It can be found that the larger the r , the more
blurred the windows labeled by green rectangles, which are
enlarged in the lower left corner, and the more highlighted the
thermal objects labeled by red rectangles, which are enlarged
in the lower right corner. Thus, a compromise on r should be
made for the considering of extracting the spatial details and
highlighting the thermal objects. In [20], r is recommended
to set to 7.
itenum is recommended to set to 10 in [20]. As our

algorithm should accumulate the edge features, we increase
itenum by step size s, and it is not necessary to set the step
size of iteration number s to a larger value considering that
the decomposition level L is usually set to a value larger
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FIGURE 12. (a) and (e) are the fusion results obtained by H-BOX with different L respectively, (f) and (j) are the fusion results obtained by
H-BOX with different r respectively, (k) and (o) are the fusion results obtained by H-BOX with different s respectively.

than 3 in most MST-based methods. Moreover, the larger
the s, the higher the computation cost. Fig. 12(k)–(o) show
the fusion results obtained by HBOX with s from 3 to7,
respectively. It can be found that the results obtained using
different s have no obvious difference. Considering that
the larger the s, the higher the computation cost, we set s
to 5.

In the next, we experimentally studied the influence of
these three parameters on the fusion performance of our pro-
posed algorithm through quantitative comparisons using the
above five evaluation metrics. For convenience, we name the
methodM (M represent HBOXorHGAU)with L = 4, r = 7,
and s = 5 as ML4r7s5. For example, HBOXL4r7s5 stands
for HBOX with parameters setting: L = 4, r = 7, and s = 5.
When analyzing the effect of one parameter, we set the other
two parameters to constant. For example, when analyzing the
effect of L, we set the other two parameters to r = 7 and s =
5. Fig. 13 shows the quantitative results of SBOX and SGAU
with different parameter combinations, and all the metric val-
ues in Fig. 13 are the average values on the twenty one pairs
of images shown in Fig. 11. From Fig. 13(a) and (b), we can
find that L = 4 and L = 5 are two more appropriate choices
for both SBOX and SGAU. As shown in Fig. 13(c) and (d),
r = 7 and r = 9 are two moderate choices for both SBOX
and SGAU. From Fig. 13(e) and (f), we can find the fusion
performance of both SBOX and SGAU is not sensitive to s.

Combining the above analysis, in Section IV we set the three
parameters as follows: L = 4, r = 7, and s = 5.

C. SUBJECTIVE RESULTS
We take two widely used image pairs, i.e., ‘‘Octec’’ and
‘‘Road’’, as examples to demonstrate the effectiveness of
the proposed fusion framework, and the results are shown
in Fig. 14 and Fig. 15, respectively. Some regions of the
images are labeled with red or green rectangles, and some
of them are enlarged for better comparisons.

Fig. 14(a) and (b) present two source images which
were mainly captured under normal-light circumstance.
Fig. 14(c)–(i) show the fusion results obtained by NSCT-
RPCA, GTF, LATLRR, HMSD, RESNET, HBOX, and
HGAU, respectively. Compared with GTF, LATLRR, and
RESNET, our methods perform well in merging the ground.
Compared with NSCT-RPCA and HMSD, our methods per-
form well in merging the windows labeled by red rectangle.
In addition, the person in the fusion result obtained by NSCT-
RPCA is a little darker than it in our fusion results.

Fig. 15(a) and (b) present two source images which were
captured under low-light circumstance. Fig. 15(c)–(i) show
the fusion results obtained by NSCT-RPCA, GTF, LATLRR,
HMSD, RESNET, HBOX, and HGAU, respectively. The
background of the fusion result obtained by NSCT-RPCA
is too dark. The fusion result obtained by GTF is
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FIGURE 13. Quantitative results of SBOX and SGAU with different parameter combinations.

over-smoothed. The fusion result obtained by RESNET has
a low-contrast. Our methods perform better in merging the
windows labeled by red rectangle than LATLRR. Compared
with HMSD, our methods perform better in merging the part
labeled by green rectangle.

All in all, the proposed fusion framework can achieve
perceptual fusion results with more useful information.
Moreover, the fusion results obtained by HBOX and HGAU

on all source image pairs are given in the supplementary
material file.

D. OBJECTIVE RESULTS
The quantitative results on ‘‘Octec’’, and ‘‘Road’’ image
pairs are shown in Table 1 and Table 2 respectively, and the
average quantitative results on all the image pairs are pre-
sented in Table 3. In Tables 1–3, the values in bold indicate the
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FIGURE 14. Fusion results on the ‘‘Octec’’ source image pair.

TABLE 1. Quantitative results on the ‘‘Octec’’ source image pair.

TABLE 2. Quantitative results on the ‘‘Road’’ source image pair.
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FIGURE 15. Fusion results on the ‘‘Road’’ source image pair.

TABLE 3. Average quantitative results on all the source image pairs.

best for each metric, and the values in red indicate the second
for each metric. It can be seen from Table 1 that our methods
outperform other methods in terms of MS−SSIM and VIFF .
We can see from Table 2 that our methods outperform other
methods in term ofMS−SSIM , VIFF , andQCB. Although the
performance of the four metrics is not exactly the same for
different images, our method has certain advantages consid-
ering the average results on all the source image pairs, which
can be seen from Table 3. In addition, the performance of
metric Sum in Tables 1–3 further verifies the effectiveness
of our methods. The quantitative results demonstrate that our
fusion results can retain more useful information, and are

more consistent with human visual perception. Moreover, the
quantitative results on all the source image pairs are given in
the supplementary material file.

V. CONCLUSION
In this paper, we propose a general perceptual fusion frame-
work with linear filter and side window filtering (SWF)
technology. In our framework, the source images are firstly
decomposed by linear filter and its SWF version into edge
feature components, hybrid components, and base compo-
nents. Then, max-absolute fusion rule and improved max-
absolute fusion rule are used to merge these compo-nents.
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Finally, the fusion result is obtained by adding all the fused
components. In our experiments, we use two linear filters,
i.e., box filter and Gaussian filter, to validate the effectiveness
of the proposed fusion framework. The qualitative results
indicate that the proposed fusion framework can achieve
perceptual fusion results with more useful information. The
quantitative results demonstrate that our fusion results can
retain more useful information, and are more consistent with
human visual perception.

Some limitations of our fusion framework are as follows:
(1) There are many parameters in our proposed framework.
In Section IV-B, although the parameter settings of the pro-
posed framework are given experimentally, they do not take
into account the correlation between the parameters. In recent
years, due to the rise of deep learning, it will bring new ideas
to solve this problem. (2) The statistical difference between
different methods is unknown. Therefore, in our future work,
statistical significance tools (such as non-parametric Fried-
man test) can be used to analyze them [31], [32]. In addition,
since multi-modal medical image fusion has certain similari-
ties with IR and VI image fusion, it is also a future research
work whether the proposed framework is suitable for multi-
modal medical image fusion.
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