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ABSTRACT Random noise attenuation of seismic data is an essential step in the processing of seismic
signals. However, as the exploration environment is becoming more and more complicated, the energy of
valid signals is weaker and the signal to noise (SNR) is much lower, which brings great difficulty to seismic
data processing and interpretation. To this end, we propose an unconventional and effective seismic random
noise attenuation method based on proximal classifier with consistency (PCC) in transform domain. Firstly,
we analyze various transforms for seismic data from traditional wavelet transform and curvelet transform
to emerging non-subsampled shearlet transform (NSST) and non-subsampled contourlet transform (NSCT).
And, we select the excellent NSST to decompose the noisy seismic data into different sub-bands of frequency
and orientation responses. Secondly, unlike traditional sparse transform based seismic denoising methods
that often directly use a thresholding operator and corresponding inverse transform to denoise seismic data,
our proposed method employs a superior performance PCC to classify the NSST coefficients of seismic
data before thresholding operator. The added step can effectively divide the NSST coefficients into reflected
useful signal coefficients and noise-related coefficients, which can preserve the edge of reflected signals
and keep the information of events intact as much as possible. In addition, we also introduce an adaptive
threshold computingmethod and a soft-thresholdingmethod to achieve seismic data denoising better. Finally,
the experimental results on the typical synthetic example and real seismic data show the superior performance
of the proposed method.

INDEX TERMS Seismic data, random noise, attenuation, proximal classifier with consistency (PCC),
non-subsampled shearlet transform (NSST).

I. INTRODUCTION
Improving the signal-to-noise ratio of seismic exploration
data is a key step in processing seismic data, and suppress-
ing random noise in seismic signals is an important link in
improving the signal-to-noise ratio of seismic data. In seismic
data acquisition from different sensing equipment or net-
works [1]–[6], many reflection events are polluted by various
types of noise, which can be classified into two categories
including coherent and incoherent interference. In this paper,
we mainly focus on incoherent interference, aka random
noise. Random noise attenuation can play an important role in
seismic data processing. It can not only improve the fidelity
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and stability of migration or inversion, but also can make
diffraction reduction in the migrated image or profile and
facilitate the interpretation for making accurate oil and gas
decisions.

Over the past decades, excellent experts in the field of
seismic exploration and signal processing at home and abroad
have made unremitting efforts to suppress random noise in
seismic data. Most of seismic denoising approaches have
been presented such as the initial random noise reduction [7],
wavelet transform based seismic denosing [8], random noise
attenuation by f-x empirical mode decomposition [9], simul-
taneous dictionary learning and denoising [10], EMD-seislet
transform based denoising [11], random noise suppression
via variational mode decomposition [12] and fast dictionary
learning for noise attenuation of multidimensional seismic
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data [13], and so on. Therein, the sparse transform based
seismic random noise attenuation is one of the most effec-
tive and widely used methods. Zhang and Lu [8] applied
the wavelet transform to remove noise of seismic data.
Neelamani et al. [14] applied the curvelet transform to atten-
uate both incoherent and coherent noise in seismic data.
Recently, Chen and Fomel [11] proposed a new EMD-seislet
transform to denoise seismic data. Liu et al. [15] presented a
random noise attenuation approach using curvelet transform
and compressive sensing theory. Sang et al. [16] proposed a
transform domain based seismic data denoising algorithm by
using a machine learning classification method. All of these
approaches have obtained good denoising effects to a certain
extent.

In this paper, we present an unconventional and effective
technique to attenuate seismic random noise. Firstly, we ana-
lyze various transforms for seismic data from traditional
wavelet transform and curvelet transform to emerging NSST
and NSCT. And, we select the excellent NSST to decompose
the noisy seismic data into different sub-bands of frequency
and orientation responses. Secondly, unlike traditional sparse
transform based methods that often directly use a threshold-
ing operator and corresponding inverse transform to denoise
seismic data, our proposedmethod employs a superior perfor-
mance proximal classifier with consistency (PCC) to classify
the NSST coefficients of seismic data into reflected sig-
nal information-related coefficients and noise-related coeffi-
cients before thresholding operator, which can preserve the
edge of reflected signals and keep the information of events
intact as much as possible. Finally, we introduce an adaptive
threshold computing method and a soft-thresholding method
to achieve seismic data denoising better. We use the typical
synthetic example and field acquisition seismic data to verify
the effectiveness of the proposed approach. The experimental
results show that our approach obtains higher quality assess-
ment of seismic data.

II. PRELIMINARIES AND PROPOSED METHOD
A. ANALYSIS OF VARIOUS TRANSFORMS
Wavelets’ success [17] on representing digital signals can be
attributed to good sparse presentation for one-dimensional
signals which are smooth away from discontinuous points.
However, wavelet transform is difficult to deal with multi-
dimensional signals with singularities effectively. In con-
trast, some other image/signal representations, including
curvelets [18], contourlet [19], and bandelets [20], can
explore the anisotropic regularity of a surface along edges.
However, curvelets do not supply with a multi-resolution
geometric representation; contourlets consist of very few
clear directional features; bandelets transform requires high
computational time to search for the optimal geometry.

Subsequently, shearlet transform is presented by
Labate et al. [21], which is a multi-scale and multi-
resolution representation with geometry. The major supe-
riority of the transform is that it can be conducted via
a general multi-resolution analysis. Following the success

of shearlet transform, non-subsampled shearlet transform
(NSST) [22], [23] was presented to maintain the superiority
of shearlet transform and make up the deficiencies. NSST
uses the non-subsampled Laplacian pyramid filters to take the
place of the Laplacian pyramid filters to keep away from the
negative effect brought by up-sampling and down-sampling
in shearlet transform, which allows NSST to possess multi-
scale, multi-directional and shift-invariant characteristics.
A typical NSST consists of two parts: multi-scale decompo-
sition and multi-directional decomposition. The multi-scale
decomposition is implemented by the non-subsampled Lapla-
cian pyramid filters; and the multi-directional decomposition
is carried out by the modified shearing filters. To catch
the singularities of images or signals, the non-subsampled
Laplacian pyramid filters decompose the sub-band of low-
frequency of k times. Thus, it can obtain k + 1 sub-bands of
high frequency and one sub-band of low-frequency. In order
to not use sub-sampling, the entire procedure is implemented
through a 2-dimensional convolution calculation by mapping
shearing filters from the pseudo-polarization grid system to
the Cartesian coordinate system, realizing direct processing
in transform domain.

At the same time, non-subsampled contourlet transform
(NSCT) was proposed by DaCunha et al. [24]. It is another
effective multi-scale analysis algorithm and improves the
contourlet transform [19]. NSCT applies non-subsampled
pyramid decomposition as well as a directional filter bank
based on 2-channel fan filter banks to establish directionally
sensitive digital filters on several scales. NSCT primarily
contains non-subsampled pyramid filter bank (NSPFB) and
non-subsampled direction filter bank (NSDFB) in a cascade
way. First, NSPFB decomposes the images or signals; then
NSDFB takes the generated sub-bands of NSPFB as input to
obtain the decomposed results of the initial images or sig-
nals in a multi-dimensional way. NSCT conducts K-level
directional decomposition on any images or signals to obtain
one sub-band of low-frequency and some sub-bands of high-
frequency. The sizes of these sub-bands are the same as the
initial image. NSCT can be completely reconstructed because
NSPFB andNSDFB satisfy the conditions of complete recon-
struction. The main drawback of NSCT is that the massive
digital sampling is demanded by a directional filter bank,
and only the band-limited filters can guarantee the directional
selectivity.

For the abovementioned transforms, it can be found in [25]
that NSST shows good performance in various experiments.
So, we adopt the superior performance NSST to exploit seis-
mic data. See Section II.B.

B. NON-SUBSAMPLED SHEARLET TRANSFORM (NSST)
FOR SEISMIC DATA
Shearlet transform [21], [26] can generate almost optimal
approximation properties. In the 2-dimensional space, shear-
lets can be presented as follows:

ψa,s,t =
∣∣detMa,s

∣∣− 1
2 ψ

(
M−1a,s x − t

)
, (1)
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where a, s and t are respectively scale, orientation and loca-

tion parameters. Ma,s =

(
a
√
as

0
√
a

)
= BsAs, As =(

a 0
0
√
a

)
, and Bs =

(
1 s
0 1

)
. The matrix As denotes

an anisotropic dilation and Bs is a shearing matrix. ψ is the
generating function.

The shearlet transform of a function f is defined as

SHψ f (a, s, t) =
〈
f , ψa,s,t

〉
. (2)

If the resulting function ψa,s,t satisfiers the reconstructed
conditions, each function f ∈ L2

(
R2
)
can be reconstructed as

f =
∫
R2

∫
∞

−∞

∫
∞

0

1
a3
〈
f , ψa,s,t

〉
ψa,s,tdadsdt, (3)

where ψa,s,t is defined in the frequency domain ψ̂ (ξ1, ξ2) =
ψ̂1 (ξ1) ψ̂2

(
ξ2
/
ξ1
)
. ψ̂1 and ψ̂2 are smooth functions. They

are inside a support of domain
[
−2,−1

/
2
]
∪
[
1
/
2, 2

]
for ψ̂1

and the support of [−1, 1] for ψ̂2. So for ξ = (ξ1, ξ2),

ψ̂a,s,t (ξ1, ξ2)=a3/4e−2π iς t ψ̂1 (aξ1) ψ̂2

(
a−1/2

(
ξ2
/
ξ1−s

))
,

(4)

which has support in{
(ξ1, ξ2) : ξ1 ∈

[
−2
/
a,−1

/
(2a)

]
∪
[
1
/
(2a), 2

/
a
]
,∣∣(ξ2/ξ1)− s∣∣ ≤ √a}. (5)

Each ψa,s,t possesses frequency support on a pair of trape-
zoids at a few of scales, origin of symmetry, and oriented
along a line of slope s. So, the shearletsψa,s,t form a series of
well-localized waveforms at various scales a, orientations s,
and locations t .

Non-subsampled shearlet transform (NSST) is the shift-
invariant version of shearlet transform and combines the non-
subsampled Laplacian pyramid transform (NSLP) with a few
of different combinations of the shearing filters. NSLP can be
expressed via iterative processing as follows:

NSLPj+1 = Ajf =

Ah1j j−1∏
k=1

Ah0k

 f , (6)

where NSLPj+1 is the detail coefficients of the (j+ 1) − th
scale. Ah0k and Ah

1
j are low-pass and high-pass filters ofNSLP

at the k-th scale and the j-th scale, respectively. Given data
f 0a and direction number Dj, the process of the NSST for the
fixed j-th scale can be concluded as follows:

1) Use the NSLP to decompose matrix f j−1a into a data
matrix f ja of low-pass and a data matrix f jd of high pass;

2) Calculate the Fourier transform f̂ jd in pseudo polar grid,
then obtain Pf jd ;

3) Use a band-pass filtering on Pf jd to get
{
f̂ jd,k

}Dj
k=1

;
4) Use inverse fast Fourier transform (FFT) to get NSST

coefficients
{
f jd,k

}Dj
k=1

in pseudo polar grid.

Fig. 1 shows a framework of the non-subsampled sheartlet
transform (NSST). The structure contains a bank of filters

FIGURE 1. Overview of NSST of 2D seismic data.

FIGURE 2. The NSST on Zoneplate data: (a) Original Zoneplate. (b) The
approximate NSST coefficients (low-pass sub-band). (c) Images of the
detail NSST coefficients at scale 2, 4 directions. (d) Images of the detail
NSST coefficients at scale 1, 8 directions.

that divides the two-dimentional frequency plane into the sub-
bands complained in the lower left quarter of Fig. 1. The
2D seismic data can be divided by NSST into two shift-
invariant parts: ¬ a non-subsampled pyramid structure that
guarantees the multi-scale property (Part 1 in Fig. 1) and ­ a
non-subsampled Directional Filter Bank (DFB) structure that
presents directionality (Part 2 in Fig. 1).

Fig. 2 shows analyzed results of applying the two levels
NSST on ‘Zoneplate’ data like the diffracted waves, yielding
one low-pass sub-band and multiple high-pass sub-bands.
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FIGURE 3. The NSST on synthetic seismic data with noise: (a) Noisy
seismic data. (b) The approximate NSST coefficients. (c) Images of the
detail NSST coefficients at scale 2, 2 directions. (d) Images of the detail
NSST coefficients at scale 1, 4 directions.

Here, the numbers of shearing directions are selected to
be 8 and 4 from finer to coarser scale.

Fig. 3 shows analyzed results of applying the two levels
NSST on a synthetic seismic data with noise (Fig. 3(a)), also
yielding a low-pass sub-band (Fig. 3(b)) and multiple high-
pass sub-bands (Fig. 3(c-d)). Here, the numbers of shearing
directions are also selected to be 4 and 2 from finer to coarser
scale. We can see that signals of different frequencies are well
separated by different decomposition scales and directions.
The effective seismic reflected signals are mainly in the low
frequency sub-band (Fig. 3(b)). Most of high frequency ran-
dom noise is in the 4 shearing directions (Fig. 3(d)). Fig. 3(c)
contains partial effective signals and random noise.

C. PROXIMAL CLASSIFIER WITH CONSISTENCY (PCC)
Many machine learning methods have been used different
areas [13], [27]. Support vector machines (SVMs) [28],
being effective classification and prediction tools for super-
vised learning, have already made many achievements in

practical applications. SVMs establish two parallel hyper-
planes; in contrast, the generalized eigenvalue proximal sup-
port vector machine (GEPSVM) presented by Mangasarian
and Wild [29] achieves the objective of yielding two non-
parallel hyper-planes, each of which is near itself class and
is far away from the other classes. The potential differ-
ence between SVMs and GEPSVM is mainly that SVMs
obtain a separated hyper-plane by seeking the solution of
one quadratic program problem, whereas, GEPSVM obtains
two non-parallel hyper-planes by seeking the solution of two
generalized eigenvalue problems. The experimental results
on UCI datasets show that GEPSVM is effective in [29].

Based on GEPSVM, Shao et al. [30] proposed the prox-
imal classifier with consistency (PCC) algorithm, which
also establishes two non-parallel hyper-planes. But, they
are different potentially between PCC and GEPSVM. For
GEPSVM, the optimization solutions are solved by com-
puting and comparing the two distances from one hyper-
plane to two sample points in the training process; while the
prediction class of one test point is decided by comparing
the two distances from the test point to two hyper-planes
in the prediction process. Therefore, the prediction process
is inconsistent with the training process. In order to achieve
uniformity, PCC attempts to compare the two distances from
one testing point or one training point to the two hyper-planes.
Besides, the prediction process and the training process use
a uniform distance. This not only brings about a low calcula-
tion cost of prediction function deservedly, but also logically
makes PCC to be more reasonable.

In this section, we introduce the superior performance
proximal classifier with consistency (PCC) for transformed
seismic data. A two-class classification problem is consid-
ered in the n-dimensional space Rn. The training set can be
expressed as follows:{
(x1, y1) , · · · ,

(
xp, yp

)
,
(
xp+1, yp+1

)
, · · · ,

(
xp+q, yp+q

)}
,

(7)

where y1 = · · · = yp = 1, and yp+1 = · · · = yp+q = 0.
The positive inputs are X+ =

(
x1, · · · , xp

)T
∈ Rp×n and the

negative inputs are X− =
(
xp+1, · · · , xp+q

)T
∈ Rq×n. The

objective of PCC is to search a positive hyper-plane p+ and a
negative hyper-plane p− simultaneously:

p+ : wT
+ + b+ = 0,

p− : wT
− + b− = 0. (8)

PCC aims to compute and compare two distances from a
point to the two hyper-planes in the process of training and
decision. Giving the following expressions:

u+ =
[
w+
b+

]
, G+ = [X+ e+] , H+ = GT

+G+,

u− =
[
w−
b−

]
, G− = [X− e−] , H− = GT

−G−. (9)
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FIGURE 4. Results of GEPSVM and PCC on ‘‘Cross Planes’’ data.

The optimal problem of PCC can be presented as follows:

min
u+,u− 6=0

uT+Au+ + δ ‖u+‖
2

‖u+‖2
+
uT−Bu− + δ ‖u−‖

2

‖u−‖2
, (10)

where A = H+ − vH−, B = H− − vH+, v denotes a positive
trade-off parameter found in [31], δ > 0 denotes a weighted
factor, and ‖·‖ is the L2 norm. A new point x ∈ Rn can be
classified to class i (i = 1, 0)when u+ = (w+, b+) and u− =
(w−, b−) in (10) are solved:

class i = arg min
i=1,0

∣∣wT
i x + bi

∣∣
‖ui‖

. (11)

where |·| denotes the absolute value.
It has been shown that PCC can well deal with the ‘‘Cross

Planes’’ data [29], [32]. Fig. 4 [30] indicates the data and the
linear classifiers acquired by PCC and GEPSVM. It lists the
2-D scatter plots of the test data points for this 2-D dataset
acquired by GEPSVM and PCC classifiers, respectively.
The plots are acquired by plotting points with coordinates(
d+i , d

−

i

)
, where d+i and d−i are the distances from a testing

point xi to the two hyper-planes. Perceive easily, the classifi-
cation results of PCC are better than that of GEPSVM from
Fig. 4.

D. SEISMIC RANDOM NOISE ATTENUATION USING PCC
CLASSIFICATION IN NSST DOMAIN
In this section, we present the new and unconventional
seismic random noise attenuation method using PCC
classification in NSST domain. NSST is an emerging and
excellent multi-scale, multi-direction and optimal sparsity
analysis method, which can provide nearly optimal approxi-
mation of the decomposed seismic effective signals. First, we
decompose the noisy seismic data into different sub-bands of
frequency and orientation responses using NSST, i.e., a low-
pass sub-band and multiple high-pass sub-bands.

The approximation information of major reflected signals
of seismic data is concentrated in the low-pass sub-band,
while the high-pass sub-bands contain the noise and other
detail reflected signal information-related. Therefore, it is
so significant to accurately make a distinction between the
noise-related NSST coefficients and reflected useful NSST
signal coefficients in high-pass sub-bands. Thus, we propose
to use the superior performance PCC to divide the NSST
detail coefficients in high-pass sub-bands, as shown in Fig. 5.
On this basis, we further extract the useful signal information
(as ‘red plus’ in the black circle of Fig. 5) from the noise-
related coefficients (as below separating line in Fig. 5) by
introducing an adaptive threshold computing method and a
soft-thresholding method after PCC classification.
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FIGURE 5. Diagram of PCC classification.

FIGURE 6. Diagram of the spatial geometric regularity: (a) the noisy
seismic data; (b) the estimated binary map of the NSST coefficient matrix;
(c) support value array.

The main steps of our presented seismic denoising method
can be summarized in detail as follows.
Step1: Conduct a K level NSST decomposition on the

noisy seismic data, and acquire one low-pass sub-band
and multiple high-pass sub-bands Dk,j (k = 1, 2, · · · ,K ;
j = 1, 2, · · · , J). Here, j denotes the orientation of decom-
position, J denotes the direction number of decomposition,
and k is the level of decomposition. See Section II.B.
Step2: Construct the feature vectors for PCC training

by generating preliminary binary map and support value
array [33], [34] in high-pass sub-bands Dk,j. Fig. 6 presents
the spatial geometric regularity. Fig. 6(a) is the noisy seismic

FIGURE 7. Comparison of processing results on noisy synthetic data by
different denoising methods. (a) Original synthetic data. (b) Noisy
synthetic data. (c, d) Denoised data and removed noise by the
wavelet-based th reshold denoising approach. (f, g) Denoised data and
removed noise by the curvelet-based threshold denoising approach.
(e, h) Denoised data and removed noise by the proposed approach.

data, and Fig. 6(b) is the preliminary binary map of red box in
Fig. 6(a). For the high-pass sub-bands Dk,j, we can compute
the preliminary binary map matrix Class (x, y),

Class (x, y) =

{
1, |C (x, y)| > τ,

0, else,
(12)

where C (x, y) is the NSST coefficients generated by NSST
of noisy seismic signals, and (x, y) denotes the location as
shown in the preliminary binary map. τ denotes a threshold
parameter used to select available large NSST coefficients in
the process of constructing the binary map of NSST coeffi-
cient matrix. Generally, we choose it by experiment. Fig. 6(c)
is the support value array. The support value denotes the
summation of all Class (·) which sustain the present binary
value Class (x, y) that spatially connects the total number
of available NSST coefficients. Thus, we select M NSST
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FIGURE 8. Effectiveness of PCC integrated with different transforms.

coefficients corresponding to high-pass sub-bands Dk,j with
the maximal support value (e.g. the maximal number is 20 of
support value ‘1’ as shown in Fig. 6(c)) as the feature vectors
FV 1

k,j, and M NSST coefficients with the support value ‘0’
are randomly selected as the feature vectors FV 2

k,j. Finally,
the preliminary binary map Class (x, y) corresponding to the
selected NSST coefficients is viewed as the training objective
OB1k,j and OB2k,j respectively. The selected feature vectors
contain most valid seismic signals.
Step3: Train the PCC model of objective with NSST coef-

ficients. Let FV 1
k,j and FV

2
k,j be the trained feature vectors,

OB1k,j and OB2k,j are the trained objective class; then the
training samples can be obtained as follows:

Sk,j =
{(
FV 1

k,j,FV
2
k,j,OB

1
k,j,OB

2
k,j

)}
. (13)

Therefore, the PCC classification model can be acquired
by training Sk,j.
Step4: Classify the NSST coefficients in high-pass sub-

bandsDk,j into two categories by using PCCmodel: reflected
useful signal coefficients and noise-related coefficients.
So, the NSST coefficient is viewed as the reflected useful
signal coefficient while the actual output is 1 according to
Formula (11), and the NSST coefficient is viewed as the
noise-related coefficient while the actual output is 0.
Step5: Calculate the denoising threshold for each detail

sub-band. In this paper, we introduce an adaptive thresh-
old computing method [35] to compute the denoising
threshold Tk,j:

Tk,j = Sk,j × T ∗k,j, (14)

where Sk,j = 1 −
(
J
/
4
)
×

(
Ek,j

/∑K
j=1 Ek,j

)
is the com-

pensation factor for modifying the primary denoising thresh-
old T ∗k,j = δk,j

√
2 lnN × 2(k−K )/2. δk,j is noise standard

deviation of detailed sub-bands Dk,j, and N denotes the
number of elements in the noise-related sub-bands. Ek,j =∑

dk,j(x,y)∈Dk,j d
2
k,j (x, y), and dk,j (x, y) is the original noise-

related NSST coefficients in high-pass sub-bands Dk,j.
Step6:Handle the noise-related NSST coefficients in high-

pass sub-bands Dk,j using the outstanding soft-thresholding

FIGURE 9. CDP gather (a) and the result (b) processed by proposed
approach.

approach.

dk,j (x, y) =


sgn

(
dk,j (x, y)

) (∣∣dk,j (x, y)∣∣− Tk,j) ,∣∣dk,j (x, y)∣∣ ≥ Tk,j,
0, otherwise,

(15)

where dk,j (x, y) denotes the handledNSST coefficients using
the soft thresholding approach in high-pass sub-bands.
Step7: Perform inverse NSST transform on the denoised

NSST high-pass components, and the original low-pass com-
ponent to reconstruct the denoised seismic data.

III. EXPERIMENTAL RESULTS
To evaluate the performance of our presented approach,
we first compare it with the two well-known wavelet trans-
form based seismic denoising method and curvelet trans-
form based seismic denoising method on a typical synthetic
example that can be shown in Fig. 7(a), and the time sam-
pling interval is 1 ms and the number of traces is 150.
We addGaussian randomnoise to the synthetic data, as shown
in Fig. 7(b). In our experiments, the threshold parameter
τ in Section II.D is set to 15. The numbers of shearing
directions are selected to be 4 and 2 from finer to coarser
scale. We denoise the noisy synthetic data using the three
approaches. Fig. 7(c), 7(d) and 7(e) are the denoised results,
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FIGURE 10. Stack profile (a), the result (b) processed by our proposed
method and removed noise (c) by the proposed approach.

respectively. From the visual perspective, the result (Fig. 7(e))
by our proposed approach is obviously better than the ones
(Fig. 7(c) and 7(d)) by other two approaches. In addition,
we also quantitatively evaluate the results using the classic
signal to noise ratio (SNR) [36] that can be defined as

SNR = 20 · log10
(
‖x0‖2

/
‖x1 − x0‖2

)
, (16)

where ‖·‖2 denotes L2 norm. x0 is noiseless data, and x1
is data with noise or denoised data. The SNR values of
the results (Fig. 7(b), 7(c), 8(d) and 7(e)) are −2.3405 dB,
3.2548 dB, 5.8596 dB and 7.9543 dB. This indicates that
our presented approach can achieve a better denoising result.
Fig. 7(f), 7(g) and 7(h) are removed noise by three methods,

FIGURE 11. Stack profile (a), the result (b) processed by our proposed
method and removed noise (c) by the proposed approach.

respectively. We can see that the wavelet transform based
and the curvelet transform based methods lose some effective
signals (red arrows); whereas, our proposed method does
not lose effective signals basically. The reason of attaining
such a good result is closely related to conduct an effec-
tive PCC classification on NSST detail coefficients using
a superior performance classifier. Besides, we summarize
the data with different SNR before and after denoising, as
shown in Table 1. We can see that the proposed method
have best denoising ability, especially for the noisy data of
low SNR. Besides, we also compare two outstanding thresh-
olding methods (hard-thresholding and soft-thresholding) for
proposed approach, as shown in Table 2. We can see that
the soft-thresholding method is a little better than the hard-
thresholding method.
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TABLE 1. Comparison of data with different signal to noise ratios (SNR)
before and after denosing.

TABLE 2. Comparison of different thresholding methods for proposed
approach.

Next, we evaluate the effectiveness of PCC on the synthetic
data (Fig. 7(b)). We use three approaches (Wavelet transform,
Curvelet transform and NSST) and integrate them with PCC.
Fig. 8 indicates the comparison results of processing the
synthetic data by different approaches. From Fig. 8, we can
see that three approaches can be improved significantly when
integrated with PCC. Experimental results demonstrate that
the improvements are consistent across various transforms.

Furthermore, we apply our proposed method to real seis-
mic data in Liaohe depression, China: a pre-stack common
depth point (CDP) gather (Fig. 9(a)) and two stack pro-
file (Figure 10(a) and Figure 11(a)). The processed result
(Fig. 9(b)) for the CDP gather show that the reflected signals
highlights and the SNR is improved significantly. Fig. 10(b)
and Fig. 11(b) show the processed result for the stack pro-
file. We can see clearly that the reflected signals highlights,
and there is clearer interlayer information. Fig. 10(c) and
Fig. 11(c) indicate the removed noise sections. It is obvious
that they do not lose useful signals essentially.

IV. CONCLUSION
We present a new seismic random noise attenuation method
based on the non-subsampled shearlet transform (NSST) and
proximal classifier with consistency (PCC) classification.
The new technique can keep the information of events intact
to the maximum degree. The experimental results on the
synthetic data and real seismic data show the effectiveness
of our proposed method. The fine processing will be more
suitable for high precision seismic exploration.
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