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ABSTRACT The object tracking methods based on multi-domain convolutional neural network (MDNet)
commonly fail to track in the case of background clutter. A novel double-channel object tracking (DCOT) is
proposed to solve this problem. The discriminative correlation filter (DCF), which has strong discriminative
power of low-level features, is employed for the position deviation suppress of the samples generated from
MDNet. Firstly the pre-trained deep network is used to learn and classify the target and background in the
video frames. If the tracked position of the DCF is judged to be correct, we delete the target candidate samples
with high position deviation from MDNet. The position deviation is measured by the distance between the
tracked positions of the DCF andMDNet. Finally,MDNet andDCF are updatedwith a robust update strategy.
The experiments are performed on OTB-100 and VOT-2016. The overlap precision and distance precision
of DCOT on OTB-100 are 92.2% and 69.5%, respectively, which are higher than those of MDNet by 1.3%
and 1.7%. The results of DCOT in background clutter are higher than those of SANet by 0.2% and 2.8%,
respectively. DCOT is also superior to other state-of-the-art trackers on VOT-2016.

INDEX TERMS Double-channel object tracking, position deviation suppression, DCF, MDNet.

I. INTRODUCTION
Object tracking is to specify the size and position of the target
in the first frame of the video sequence, and then find the size
and position of the same target in the subsequent frames [1],
[2]. It is widely used in various fields such as autonomous
driving, robot navigation, missile guidance, intelligent trans-
portation, etc. [3]. Among them, discriminative correlation
filter (DCF) and deep learning become two mainstream tech-
nologies for object tracking [4], [5]. The DCF tracking algo-
rithms using traditional features have fast speed and high
localization accuracy in simple background. The localiza-
tion accuracy of the DCF algorithms using deep features
is improved, but they still suffer from the problems of tar-
get occlusion, deformation, out-of-plane rotation, and so on.
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The deep-learning-based object tracking algorithms are typ-
ically pre-trained on large data sets (such as ImageNet [6]),
so the appearance and semantic information are well inte-
grated to improve the performance in the scenarios of target
occlusion and deformation. Different sequences involve vari-
ous labels of class, movements, and object shapes; therefore,
tracking algorithms encounter several challenges in different
sequences, such as occlusion, deformation, illumination vari-
ance, motion blur, and so on.

A new convolution neural network (CNN) architecture is
used in multi-domain convolutional neural network (MDNet)
[7], in which multiple labeled videos are used for the train-
ing of the shared representations among different targets.
Different videos represent different domains. Firstly, CNN
network is offline trained. Then the fully connected layer is
online fine-tuned to train and update the network. Under the
existing object classification knowledge, the tracker learns
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FIGURE 1. The object tracking performance of MDNet in sequence
Basketball. The red and green boxes are the prediction results of MDNet
and ground truth, respectively. G and S represent the confidences of the
ground truth and the prediction results, respectively.

the targets with various poses in the current tracking scene,
and adds long-term and short-term learning mechanisms to
solve occlusion problem. However, the CNN network is not
able to well classify similar objects that are close. As shown
in Figure 1, a tracking error occurs when the two basketball
players in the similar color clothes are close to each other.

A novel double-channel object tracking (DCOT) is pro-
posed to solve the aforementioned problems. The one channel
is MDNet. The other channel is discriminative correlation
filter (DCF), which has strong discriminative power of low-
level features and is employed for the position deviation
suppress of the samples generated from MDNet. Our contri-
butions include:

(1) The proposed two-channel target tracking algorithm
combines MDNet and spatial regularization correlation filter
(SRDCF). MDNet has the strong processing power for target
deformation, while SRDCF has the sensitivity to complex
background and low-resolution targets.

(2) The low-level feature of correlation filter (DCF) with
strong discrimination ability is used to suppress the positional
deviation of the samples in MDNet.

(3) A novel robust update strategy is established. MDNet
uses the short-term and long-term mechanisms to update,
while SRDCF is updated under the supervision of MDNet.
This waymakes the twomethods complement each other, and
improves the overall robustness of the algorithm.

OTB-100 [8] and VOT2016 [9] are used to evaluate
DCOT, which is compared with several state-of-the-art deep-
learning-based trackers and classic trackers.

II. RELATED WORKS
We just introduce the tracking algorithms based on correla-
tion filter and deep learning since they are two mainstream
technologies for object tracking.

A. TRACKING ALGORITHM BASED ON
CORRELATION FILTER
The object tracking algorithms based on DCF remarkably
accelerate the training and detection process by using fast

Fourier transform, and they show satisfactory tracking perfor-
mance and speed [10]–[15]. The early correlation filter track-
ing algorithms use the low-level features [12]–[14] or their
fusion [16]. To solve the scale problem, the discriminative
scale space tracking (DSST) algorithm [13] adds scale filter
to the position filter. The object centroid is first localized,
and then its size is matched. Guo et al. [15] used compres-
sive random projection to get Haar-like features for fast and
reliable tracking. For different features in different tracking
scenarios, Staple [16] adaptively fuses histogram of oriented
gradient (HOG) features and color features to improve the
performance in different tracking scenarios. These algorithms
easily fail in the cases of target deformation and occlusion.
Thanks to the circulant matrix [17], the number of samples is
enlarged to enhance the robustness. Unfortunately, because
the target search area is limited, the filter has limited ability
to learn the information of the background surrounding the
target. Accordingly few negative samples are trained, which
tends to cause over-fitting and boundary effect. Thus the filter
is likely to fail owing to target deformation, fast motion, and
occlusion. If the search area is blindly expanded, it is probable
that too much background information suppresses the dis-
criminative power of the filter. In order to alleviate the bound-
ary effect, SRDCF [18] expands the filter search range, and
adds a regular penalty term to the loss function to suppress the
interference of background information. Thus the predicted
position of the state-of-the-art SRDCF model can be consid-
ered as the basis for the measurement of position deviation.
SRDCF tracker was improved by some new spatial regu-
larization methods, such as Feng et al.’s dynamic saliency-
aware regularization [19], Han et al.’s content-related spatial
regularization [20], and Zhang et al.’s object-adaptive spatial
regularization [21].

Currently the combination between correlation filter and
deep features has become a new research direction [22]–[24].
Pre-trained deep features for target description can have bet-
ter discriminative power. However, most correlation filter
algorithms consider the position with the highest response
value as the target centroid, so they do not yet ideally over-
come target occlusion, out-of-plane rotation, and so on, and
accordingly the powerful representation ability of CNN can-
not be fully utilized.

B. TRACKING ALGORITHM BASED ON DEEP
NEURAL NETWORK
The object tracking algorithms of the deep network architec-
ture directly reduce or modify the pre-trained network model
to better use the low-level features and high-level semantic
information [7], [25]–[27]. In the cases of target occlusion
and deformation, the trackers are superior to most correlation
filter trackers and have excellent performance in the VOT
[7], [23], [28]. Guo et al. [26] proposed dynamic Siamese
network effectively to learn the temporal variation of target
appearance and present element-wise multi-layer fusion. The
VGG [29] network-based tracking algorithm represented by
MDNet uses the small VGG model to learn the appearance
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of the target, that is, the pre-trained convolution layer is used
to extract the features and fine-tune the fully connected layer.
The network outputs sample confidence, and the sample with
the highest confidence is considered as the target. Modeling
and propagating CNNs in a tree structure for visual tracking
(TCNN) [27] constructs a tree view in which each small VGG
networkmodel is a node of the tree, that is, each node predicts
the target in the current frame. A robust calculation strategy
of node weight is used to add and delete the node for final
predicted target position. Convolutional residual learning for
visual tracking (CREST) [30] reformulates DCF as a one-
layer CNN. It integrates feature extraction, response genera-
tion, and model update into the CNN for end-to-end training.
To alleviate a rapid model degradation by large appearance
changes, residual learning [31], [32] is applied to capture
the target appearance changes. Song et al. [33] pointed out
that the positive samples are highly spatially overlapping, and
the number of positive samples is much smaller than that
of the negative samples. Their method uses the generative
adversarial network (GAN) [34] to amplify positive samples
and learn various changes in targets over a long period of
time. It also has strong robustness in complex scenes such
as occlusion and rotation. The algorithm achieves excellent
results on the benchmark data sets.

III. METHOD
A. MOTIVATION
MDNet is inspired by the classic target detection network
Region-CNN (RCNN). The network consists of three con-
volution layers and three fully connected layers. The last
full-connection layer is classification layer, which outputs
confidence. In the main tracking process of the algorithm,
the target samples are produced according to the target posi-
tion of the previous frame. The samples are input to network
and get the confidence degree. The sample with the highest
confidence is considered as the target location. MDNet uses
a multi-domain learning method to perform offline training
with multiple video sequences to obtain common character-
istics between different targets. MDNet performs well in the
sequence of target occlusion, deformation and illumination
variance. MDNet focuses on the feature maps trained for
target and background categories to distinguish between fore-
ground and background; however, its discriminative ability
between similar targets is weak. If the target is occluded, its
confidence is lower than that of the another similar target in
the background, as shown in Figure 1.

SRDCF is improved from kernelized correlation filter
(KCF) [20], which has KCF characteristics. It benefits from
the sampling of the cyclic matrix, and has a large number of
training samples. Different fromKCF, it adopts HOG features
and color features, which have less loss of original image
information. It can cope well with the learning of the target
appearance at low resolution, and is sensitive to variance of
the target appearance. SRDCF introduces the regular terms
to training function. The regular terms alleviate the boundary

FIGURE 2. The success plots of the SRDCF and the MDNet under Group A
object tracking video. Left one: success plot of background clutter. Right
one: success plot of lower resolution.

FIGURE 3. The success plots of the SRDCF and the MDNet under Group B
object tracking video. Left one: success plot of occlusion. Right one:
success plot of deformation.

effect caused by the cyclic matrix. In addition, SRDCF has
a larger training area, so the filter learns more information
about the target and background, making it easier to distin-
guish between objects and similar objects near the target.

In the OTB100 dataset, each video is labeled with mul-
tiple difficult tags, including target deformation, occlusion,
background similarity interference, low resolution, illumi-
nation variance, etc. We only selected the sequences with
four challenging tags, including target deformation, occlu-
sion, background similarity interference, and low resolution.
The selected videos were divided into 2 groups, Group A
and Group B. Group A have background clutter and low-
resolution. In Group B, there are long-term target occlu-
sions and remarkable target deformations. The reason for
this grouping is to show the performance of the MDNet
and SRDCF methods under the conditions of Groups A
and B, respectively. The tracking performances of the two
algorithms, MDNet and SRDCF, are below. In the case of
target similarity interference and low resolution (Group A),
the overall performance of SRDCF is better than MDNet
(Figure 2). MDNet has better tracking performance dur-
ing long-term occlusion and severe deformation (Group B)
(Figure 3).

The above experimental results show that the strengths of
the two methods are complementary. We also analyzed the
feasibility of putting HOG features and color features into the
network in two modes. In the one mode, both HOG features
and color features are connected to fully connected layer.
It makes no sense, because neither HOG features nor color
features are as robust as deep features. In the other mode,
HOG features and color features are input into MDNet. The
features are convoluted layer-by-layer. The number of feature
channel increases from 3 to 34 (31 channels and 3 channels
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FIGURE 4. The graph of the framework.

for HOG features and color features, respectively), much
more parameters are required. Thus the network updating is
time-consuming. In order to solve the interference problem
of the similar objects in MDNet algorithm without reducing
its robustness in target occlusion and deformation, we pro-
pose a double-channel object tracking with position deviation
suppression. According to the SRDCF result and the sample
deviation degree, the target candidate samples of the MDNet
are screened to eliminate the interference of the similar target
samples.

B. FRAMEWORK
The framework of DCOT is shown in Figure 4, which is
implemented as follows.

Firstly, we input the video frames into the filter to extract
features, and calculate the feature response map. After that
we use SRDCF to predict location of the target centroid as
the basis of position deviation measurement, and add it to
the target candidate samples of MDNet. Secondly, MDNet
generates target candidate samples according to the target
position and size of the previous frame, which are input into
MDNet together with the SRDCF prediction position in the
previous step. Thirdly, MDNet calculates the confidence of
each sample, and arranges the target candidate samples in
descending order of confidence. We select 3 target candidate
samples that have higher confidences than the other candidate
samples. m in Figure 4 denotes the average confidence of the
3 selected samples. Fourthly, according to Xsr (the sample
confidence of the SRDCF prediction position) and m, the tar-
get candidate samples with higher sample deviation in the
MDNet target candidate sample set are removed. The final
output is the mean value of the corresponding samples from
the remained candidate samples with high confidences.

C. CONFIDENCE THRESHOLD
Confidence is the positive sample probability of the target
sample in MDNet, reflecting the likelihood that the current

predicted sample is the target. MDNet uses confidence to
judge the condition of the target. During the tracking process,
when the target is occluded or deformed sharply, the target is
polluted or the appearance changes greatly. And the target
model learned from the previous period is quite different,
so the positive sample probability of the target is reduced, that
is, the target sample confidence becomes lower. Therefore,
this paper also uses the target confidence to judge whether
the target is occluded or deformed sharply.

We select the Jogging, Matrix, Lemming, and Soccer
video sequences in the OTB-100 to compare the confidence
of the target before and after occlusion and deformation
for finding the optimal confidence threshold. As shown
in Figure 5, in these sequences, when the target has occlu-
sion (foreign object occlusion or self-occlusion) or severe
deformation, the confidence level is reduced to 0 or negative.
In other video sequences, the same rules as above are also
found. Therefore, the confidence threshold is set to 0 as the
basis for judging whether the target has occlusion or severe
deformation.

D. SAMPLE DEVIATION CALCULATION
For MDNet, the target sample resolution for network training
is generally low. After the frame is input into the deep learn-
ing network, the details of the target appearance are further
lost, and the difference between the similar objects cannot
be distinguished. The internal discriminative ability is weak,
which causesMDNet to track poorlywhen the target semantic
information and the background semantic information are not
significantly differentiated (such as the interference of similar
objects).

In order to solve this problem, we propose the position
deviation suppress (PDS), that is, take the predict results of
SRDCF as the basis position to filter out the samples with
large deviation from the basis position. PDS is launched
only if 2 implementation conditions are both satisfied. The
2 implementation conditions are m > 0 and Xsr > 0.
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FIGURE 5. The performance of the algorithm in the sequence of Jogging,
Matrix, Lemming, and Soccer (top to bottom): The red and green boxes
are the prediction result of the algorithm and ground truth, and the upper
yellow number is the confidence of the current target prediction value.

When PDS is implemented, the deviation of each tar-
get candidate sample in MDNet is computed. The samples
with the deviation greater than the threshold are filtered out.
Here the threshold is set to 5. Finally, in the remainder sample
set, the mean of the 3 target candidate samples with higher
confidences than the other samples is computed as the track-
ing result.

When PDS is not implemented, the mean of the 3 target
candidate samples with higher confidences than the other
samples inMDNet is directly computed as the tracking result.

DCF locates the target by predicting the position of the
target center, and the accuracy evaluation of the tracking
algorithm by the protocol for tracker evaluation uses the
Euclidean distance [8].Therefore, the Euclidean distance is
also used to describe the deviation of the sample. The degree
of deviation ρ is the Euclidean distance between the SRDCF
predicted position Psr (a1, b1,w1, h1) and each MDNet target
candidate sample Pmd (a2, b2,w2, h2)..

dist =

√
(a1−a2+

w1

2
−
w2

2
)
2
+(b1−b2+

h1
2
−
h2
2
)
2

(1)

The use of PDS can reduce the possibility of falsely select-
ing the objects in background, which are similar to the targets,
as the predicted targets. As shown in Figure 6, after PDS,
manymendacious analog samples in adjacent background are
reduced. The deviation threshold is based on the empirical
value of 5.

E. UPDATE
The update includes network model update and SRDCF filter
update. The network adopts the long-term and short-term
update mechanisms of the MDNet, that is, it establishes a

FIGURE 6. Comparison before and after the addition of the deviation
screening strategy. The red and green boxes are the sample candidate box
and ground truth, respectively. Before the screening strategy is added,
the sample candidate box is distributed around the target and the
mendacious similar targets. After the screening strategy is added,
the sample candidate box is only distributed around the target.

long-term and short-term sample library. The long-term and
short-term sample library keep the last 50 and 10 frames to
track the correct training samples, respectively. MDNet is
trained once in every 10 frames with negative samples from
short-term and long-term sample library.

When the confidence of the current target candidate sample
is lower than 0, the network is trained with the short-term pos-
itive and negative samples. Conversely, the current tracking
result is sampled into the long-term and short-term sample
library.

SRDCF update is determined according to the confidence
of the prediction result of SRDCF. When the confidence is
lower than 0, the SRDCF prediction result means that the
tracker may lose the target. At this time, the SRDCF filter
is trained with the MDNet result to prevent the filter from
being polluted. Conversely, SRDCF updates filter with its
own predicted value.

IV. EXPERIMENTS AND DISCUSSIONS
A. EXPERIMENT SETUP
We compare DCOT with other state-of-the-art algorithms on
OTB-100 and VOT-2016. The network parameter settings
are the same as those of MDNet [7]. The threshold of the
network update is set to 0, and the parameter settings of the
correlation filter model are the same as those of SRDCF [18].
The threshold of the deviation is set to 5.

The computing platform contains Intel i5-3470 CPU, 8G
memory, graphics card GTX1060. Matlab R2016b is the sim-
ulation software platform, and MatConvNet [25] tool library
is used by deep learning library.

B. STATE-OF-THE-ART COMPARISON ON OTB-100
The OTB-100 data set contains 100 video test sequences
in which the challenges include illumination variance, scale
changes, occlusion, deformation, motion blur, fast motion,
in-plane rotation, out-of-plane rotation, out-of-view, back-
ground clutters, low resolution. Two evaluation indices are
used.

1) Success rate plots. The success rate refers to the per-
centage of the video whose overlap rate is greater than
the specified threshold. The overlap rate threshold is
0.5, and the overlap rate is calculated according to the
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FIGURE 7. Comparison of the overall performance of this algorithm with
other algorithms under OTB100. The top is the success rate plot and the
bottom is the precision plot.

prediction box Xpre and the real box Xgt (as shown in
Equation 2). The number in the success rate plots is
the area under the success rate curve AUC. The larger
the area is, the higher the tracking success rate of the
algorithm is.

Iou =
Aera(Xpre)∩Area(Xgt )

Area(Xpre)∪Area(Xgt )
(2)

2) Precision plots. The precision calculation is based on
the Euclidean distance between the prediction box and
the real box Xgt . The comparison method generally
adopts the rate of the tracking frames with a precision
less than or equal to 20 pix.

In order to verify the performance, DCOT is compared
with 9 recent excellent tracking algorithms, in which 6 algo-
rithms are based on deep learning, MDNet, CREST [30],
VITAL [33], SANet [35], DCFNet [36], CFNet [37], HCF
[38], RT-MDNet [39]. The overall performance is shown
in Figure 7. DCOT has better success rate and precision under
all sequences than other algorithms.

Compared with MDNet the success rate and precision are
increased by 1.7% and 1.3%, respectively. Compared with
SRDCF, the two indices are increased by 9.4% and 13.3%.
In order to verify whether DCOT can alleviate the problem
before the algorithm is improved, this paper selects the all
sequences, and compares the performance level of the top
ranked algorithms (including two unimproved algorithms).

As shown in Figure 8, the success rate and precision plots
in both cases indicate that DCOT is superior to the com-
pared algorithms. On the one hand, DCOT adopts the MDNet
framework, which can learn the semantic information of the
target. The long-term and short-term sample learning mecha-
nisms are coupled, so the target is not lost in the case of target
occlusion, even when the target is deformed. Because VITAL
uses GAN to generate more samples to train for learning
more variation of target appearance, when target is deformed,
it does slightly better than our algorithm, the success rate is
increased by 0.01%. On the other hand, based on SRDCF,
the filtering strategy of candidate samples is developed. Even
under the background clutters and low resolution, the dif-
ference between the target and the background appearance
details is still obvious, which reduces the misjudgment of the
interference sample collection and improves tracking overlap
success rate.

DCOT does well for other challenging attributes of OTB
dataset. But when a target moves fast, MDNet performs better
than DCOT. Sometimes SRDCF fails to track when a target
moves fast because the network confidence evaluation is not
accurate or reliable for fast motion. It will introduce the
negative influence to MDNet, so DCOT fails to track. When
a target is out of view, VITAL is best, because VITAL has the
robust model which benefits from GANs.

C. STATE-OF-THE-ART COMPARISON ON VOT-2016
VOT-2016, which contains 60 video test sequences, is divided
into six types of tracking scenes: camera motion, tar-
get empty, illumination change, target motion change, size
change, and target occlusion. The evaluation method is super-
vised. In this mode, if the tracking algorithm fails to track the
target for 5 consecutive frames, the real position of the target
is given, and the tracking algorithm will be re-initialized
to complete the subsequent tracking task. Meanwhile, VOT
uses the three main indicators of Accuracy [40], Robustness
and EAO (Expected Average Overlap) [41] to evaluate the
tracking results.

We compare our tracker with some state-of-the-art trackers
on VOT-2016 benchmark, including MDNet, DeepSRDCF
[22], SiamFC [42], HCF. The comparison results are shown
in Table 1. It can be seen that in terms of accuracy and
robustness, DCOT is ahead of other algorithms, and has a
certain improvement on the original algorithm. At the same
time, it performs very well in EAO. As shown in Figure 9,
DCOT is better than the compared methods. The abscissa
indicates the robustness, i.e., the ratio of the number of the
test sequences with less than 30 tracking failures to the total
number of the test sequences, and the ordinate indicates the
accuracy. The algorithms have better robustness and accuracy
when their results are closer to the upper right corner.

D. QUALITATIVE EVALUATION
Figure 10 shows some results of the top tracker, including
MDNet, SANet, SRDCF, CREST and DCOT, on 5 chal-
lenging sequences. For the box sequence, the target is the
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FIGURE 8. Success rate plots for the algorithms in the OTB100 where the targets are occluded, deformed, with low
resolution, illumination variation, scale variation, out-of-plane rotation, in-plane rotation, out-of-view, motion blur, fast
motion and interfered by the background clutter.

black box. When the box is occluded by a lighter, MDNet
wrongly considers the black book is the target. The target
models of the other trackers are polluted by the lighter.

Due to PDS, the samples including the black book are fig-
ured out. Thanks to the long-term and short-term update
mechanisms and confidence judgement, DCOT avoids the
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FIGURE 8. (Continued) Success rate plots for the algorithms in the OTB100 where the targets are occluded, deformed, with
low resolution, illumination variation, scale variation, out-of-plane rotation, in-plane rotation, out-of-view, motion blur, fast
motion and interfered by the background clutter.

FIGURE 9. VOT-2016 A-R diagram.

interface of occlusion, and tracks the target correctly. For the
bolt sequence, the target is the runner with red box in the
first frame. The target changes a lot during running. SRDCF
loses the target because it uses only low-level features. DCOT
tracks the target successfully due to the good learning ability
of MDNet that learns the target appearance. For the coupon
sequence and the suv sequence, the target is disturbed by
similarities. The resolutions of the sequences are low some-
times, MDNet fails to distinguish some mendacious objects,
and accordingly fails to track. DCOT uses PDS to filter the
mendacious objects out, and accordingly tracks correctly.
For the lemming sequence, the target is a cat doll which is
occluded by a lighter for quite a while. Due to the confidence
judgement, DCOT stops updating, so it is not polluted by

TABLE 1. Comparison on VOT-2016, the first and second best results of
all indicators are marked with bold and italic.

TABLE 2. Comparison of various algorithm speeds.

the occlusion. Above all, DCOT shows good performance in
the challenging sequences.

E. ALGORITHM TIME EFFICIENCY ANALYSIS
Due to the parallel combination of deep network and cor-
relation filter algorithm structure, the deep network needs
to be updated online. The algorithm complexity is higher
than that of the algorithms combining deep network fea-
tures and correlation filter. We select the algorithms with
similar performance (The success rate AUCs are close in
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FIGURE 10. Performance of six tracker in box, bolt2, coupon, suv, and lemming(from up to down).

OTB), and compare their time efficiency (unit: FPS) on the
same hardware platform. Performance indicator refers to
OTB success rate AUC. The comparison results are shown
in Table 2. It can be seen that the speed of DCOT is slower
than those of the single structure correlation filter algorithms
(SRDCF, HCF), and the algorithm speeds of most deep net-
work structures are not remarkably different, but are obvi-
ously faster than SANet that is also the improvement on
the basis of MDNet and has similar tracking effect. Because
SANet adds the Recurrent Neural Networks (RNN) network
layer to the original network structure, the network structure
becomes more complicated and increases the computation
complexity. In general, although DCOT is better than the
compared algorithms, the time efficiency needs to be further
improved.

V. CONCLUSION
In view of the inability of MDNet to distinguish between
true target and the similar mendacious targets surrounding

the true target, we propose DCOT to improve tracking
performance. The predicted position information of the
correlation filter is considered as the basis position to
calculate the sample deviation degree. PDS removes the
similar mendacious targets. Since the mendacious target
interference is effectively limited, the tracking performance
is improved. At the same time, the network confidence is
used for the target state judgment of SRDCF, and helps
SRDCF track correctly when the target is occluded or
deformed. MDNet and SRDCF are fused to improve the
robustness.

However, the deep network model lacks sufficient train-
ing samples to learn the target information. In some cases,
some serious target deformation and target fast motion still
lead to tracking failure. In addition, the speed of DCOT
is similar to that of the general deep learning algorithms,
but it is slower than the correlation filtering algorithms
with a single structure. We will try to further accelerate the
tracking speed in our future works to meet the real-time
requirement.
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