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ABSTRACT Human skeleton contains significant information about actions, therefore, it is quite intuitive to
incorporate skeletons in human action recognition. Human skeleton resembles to a graph where body joints
and bones mimic to graph nodes and edges. This resemblance of human skeleton to graph structure is the
main motivation to apply graph convolutional neural network for human action recognition. Results show
that the discriminant contribution of different joints is not equal for different actions. Therefore, we propose
to use attention-joints that correspond to joints significantly contributing to the specific actions. Features
corresponding to only these attention-joints are computed and assigned as node features of the graph. In our
method, node features (also termed as attention-joint features) include the i) distances of attention-joints
from the center-of-gravity of human body, ii) distances between adjacent attention-joints and iii) joints flow
features. The proposed method gives a simple but more efficient representation of skeleton sequences by
concatenating more relative distances and relative coordinates to other joints. The proposed methodology
has been evaluated on single image Stanford 40-Actions dataset, as well as on temporal skeleton-based action
recognition PKU-MDD and NTU-RGBD datasets. Results show that this framework outperforms existing
state-of-the-art methods.

INDEX TERMS Human action recognition, attention-joints, graph convolutional neural network.

I. INTRODUCTION
Human action recognition in videos has numerous practical
applications such as video surveillance, video content anal-
ysis, health-care and entertainment. In literature, different
modalities have been investigated for action recognition in
videos, such as RGB-images, optical flow/warped optical
flow and body skeletons. In [1] and [2] human actions are
recognized using spatial and temporal two-stream network.
Further, a skeleton-based approach for human action recogni-
tion has been exercised in [3], [4]. This approach has achieved
early success in action recognition, because human skeletons
are invariant to illumination and appearance. Human skele-
tons can be represented in the form of graphs, however the
direct application of Convolutional Neural Networks (CNN)
on human skeletons is not so intuitive. Specifically, owing
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to Graph Convolutional Neural Networks (GNN) that CNN
is applicable on non-euclidean domains such as graphs of
arbitrary nodes and edges. Over the years, GNN has been
successfully applied to many fields such as image and text
classification [5], object recognition [6] and human activ-
ity recognition [7]. Graph convolution neural networks are
such powerful models that a randomly initialized two layer
GNN can produce useful feature representation of nodes in a
network [8].

In graph convolutional network, graph statistics
(i.e. graph features) are exploited by properly devising
graphlet kernels [9], which promises the occurrences of var-
ious graphlets (i.e. subgraphs) on a graph. Intuitively, graphs
belonging to a particular class should have specific features
conditioned on that class. Such distinctive graph features are
beneficial for classification tasks.

Convolutional neural networks perform well on dealing
with euclidean data, e.g. images, voice or videos, however,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 305

https://orcid.org/0000-0002-8108-7915
https://orcid.org/0000-0003-3617-0872
https://orcid.org/0000-0002-1141-2487
https://orcid.org/0000-0003-0859-5195
https://orcid.org/0000-0003-1144-7599


T. Ahmad et al.: Action Recognition Using Attention-Joints GNN

FIGURE 1. Illustration of Euclidean convolution vs Graph convolution [24].

FIGURE 2. Sub-sampling and pooling operation on graph, (better perceived in color).

it is more likely to fail to non-euclidean data. To address
this, graph convolutional networks also known as geomet-
ric CNNs, can be applied for node classification and link
prediction in non-euclidean space such as social networking,
molecular biology and brain-signal processing. Empirically,
graph convolution networks extract high-level features from
graphs and are hence suitable for application such as human
action recognition via skeletons with body joints correspond-
ing to nodes and bones between joints corresponding to
edges, respectively. An analogy from conventional spatial
convolution to graph convolution is illustrated in Figure 1,
where the image pixels are represented as graph nodes and
their spatial relationships are delineated as graph edges. Anal-
ogously, spatial convolutional kernels are extended to graph
convolutional kernels to compute the sum-of-product over
neighboring nodes. The pooling operation is defined in the
form of graph coarsening and partitioning. Balanced cuts
and heavy edge matching (HEM) are the techniques used for
graph pooling. The graph sub-sampling and pooling opera-
tions are explained in Figure 2.

From spatial convolution, it is clear that a graph may
contain redundant or noisy edges. Therefore, it is pragmatic
that we use attention mechanism to emphasize the significant
nodes, while suppressing redundant nodes. This concept is
utilized in a way that attention-joints contribute more to
final action recognition, while redundant nodes may lead to
noisy or false prediction. For instance, the attention-nodes of

actions like drinking and phoning, are from body arms, head
and neck as illustrated in Figure 3.

Contribution from our work is summarized as follow:
1) We discover and develop the most relevant attention-joints
for some actions. 2) We utilize normalized distances
and joints-flow based features for such attention-nodes.
3) A new attention-joints graph convolutional neural net-
work is designed for skeleton-based action recognition,
which achieves state-of-the-art performance on three public
benchmarks.

The rest of paper is organized as follows: Section II
describes literature work, and Section III explains proposed
methodology. Experimental details and results are introduced
and analyzed in Section IV.

II. RELATED WORK
In literature, the problem of skeleton based action has been
addressed by i) Convolutional neural network and ii) Graph
Convolutional networks.

A. CONVOLUTIONAL NEURAL ACTION RECOGNITION
An approach for action recognition in single image
using body parts was developed in [10]. In [4], a path
signature-based approach has been proposed for action recog-
nition using body skeleton. A raw skeleton coordinates and
skeleton motion based action recognition technique is dis-
cussed in [11]. An end-to-end convolutional co-occurrence
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FIGURE 3. Illustration of attention-joints for action predication on Stanford 40-Actions dataset images (better perceived in color).

methodology was investigated in [12]. [13] incorporated mul-
tiple modalities (e.g. RGB, depth, Flow and IR) in convolu-
tional neural network for action recognition.

B. GRAPH NEURAL ACTION RECOGNITION
Over the past few years, convolutional neural networks have
been generalized from Euclidean domain (image or audio)
to non-Euclidean domain as graphs, [5], [11], [14]. The
preliminary work on graph convolution network are found
in [9]. This seminal work was extended in [15] by intro-
ducing gated recurrent unit in graph convolutional neural
networks. An edge-conditioned convolution method was pro-
posed in [16], where the convolutional filters were condi-
tioned on edge labels. In [8], the authors set forth graph CNN
to solve the problem of semi-supervised learning. Applying
convolutional neural networks on graphs has two perspective,
i) spectral perspective, the convolutional filters and pooling
operations are applied in spectral domain [14], [17], ii) spatial
perspective, that the convolutional filters are applied directly
on graph nodes and the neighbors, [5]. To apply convolution
network in spectral domain, a spectral convolution layer is
devised as in [5]. In [16], authors generalize the convolu-
tion filters guided by Euclidean grids from arbitrary graphs
with varying nodes and edges. Reference [18] establishes a
depth-wise separable graph convolution that surpass the per-
formance over other graph convolution and geometric con-
volution networks. Reference [19] presents a mathematical
formulation for action recognition in skeleton-based spatio-
temporal graph convolution.

Empirically, it is found that there is complementarity in
nodes and edges to model skeleton-based action recognition
using GCN. Reference [21] discusses graph node convolution
and graph edge convolution to model the complementarity
using shared intermediate layers. In [22], the authors present
a skeleton-based action recognition using a graph regression
GCN to model the spatio-temporal variations in data. Ref-
erence [23] introduced a novel representation of skeleton
data as a directed acyclic graph (DAG) based on the kine-
matic dependency between joints and bones of human body.
A recent detailed survey on graph convolution network for
different applications is presented in [24].

III. PROPOSED METHODOLOGY
The design of our proposed framework for action recogni-
tion is shown in Figure 4. Our framework consists of two

main parts, i) attention network and ii) graph convolutional
network.

A. ATTENTION NETWORK
We investigate residual attention network to extract
attention-joints from the human body. The main motivation
for residual attention network is stacking a large number of
attentionmodules in a residual manner. The attention network
takes raw RGB-images as input and generates the attention
masks. These attention-masks are element-wise multiplied
with the skeleton images to identify attention joints. Math-
ematically, element-wise multiplication of attention-mask
with the input image is defined as follows,

Xi,c = Xi,c ∗Mi,c (1)

where i denotes the spatial index and c denotes the chan-
nel index of a pixel in the masks. Thus, residual-attention
network emphasizes the most important regions in an input
RGB-image and suppresses less important regions of that
image, pertaining to some action. A major advantage of
residual-attention network is a large reduction in network
parameters compared to residual network parameters, [20].

In residual attention network, each block consists of two
branches, i) trunk branch and ii) mask branch, where the
trunk branch is designed to learn target-oriented features
and can be implemented by any existing CNN architecture.
In this paper, we used VGG-16 to implement the trunk branch
of the residual attention network. Different from the trunk
branch, the mask branch is implemented in the bottom-up
and top-down structure to learn the attention maskMi(x). The
mask branch is the main contributor to superior performance
of residual attention network for action recognition, which
works as a feature selector to enhance the most informative
part and suppress redundant part of the features obtained
from the trunk branch. The architecture of residual-attention
network is shown in Figure 5.

In residual-attention network, trunk branch features adap-
tively change mask branch attention. Feature map from each
channel is normalized using spatial attention and then sig-
moid operation is performed to obtain soft-mask related to
spatial information. In this paper, we use spatial attention
mathematically described as

f (xi,c) = 1/(1+ exp(−(xi,c − µc)/σc)) (2)
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FIGURE 4. Block diagram of our proposed attention-joints graph convolutional neural network. Attention network is utilized to extract attention-joints
of input skeleton. Then only the features associated with attention-joints are fed into graph convolutional network for classification. HL(1) to HL(5) are
the hidden layers from 1 to 5, performing convolutional+pooling operations.

FIGURE 5. Residual-attention block.

where i and c represent spatial positions and channels respec-
tively. Also, µc and σc corresponds to the mean and standard
deviation of feature-map for the c-th channel and xi denotes
the feature vector at the i-th spatial position.

B. SKELETON GRAPH FORMULATION
The human skeleton and its associated joints can be repre-
sented in 2D or 3D coordinates in each frame. In retrospective
study, human skeletons are represented as a single feature
vector [19] or as a spatial-temporal graph [25]. The joints
within one frame are connected via edges according to the
connectivity of human body structure to give an undirected
graph [25]. The terms nodes and joints are interchangeable in
our work. We formulate a graph G = (N ,E) for a skeleton
where N denotes a set of graph nodes N = {n1, n2, . . . , nk}
and E denotes the set of edges between nodes, defined as
ordered pairs, E = {(n1, n2), (n2, n3), . . . , (nk−1, nk )}. Math-
ematically, the overall graph can be represented as, G =
{n1, n2, . . . , nk |(n1, n2), (n2, n3), . . . , (nk−1, nk )}.

C. ATTENTION JOINTS ENCODING
To keep a simple architecture, only 14-joints of the human
body are considered. The feature encoding for attention joints
is illustrated in Figure 4. As shown in this figure, the body
joints of the input skeleton are enumerated from 0 to 13. The
attention-joints extracted by residual-attention network are
labeled as ‘‘1’’ on the graph node, whereas other joints are
labeled as ‘‘0’’.

As discussed in Section I that the node labeling proce-
dure include three types of features, i) weighted distances
of attention-nodes from the body-center, dCoG ii) distances
between neighboring attention-nodes, dAN and iii) flow fea-
tures of each attention-joint, namely OFF . The first kind of
features, dCoG, is defined as the Euclidean distances from
body vertex or center-of-gravity (CoG) of human body to the
attention-joints. These distances, dCoG, are the weighted dis-
tances, as some joints of the human body are well-articulated
and contribute more to the final action prediction. For exam-
ple, as shown in Fig 4, the joints 3 and 4 are more agile to
move as compared to joint 2, therefore are weighted more
than joint 2. Likewise joints 6 and 7 are well-articulated than
joint 5. The same observations can also be made for the other
pairs of joint (9, 10) and (12, 13), as they are more dexterous
compared to joints 8 and 11 respectively.

In our work, the second features associated with
attention-joints are the normalized Euclidean distances
of an attention-joint from neighboring-joints, denoted as
dAN1...dANn. If the attention-node is connected to one node
only, it has just one distance, dAN1, if connected to two
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FIGURE 6. Aggregation of attention-joints flow over frames N − 1, N − 3 to N − 5.

attention-joints, it has dAN1 and dAN2 and so on. This concept
of adjacent node distances, dAN , is shown in Figure 4, where
node ‘‘4’’ has only one adjacent neighbor and one corre-
sponding adjacent distance, dAN1, while node ‘‘3’’ has two
adjacent neighbors and hence two corresponding adjacent
distances, dAN1, and dAN2.
The last feature associated with an attention-node is the

flow features of attention-joints (OFF), where the joints opti-
cal flow contain the temporal information of attention-joints
over a sequence of frames. We compute three levels of flow
features for joints including: i) the joints flow between two
consecutive frames, N and N − 1; ii) joints-flow between
current frame and third-last frame, N and N − 3, and
iii) joints-flow between current frame and fifth-last frame,
N and N − 5. This concept is depicted in Figure 6. The
two reasons for computing these three-levels of joints-flow
between frames, namely, the first that joint-flow between
consecutive frames may have spurious motion and resulting
in noisy joint-flow and the most of the actions may prolong
over 3-5 frames, so the joints-flow over 5-frames can better
model such temporal relationship between frames.

The encoding of above-mentioned features is shown
in Figure 4, where each attention-node feature vector contains
dCoG, dAN andOFF features. The feature vectors are encoded
only for attention-nodes. The skeleton of an input frame con-
tains information of all nodes and edges, where the outputs
of attention-nodes are labeled as ‘‘1’’ and node features are
associated only to attention-nodes. The final output of a graph
is labeled as a class-label during training, like a supervised
learning fashion.

D. IMPLEMENTATION OF GRAPH CNN
The implementation of geometric graph-based convolutional
neural network is challenging compared to Euclidean 2D
convolutional neural network. To implement graph convolu-
tion on human skeleton, the joints within a single frame are
represented as an adjacency matrix A and self-connections
are represented as identity matrix, I . The graph convolution

propagation rule from a layer H (l) to H (l+1) is defined as,

H (l+1)
= σ (D̃−1/2ÃD̃−1/2H (l)W (l)) (3)

where Ã is the adjacency matrix, D̃ is the degree matrix of Ã.
The factor D̃−0.5ÃD̃−0.5 is used to normalize nodes with large
degree and called normalized adjacency matrix. H (l) is the
feature matrix at previous layer, andW (l) is the weight matrix
at previous layer. The activation function σ is introduced as a
non-linear ReLU function, max[0, x].

An important property of convolutional neural network
is pooling, which is implemented as graph down-sampling
or coarsening in graph neural networks. The graph pooling
is implemented in such a way that similar node features
are sub-sampled and pooled together to create global invari-
ance with multiple layers. Non-linear multi-scale coarsening,
graph partitioning, and heavy edge matching (HEM) are the
commonly used graph pooling strategies. The graph pooling
operation is explained in Figure 2.

IV. EXPERIMENTS
A. DATASET
1) STANFORD 40-ACTIONS
The Stanford 40-Actions dataset [26] contains 9,532 images
of 40 different human actions of diverse categories, vary-
ing from brushing teeth, fishing, fixing a car, holding an
umbrella. Each action class contains about 180-300 images,
obtained from Google, Bing and Flicker databases. In the
dataset, there is significant within-class variance for each
action due to varying body pose, appearance and background
clutter.

2) PKU-MMD
PKU-MMD [27] is a large scale 3D human action dataset for
action recognition and understanding. The dataset contains
depth maps, skeleton joints, infrared sequences and RGB
videos. There are 20,000 action instances in the dataset,
performed by 66 different subjects in three camera views.
The dataset contains 51 action categories, with cross-subject
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(CS) and cross-view (CV) settings, where we evaluated our
methodology only for cross-subject setting. For cross-subject
setting, the dataset is provided with a data split of 57-subjects
for training and 9-subjects for testing. The training set has
total of 944 videos while testing set has 132 video samples.

3) NTU-RGBD
NTU-RGBD [28] is a large-scale dataset that contains
56,000 action clips from 60 different action classes. To cap-
ture each action, three cameras are mounted at same height
but with three different angles: -45, 0, +45. The dataset
contains the joints location, detected by Kinect depth sen-
sor. Each frame contains 25-joints for each subject; how-
ever, for this research we used only 14 significant joints on
the human body, as presented in Figure 4. The cross-view
and cross-subject benchmark are provided for NTU-RGBD
dataset where cross-subject setting includes 39,889 training
clips and 16,390 testing clips.

B. IMPLEMENTATION DETAILS
Our proposed architecture contains five consecutive stack
of convolution-pooling layers, followed by a SoftMax layer.
The spatial kernel size for first three layers is fixed as (5, 5),
while for last two layers is kept as (3, 3) with a stride of one
and padding of two. For all pooling layers, global average
pooling (gap) is used with pooling ratio of 0.5. The first
3-convolutional layers have 32 output channels while last
two convolutional layers have 64-output channels. During
training, the batch_size for our experiment is set to 64, with
the initial learning_rate of 0.005, which was subsequently
reduced down by a factor of 1/10 after every 1/3 of iterations.
The gamma was fixed at 0.99 and weight-decay was set to
0.00001. Drop-out with a probability of 0.5 was used to avoid
over-fitting. Stochastic gradient descent (SGD) was selected
as an optimizer, with momentum of 0.9. The cross-entropy
loss was used as the loss function to back-propagate the
gradients. We implemented our model in Pytorch-geometric
[30] with CUDA 9.0. The experiments were run for a maxi-
mum of 200 epochs, using two NVIDIA TITAN X GPU with
24-GB RAM.

For extracting graph and input to graph convolutional
network, we followed the procedure of pytorch-geometric
dataset creation, where it is provided with graph-
adjacency, graph-indicator, graph-labels and node-labels for
experimentation.

C. BASELINE MODEL
We define our baseline model as having graph convolutional-
pooling layers without attention network. Our baseline archi-
tecture is excited with 14-body joints skeleton and with all
three modalities, dCoG, dAN and OFF . The performance of
baseline architecture is enlisted in Table 1. Moreover, our
baseline architecture uses the same hyper-parameters setting
as that of attention-joints architecture.

TABLE 1. Performance of baseline architecture.

TABLE 2. Performance evaluation for stanford 40-actions dataset.

D. EXPERIMENTAL RESULTS ON SINGLE IMAGE DATASET
Our proposed method is examined using single image Stan-
ford 40-Action recognition dataset. For each image, human
skeleton is extracted from the RGB-image using Deepercut
method in [29]. Residual attention network is applied on
RGB-images to extract attention regions on the input images.
The attention region is mapped on the skeleton image to
extract attention joints. For single image action recognition,
it is challenging to define node features as there are no
temporal details available. Therefore, we used normalized
spatial distances, dCoG and dAN , to assign the node features.
We need to drop the joint-flow features for attention-joints as
this dataset is for only single image action recognition.

The validation of results for Stanford 40-Actions dataset
have been enlisted in Table 2, where the first observation
is made by considering only normalized euclidean distances
from attention-joints, dCoG. Then, second investigations
incorporate normalized Euclidean distances of neighboring
attention-joints, dAN . The main motivation for investigating
dCoG and dAN is that such normalized Euclidean distances are
keep changing while performing different actions, therefore
it is important to consider them for action recognition.

An interesting observation is that normalized euclidean
distances, dCoG, performs better than distances between adja-
cent nodes, dAN , because dCoG contains more significant
details pertaining to the articulation of attention-joints. Sub-
sequently, dCoG and dAN , are combined as node features and
excited to the graph neural network. It turns out that dCoG
and dAN contains complementary details and when excited
together to graph convolutional neural network, raises the
overall performance.

E. EXPERIMENTAL RESULTS ON TEMPORAL SKELETON
DATASETS
We evaluated our proposed framework on two temporal
skeleton-based action recognition datasets, PKU-MDD and
NTU-RGBD. Both datasets contain spatial and temporal
information and for each action video, RGB and skeleton
information is provided. The joints of skeleton are already
provided in these datasets, so we only need to identify the
attention joints. Attention joints are identified by applying
residual-attention network on RGB-images, using themethod
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TABLE 3. Performance evaluation for skeleton datasets.

TABLE 4. Performance comparison with contemporary methods.

adopted in single image action recognition. After identifying
attention-joints, each attention-joint is specified with node
features.

The node features, dCoG and dAN , for PKU-MDD and
NTU-RGBD are also defined in the similar fashion as
that for Stanford 40-Action datasets. However, for tempo-
ral skeleton-based action recognition datasets, joints-flow
between consecutive frames is introduced as an other impor-
tant modality. The joints-flow between attention-joints is
computed at three levels of frames (N −1,N −3, and N −5)
in order to mitigate any spurious motion.

In Table 3, the performance of both PKU-MDD and
NTU-RGBD datasets has been first evaluated for each indi-
vidual modality, dCoG, dAN and OFF . It is noted that for
both datasets dCoG significantly performs better than other
two modalities due to the reason that it, inherently, con-
tains the articulation of attention-joints. Empirically, it turns
out that the articulation of attention-joints (distances from
body-center to attention-joint) contains very important clues
for recognizing actions. Then it is revealed that joints-flow
features OFF between frames perform better than the dis-
tances from neighboring joints, dAN , signifying the fact that
motion is also another important clue for action recognition.
A further study also carried out when different modalities are
unified as node features, such as dCoG+OFF and dAN+OFF ,
and excited to graph CNN. It is published that unification
of aforesaid three modalities exhibit their best when fused
together. Empirically, it is noticed that the performance mar-
gin using (dCoG + OFF) and (dCoG + dAN + OFF) is small,
corroborating to the argument that dCoG + OFF contains
significant clues as compared to combining dAN with other
modalities for skeleton based action recognition.

F. ABLATION STUDY AND COMPARISON WITH THE
STATE-OF-THE-ARTS
In convolutional networks, attention mechanism is used to
emphasize the most contributing features and this concept is

exploited by introducing attention-joints in our work. In our
study, we investigate the contributions of attention-joints
for action recognition using graph convolutional networks.
We conduct experiments by removing all attention net-
work and leading to a baseline network with only graph
convolution-pooling layers. Comparing the results in Table 1
with Table 2 and 3, it reveals that attention-joint architecture
performs better than baseline architecture. This empirical
improvement in performance demonstrates the contribution
of attention-joints for action recognition.

We compared our method with other state-of-the-art meth-
ods on three different action datasets. The results are given
in Table 4. We used mean-Average Precision (mAP) as an
evaluation metric for train-test splits of three datasets.mAP is
calculated by using the following formula, 1/N ∗

∑N
i=1 APi,

where AP is corresponding average precision for each split of
the dataset.

1) STANFORD 40-ACTIONS
In [26], authors jointly modeled the attributes and parts by
using a sparse bases that entails the meaningful semantic
information for action recognition and marked the perfor-
mance up to 65.1%. In [31], a unique technique was devised
by using minimum annotation efforts for action recogni-
tion, which greatly surpassed the performance up to 82.6%.
Human body parts contain important clues of action recogni-
tionwhichwere studied in [10], wherein the body-parts-based
single image action recognition improved the performance up
to 83.4%. The above-mentioned approaches for action recog-
nition are based on convolutional neural network, while we
first time addressed single image action recognition problem
using attention-joints based graph CNN, and resulted in state-
of-the-art performance of 84.8%.

2) PKU-MMD
The authors in [27] assembled and formulated PKU-MMD
dataset and its performance was computed using multiple
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FIGURE 7. Comparison of performance of attention-joints architecture
with baseline architecture for NTU-RGBD dataset.

modalities, such as RGB, depth, skeleton and IR-modality.
Reference [11] proposed raw skeleton coordinate and skele-
ton motion for action recognition and prediction, where
we included attention mechanism along with GNN in our
work. The authors exhibits their results on PKU-MMD and
NTU-RGBD datasets. Compared with an end-to-end convo-
lutional co-occurrence feature learning proposed in [12], our
method performs better by 2.9%. Reference [13] extended the
temporal segment network using differentmodalities of RGB,
depth and infra-red data, in order to investigate human action
recognition. However, pre-training on UCF-101 dataset was
required for this method, while no such pre-training is needed
in our case and it still surpass the performance by 0.9%. All
comparisons have been made for cross-subject settings.

3) NTU-RGBD
Reference [25] embedded spatial and temporal patterns of
data in the graph using spatial-temporal graph convolutional
network. Our proposed technique differ from this method
in a sense that we accumulated the temporal details using
joints-flow as attention-node features, rather than incorpo-
rating the sequential information by using complex temporal
edges in graph. Reference [32] presents a two stream graph
edge convolutional and node convolutional for skeleton based
action recognition. Likewise [25], the sequential information
is embedded in graph by using temporal graphs in [32].
Spatial and temporal details are fused in [22] by using graph
regression-based convolutional neural network, where our
framework surpass than this method by 3.2%. Reference
[23] involve the directed graph structure for skeleton-based
action recognition, where spatial and temporal informations
are fused together by using two streams. Our approach just
uses simple undirected edges and considerably improves the
overall performance. In figure 7, a performance comparison
of attention-joints with baseline architecture for NTU-RGBD
dataset has been illustrated. The horizontal axis contains
action IDs while vertical axis depicts performance in mAP.

V. CONCLUSION
In this paper, we present a novel idea of action recog-
nition in skeleton images using attention-joints and graph
convolutional neural network. First, we devise the spatial

features of graph nodes as Euclidean distances and then
introduce the temporal signatures of video sequence as
flow features of attention-joints. In our proposed framework,
the attention-joints are equipped with spatial-temporal fea-
tures and excited as attention-nodes to graph neural net-
work for action classification. The proposed methodology
suppresses the noisy and spurious details incurred due to
considering all graph nodes and edges. Extensive experiments
show that our method is effective and has achieved state-of-
the-art performance. In future work, LSTM and 3D graph
convolutional networks will be investigated and exercised to
better model spatial-temporal attributes for skeleton-based
action recognition.
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