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ABSTRACT Deep learning has made great progress in image compressive sensing (CS) tasks recently,
and several CS models based on it have achieved superior performance. In practice, sensing the entire image
requires hugememory and computational effort. Although the block-based CSmethod can effectively realize
image sensing, it will cause block effects that severely decrease the reconstruction performance. To this end,
this paper proposes a two-branch convolution residual network for image compressive sensing (denoted as
TCR-CS), which mainly consists of a two-branch convolution autoencoder network and a residual network.
Specifically, the two-branch convolution autoencoder network senses the entire image through multiple
scale convolutional filters to obtain measurements. For better CS reconstruction, the image is preliminarily
reconstructed by the deconvolution decoder network, and then the residual network is used to optimize the
pre-reconstructed image. Through the end-to-end training, all networks can be jointly optimized. Finally,
experimental results demonstrate that the proposed TCR-CS method is superior to existing state-of-the-
art CS methods in terms of structural similarity, reconstruction performance and visual quality at different
measurement rates.

INDEX TERMS Image compressive sensing, two-branch convolution, residual network, structural similarity,
reconstruction performance, visual quality.

I. INTRODUCTION
Compared to the Nyquist Sampling method, compressive
sensing (CS) [1], [2] is a more efficient transformative sam-
pling technique, which directly senses signals at sub-Nyquist
rates while retaining the necessary information and recov-
ering signal with high probability. This theory has great
potential in improving imaging speed and reducing energy
consumption of the sensor. Several new imaging applica-
tions based on CS have been developed, such as radar imag-
ing [3], single-pixel camera [4], high-speed video camera
[5], spectrum sensing [6], and magnetic resonance imaging
(MRI) [7]. However, the promise of CS is often offset by
challenges associated with two limitations in practical appli-
cations. First, it is difficult to store a random sensing matrix
of large images. Second, when a high-dimensional signal
vector is multiplied by an arbitrary random matrix, the lack
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of any fast matrix multiplication algorithm will lead to a high
computational complexity.

Usually, the actual natural images have a high dimension,
thus the dimension of measurement matrix also becomes
prohibitively high when CS is applied to the images. In addi-
tion, such large sensing matrix results a high computa-
tional cost in the process of CS reconstruction. To overcome
this difficulty, Gan [8] proposed a block-based CS (BCS)
framework, in which the image is segmented into many
non-overlapping image blocks, then each image block is
sensed and reconstructed independently. After reconstruct-
ing block by block, all reconstructed blocks are placed
their locations and then are spliced into a full-size image
stiffly. However, the blocks are reshaped into columns in this
method, which damages the structure information and results
in serious block effects especially in the low measurement
rate. To improve the visual quality, the reconstructed image
requires a certain post-processing to eliminate the blocking
artifacts.
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Different from traditional hand-based features and algo-
rithms, deep learning is an emerging field that automatically
extracts features from data to construct multiple levels of
abstract representations. Recently, deep learning has been
successfully applied in many fields, such as image processing
[9], sentiment analysis [10], [11], Internet of Things [12],
[13], and modulation recognition [14]. In the aspect of the
task of CS [15]–[17], it is used to replace the optimization
process of conventional methods for reducing the reconstruc-
tion time and computational complexity. By minimizing the
error between the original image and reconstructed image,
the deep neural network can adaptively learn a transform
function of the measurement of the reconstructed image from
the large dataset.

The first CS reconstruction method based on deep learn-
ing is proposed in [15], which uses stacked denoising
autoencoders as an unsupervised feature learner to map a
functional relationship between measurements and the orig-
inal image. This greatly reduces the reconstruction time
while the reconstruction quality is comparable to the exist-
ing advanced algorithms. Later, Dong et al. [16] demon-
strated that the convolutional neural network (CNN) can
learn a mapping from a low-resolution image to a high-
resolution one by the end-to-end training manner. For fur-
ther improving the reconstruction performance, the CNN is
applied to recover signals from measurements in Recon-
Net [18], [19] and DeepInverse [20]. The DR2-Net [21],
inheriting ReconNet, utilized residual learning in the net-
work, which can effectively avoid signal attenuation by trans-
mitting the features directly to the later layers. Instead of
learning to directly reconstruct the high-resolution image
from the low-resolution one, DR2-Net learns the residual
information between the ground truth image and the pre-
liminary reconstructed image. However, these methods only
consider the optimization of the reconstruction process and
neglect the measurement process, because the measurement
is obtained by random measuring, not designed for image
signal.

In response to this situation, DeepCodec [22] learned a
transformation mapping from images to undersampled mea-
surements, and then reconstructed original signals from them.
Through effectively combining ReconNet with the fully
connected layer, Xie et al. [23] proposed a new adaptive
measurement network, in which measurements are designed
through training and learning. Although these two methods
can extract more effective information from the scene and
further improve the reconstruction performance by jointly
training the measurement and reconstruction stages, the input
images of them are measured and recovered block by block,
which will damage the structure information of image and
result in serious block effects in the reconstructed image.
This is also a problem with all of the above block-based
methods.

For this issue, Xie et al. [24] firstly designed a measure-
ment network based on the convolution method, in which the
input is measured by the overlapped convolution operation.

Different from the block-based approach, a convolution layer
is used to sense measurements from the whole image, which
retains the integral structure information of the original image
and removes the block effect effectively. Additionally, a new
CNN-based network is proposed to reduce the block effects of
reconstructed image in [25]. In the measurement part, a group
of measurements are obtained from the input image via adap-
tively measuring block by block. While in the reconstruction
part, the full image is reconstructed at one time from the
block-based measurements.

Unlike the existing methods, this paper proposes a two-
branch convolution residual network for image compressive
sensing (denoted as TCR-CS), which comprises of three
parts: two-branch convolution sensing, pre-reconstruction
and residual reconstruction. In the two-branch convolution
sensing network, the whole image is sensed by two con-
volution networks with different scale filters. A large fil-
ter and a small filter sense respectively the whole images
to obtain two measurement vectors from different perspec-
tives, which can not only get more valid information, but
also remove the block effect in the reconstruction process.
Next, the final measurement vector is obtained through
blending the features of the two branches. In the pre-
reconstructed network, the fusion measurements are recon-
structed by de-convolution network preliminarily. Then the
pre-reconstructed images are optimized and reconstructed to
high-quality images in the residual reconstruction network.
By the end-to-end training, the proposed TCR-CS network
is jointly trained from the measurement to the recovery part.
Finally, experimental results show that the proposed TCR-CS
method consistently outperforms existing state-of-the-art CS
methods in terms of structural similarity, reconstruction
performance and visual quality at different measurement
rates.

The rest of this paper is organized as follows. Section II
introduces the proposed method in detail. Experimental
results and comparisons are analyzed in Section III. Finally,
Section IV concludes this work.

II. THE PROPOSED METHOD
In this paper, a two-branch convolution compressed sensing
network is formed by combining the two-branch convolution
autoencoder network with the residual neural network. Sim-
ilar to the traditional CS approaches including linear mea-
surement sampling and non-linear reconstruction algorithm,
the proposed TCR-CS network consists of two important
parts: the full image convolution sensing module and the
image reconstruction module (please refer to Figure 1).

The goal of the convolution sensing module is to real-
ize the sensing of the whole image through the two-branch
convolution autoencoder network. The image reconstruction
module includes two networks: pre-reconstruction network
and residual reconstruction network, which are used to real-
ize pre-reconstruction and re-optimization reconstruction,
respectively. Now, let us introduce these two parts of the
TCR-CS network in detail.
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FIGURE 1. The framework of TCR-CS.

FIGURE 2. The full image convolution sensing module.

A. THE FULL IMAGE CONVOLUTION SENSING MODULE
Due to the memory constraints, the existing CS methods
based on deep learning usually adopt block-based pattern.
However, the block effect comes accordingly. Unlike the
existing BCS and convolutional CS, a full image convolution
sensing method based on two-branch convolutional neural
network is utilized for overcoming the block effect in this
paper.

As shown in Figure 2, the full image convolution sensing
module contains two CNN branches, which are identical in
the network structure. In each branch, there are two convo-
lution layers, two pooling layers, and a full sensing layer.
The only difference is that the two branches adopt filters of
different sizes.

The given image x ∈ RN×N is fed into these two convo-
lutional neural networks, respectively. In the CNN Branch I,
a small filter with size LAI × LAI is used to sense the input
image for getting the measurements yI. Likewise, a big filter
with size LAI × LAI is utilized to sense the input image for
obtaining the measurements yII in the CNN Branch II. yI and
yII respectively represent twomeasurement vectors sensed by
different fields of view. To effectively integrate the features
of two different fields of view, a linear addition method is
applied to fuse yI and yII, which is defined as:

y = αyI + βyII, (1)

where y denotes the final measurements, α and β are two
parameters. In the two-branch convolution sensing network,

FIGURE 3. The full sensing layer.

the measurements y also can be formulated as:

y = αf AI (x)+ βf AII (x), (2)

where f AI (·), f AII (·) represent the CNN Branch I and Branch II
of two-branch convolution sensing network, respectively.

In the full image convolution sensing module, the main
task is that senses the whole image for generating the
M -dimensional measurement vector. The full sensing layer is
responsible for this critical work in the process of image sens-
ing. Unlike existing BCS and convolutional CS, the image
x ∈ RN×N is convolved with M convolution filters whose
size is the same as the input image to generate M measure-
ments with size 1× 1 in the proposed method (please refer to
Figure 3). It can be expressed in mathematical formulas as:

y ∈ R1×1×M
= x ∈ RN×N

∗ F ∈ RN×N×M , (3)

where y ∈ R1×1×M denotesM measurements with size 1×1,
F ∈ RN×N×M stands for M convolution filters with size
N × N . However, one of the disadvantages of this method
is that the parameters and computational complexity will
increase dramatically when the image size N × N is large.
To compensate for this shortcoming, two convolution layers
and two pooling layers before the fully sensing layer are
added.

The main function of convolution layer in the proposed
TCR-CS network is to extract coding features and gradually
reduce image size. For the output matrix yout ∈ Rhout×wout ,
the dimensions of the height hout and width wout are deter-
mined by the input matrix xin ∈ Rhin×win , the size of filter
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FIGURE 4. The image reconstruction module.

hfilter × wfilter , padding p and stride s in the process of
convolution. Then,

hout = (hin − hfilter + 2 ∗ p)/s+ 1, (4)

wout = (win − wfilter + 2 ∗ p)/s+ 1. (5)

As can be seen from Eqs. (4) and (5), the sliding step of
the filter is the main factor to change the size of the image,
so stride s is set as a factor to adjust the compression ratio.
When the image with size N × N is fed into the convolu-
tion layer, the dimension of the output image will reduce
to (N/s) × (N/s). To get better performance, a nonlinear
activation function is added before the convolution layer in
the TCR-CS network. The Rectified Linear Unit (ReLU)
can be viewed as a new activation function aiming sparse
representation and preserving non-linearity.

The goal of the pooling layer is to compress the convolu-
tion layer again. It is able to extract the main features while
reducing the computational complexity of the network. In the
proposed TCR-CS network, the maximum pooling filter with
stride 2 and size 2 × 2 is adopted, which reduces the height
hout and width wout of the output image by half. Essentially,
the pooling layer uses the downsampling technique, which
is designed to reduce the dimension of features and preserve
valid information while avoiding overfitting. Through the
convolution and pooling operations, the dimension of the
image is dramatically reduced. For example, the dimension of
the output image will be reduced to (N/4s2)× (N/4s2) when
the image with size N × N passes through two convolution
layers with stride s and two pooling layers. Different from
the traditional linear sensing, the multi-layer networks can
preserve the key features of image while reducing gradually
the dimension of image. In addition, one can adjust s to fit the
different size of image.

The full image convolution sensing module encodes the
image information and plays a similar role as the encoder of
autoencoder. Importantly, the proposed TCR-CS network is
clearly distinct from the existing CSmethods in the following
aspects. First, the proposed TCR-CS network is much easier
to sense the whole large dimension image without the block
effects. Second, the proposed TCR-CS network uses two
CNNs with different filters to sense the image, and then
combines these two features to obtain the CS measurements.

B. THE IMAGE RECONSTRUCTION MODULE
The goal of the image reconstruction module is to restore
the original information from measurements. In recent years,
CNN has been applied to many low-level image processing
tasks and has achieved promising results, e.g., image super-
resolution. Super-resolution image reconstruction aims at
reconstructing a high-resolution image from a low-resolution
image through restoring image detail information. CS image
reconstruction is not exactly the same as the super-resolution
problem, thus the existing super-resolution network cannot
be directly applied to CS reconstruction task. Inspired by
RED [26] and VDSR [27] networks, this paper proposes
pre-reconstruction and residual reconstruction networks for
CS reconstruction (please refer to Figure 4). In the pre-
reconstructed network, the fused measurements are recon-
structed by a de-convolution network preliminarily. Then the
pre-reconstructed images are optimized and reconstructed to
high-quality images in the residual reconstruction network.
Next, we shall introduce these two networks in detail.

In essence, the image reconstruction is similar to the decod-
ing process of autoencoder. In the left part of Figure 4, the pre-
reconstructed network is a five-layer de-convolution neural
network, which is completely symmetrical with a branch
of two-branch convolution sensing network in the network
structure. Unlike the existing sensing process, the convolution
layer and the pooling layer are replaced by the de-convolution
layer and unpooling layer, respectively. De-convolution is
the inverse of convolution, and also known as transposition
convolution. The convolution output is upsampling to the
original resolution of image by de-convolution. Unpooling
refers to the inverse process of maximum pooling. A set
of conversion variables is used to record the position index
of the maximum value during the pooling process. Then,
the maximum value of the previous layer is placed in the orig-
inal position according to the conversion variable, thereby
protecting marginally the original structure. De-convolution
is a learnable process, and its parameters can be optimized
through training. However, unpooling process has no param-
eters to learn. The unpooling operation can only restore the
position of maximum value as much as possible, thus the
quality of the image will inevitably be affected. For the given
measurement y, one can obtain a preliminary reconstructed
image x by the pre-reconstructed network. Mathematically,
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the preliminary reconstructed process can be expressed as:

xB = f B(y,WB), (6)

where f B(·) denotes the pre-reconstructed network, WB rep-
resents the all parameters of pre-reconstructed network. The
main contributions of pre-reconstructed network are reflected
in two aspects: complete the preliminary reconstruction of the
image; and restore the original dimension of image from M -
dimension measurements.

It is found from experiments that the quality of this pre-
reconstructed image is far from the original image. Further-
more, inspired by the residual learning proposed by ResNet
[28], the residual block (Res-block) is introduced to enhance
the reconstruction performance. To further reduce the gap
between the pre-reconstructed image xB and reconstructed
image xC, researchers proposed residual learning to estimate
the error between two images. Most traditional algorithms
directly optimize the underlying mapping between the pre-
reconstructed image xB and reconstructed image xC,

xC = h(xB,Wh), (7)

where h(·) denotes the underlying mapping between xB and
xC,Wh stands for the parameters of the underlying mapping.
However, optimizing directly h(·) as an identity mapping
is a very challenging task in practice. In addition, the pre-
reconstructed image xB is similar to the reconstructed image
xC, the residuals between xB and xC would be closed to zero.
Compared with the underlying mapping h(·), the residual
mapping r is easier to converge during the training. Thus,
the residual mapping r can be expressed in mathematical
formulas as:

r = xC − xB = h(xB,Wh)− xB. (8)

Particularly, the residual reconstructed network takes the
pre-reconstructed image xB as the input and generates the
estimated residual mapping r. Then, the residual mapping r
can be defined as:

r = f C(xB,WC), (9)

where f C(·) represents the residual reconstructed network,
WC denotes the all parameters of the residual network.
By replacing the xB and r with Eqs. (7) and (8), the recon-
structed image xC also can be described as:

xC=xB+r. (10)

As illustrated in the left part of Figure 4, the final recon-
struction result is added by the output of the residual learning
and the linear maping. By replacing the xB and rwith Eqs. (6)
and (9), the final reconstructed image xC can be obtained
by the pre-reconstructed network and reconstructed network.
Hence,

xC = f B(y,WB)+ f C(f B(y,WB),WC). (11)

C. IMPLEMENTATION PROCESS
Given the input image x ∈ RN×N , the goal of the two-branch
convolution sensing network is to obtain the highly com-
pressedM -dimension measurements. For the image with size
256× 256, M is various with measurement rates (MR), e.g.,
M=16384, 6553, 2621, and 655 corresponding to MR=0.25,
0.10, 0.04, and 0.01, respectively. In the CNN Branch I,
the first and third convolution layers use filter with size
3× 3× 32 and generate 32 feature maps. However, the first
and third convolution layers use filter of size 7× 7× 32 and
generates 32 feature maps in the CNN Branch II. All pooling
layers adopt the maximum pooling filter with stride 2 and
size2 × 2, and the appropriate zero padding is used to keep
the feature map of the two branches consistent the same size.

As depicted in Figure 4, one can get the preliminary recon-
structed image through the pre-reconstruction network f B(·).
Then the residual reconstruction network f C(·) takes the pre-
reconstructed image as input and generates an image with
size 256× 256. The residual reconstruction network consists
of three residual blocks, each of which contains three CNN
layers. In each Res-block, the first CNN layer employs filter
with size 3×3 and obtains 64 feature maps; the second CNN
layer generates 32 feature maps with 7×7 filter; and the third
layer produces the output by 3*3 filter. In addition, the ReLU
activation function is added to all other convolution layers
except the final convolution layer. For ensuring the same size
of all feature maps, it needs to add the corresponding zero
padding in each layer.

III. EXPERIMENTS
In this section, a series of comparative experiments are per-
formed to evaluate the proposed TCR-CS method. We shall
introduce the experimental setup, loss function, and perfor-
mance evaluationmetrics, and conduct a detailed comparative
analysis from the aspects of reconstruction quality, structure
and vision.

A. PARAMETER SETTINGS AND TRAINING DETAILS
In ImageNet Val dataset [29], the central 256 × 256 part of
images is cropped for making a training set. The cropped
blocks are turned into the grayscale and are augmented by
operations such as vertical or horizontal flipping, rotating,
etc. Finally, a dataset containing 50000 images is used to
train. For benchmark, a set of images with the same size,
which is widely used for benchmark in other work (e.g.,
[16], [18], [21]–[23]), is used for testing (please refer to
Figure 5). However, it is worth noting that the training dataset
and testing images are strictly separated during the training
process.

The full image convolution sensing module and the image
reconstruction module are jointly trained to strengthen the
connection. Two-branch convolution sensing, deconvolution
pre-reconstruction and residual reconstruction networks form
an end-to-end network f (·), thus the parameters WA, WB

and WC can be jointly optimized, which do not care about
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FIGURE 5. The testing images.

FIGURE 6. The reconstruction results of cameraman at MR=0.01.

the compression measurements y. Like most of deep learning
based image restoration methods, the mean square error is
also adopted as the cost function of our network. The loss
function is described as:

L(2) =
1
T

∑T

i
||f (xi,2)− xi||22, (12)

where 2 denotes all parameters of f (·), T represents the
number of a batch of images, xi stands for the original
image. The image sensing module and image reconstruction
module are trained together, but they can be run separately.
The adaptive moment estimation (Adam) [30] is used to
minimize and update parameters during training. Parameters
like learning rate, stride and batch size are set as 0.0001,
3 and 128, respectively. The proposed network is trained with
measurement rate 0.01, 0.04, 0.1 and 0.25, corresponding to
M=655, M=2621, M=6553 and M=16384, respectively.

B. PERFORMANCE INDICATORS
Peak signal to noise ratio (PSNR) is an objective evaluation
standard of images based on the pixel point error. Then,

the PSNR is defined as:

PSNR (dB)=10log10
peak2

MSE
, (13)

where peak is the maximum pixel value of the image,MSE =
1
N

N∑
i=1

(xi − x̂i)2 denotes the mean square error between the

original image and reconstructed image.
Since people are more sensitive to the structural informa-

tion of the image, the contrast information of the structure
can be used to evaluate the quality of the reconstructed
image. Structural similarity index (SSIM) is introduced to
evaluate the structural performance of image reconstruction
in the experiments. The SSIM, as an indicator to evaluate the
structural similarity of two images, calculates the similarity
from three aspects: brightness, contrast, and structure.

For a reconstructed image Y and an input image X,
the SSIM is defined as:

SSIM =
(2uXuY + c1)(2σXσY + c2)

(u2X + u
2
Y + c1)(σ

2
X + σ

2
Y + c2)

, (14)
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FIGURE 7. The reconstruction results of Peppers at MR=0.04.

where uX , uY denote the mean of the images X and Y,
respectively; σX , σY represent the standard deviation of the
images X and Y, respectively; σXY stands for the covariance
between the images X and Y; c1, c2 are constants.

C. COMPARISON WITH STATE-OF-THE-ART METHODS
The proposed TCR-CS method is compared with five exist-
ing methods, i.e., CR-Net [16], ReconNet [18], DR2-Net
[21], TVAL3 [31], and D-AMP [32]. TVAL3 and D-AMP
are classified as the iterative-based methods, and the other
three methods are deep learning-based methods. CR-Net is
a CNN-based CS approach, which measures the input image
block by block and reconstructs the full image. TVAL3 and
D-AMP methods use very large measurement matrices for
sensing the whole image. For an image with size 256× 256,
the dimensionality of measurement matrix is 16384× 65536
when measurement rate at 0.25, a lot of memory is required
to store it. The use of such large measurement matrices can
greatly improve the quality of reconstruction in the algorithm,
but it also will lead to high computational complexity in the
iterative process. In addition, it should also be noted that
the well-known BM3D denoising method [33] is used in the
iterative process of D-AMP method.

To fully understand the performance of TCR-CS, the test-
ing images are reconstructed at measurement rate 0.01, 0.04,
0.1, and 0.25, respectively. Table 1 lists the the PSNR results
on the testing images under TVAL3, D-AMP, ReconNet,
DR2-Net, CR-Net and the proposed TCR-CS method. When
compared with other competing methods, it is obvious that
the proposed TCR-CS method gets the better PSNR values at
each measurement rate, which demonstrates the effectiveness
of TCR-CS. Compared to the iterative-based methods, deep
learning based methods achieve excellent reconstruction per-
formance for the CS measurement at the low measurement
rates. However, the performance of existing deep learning

TABLE 1. The PSNR results on the testing images at different
measurement rates (dB).

.

methods is worse than that of TCR-CS at all measurement
rates. The proposed TCR-CSmethod is 0.3 to 1dB higher than
the CR-Net method for part sample images. At MR=0.01,
the TCR-CS outperforms ReconNet, DR2-Net and CR- Net
by 4.96, 4.83 and 0.61dB, respectively.

To verify the rationality of two-branch structure, two vari-
ants of TCR-CS (denoted as TCR-CS-I and TCR-CS-II) are
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FIGURE 8. The reconstruction results of Peppers at MR=0.1.

FIGURE 9. The reconstruction results of Peppers at MR=0.25.

also implemented. TCR-CS-I only uses the first branch of
the sensing network in Figure 2 to obtain measurements, and
TCR-CS-II only uses the second branch. Table 2 shows the
comparison of TCR-CS and its variants at different mea-
surement rates. CR-Net is the method to obtain the best
reconstruction quality among all the contrast algorithms in
this paper. Compared with the CR-Net method, both TCR-
CS-I and TCR-CS-II achieve the higher PSNR values at all
measurement rates, which reveals that our proposed method
can improve the reconstruction performance of CS. However,
TCR-CS based on two-branch sensing network is signifi-
cantly better than TCR-CS-I and TCR-CS-II, which strongly
proves the effectiveness of two-branch structure.

In addition, structural similarity index is used to evaluate
structural differences between our method and others. Here,
take the case of MR = 0.01 as an example in Table 3.
Figures 6-9 show the reconstruction results of testing images

TABLE 2. The PSNR results of TCR-CS and its variants at different
measurement rates (dB).

at measurement rates 0.01, 0.04, 0.1 and 0.25, respectively.
Clearly, the visual quality of the images reconstructed by
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TABLE 3. The SSIM results at measurement rate 0.01 (dB).

TCR-CS is significantly better than TVAL3, D-AMP, Recon-
Net andDR2-Net. ReconNet andDR2-Net have serious block
effects at the low measurement rate, and the reconstructed
image is even hard to understand the content. From Figure 6,
it is difficult to distinguish the difference between the pro-
posed TCR-CS method and CR-Net in the visual quality. But
Table 3 displays that the proposed TCR-CS method has a
higher SSIM value than CR-Net, which indicates that the
structure information of the reconstructed images are better
preserved.

IV. CONCLUSION
In this paper, a two-branch convolution residual network for
image compressive sensing (denoted as TCR-CS) has been
proposed. The proposed TCR-CS network consists of two-
branch convolution sensing, pre-reconstruction and resid-
ual reconstruction. Unlike existing BCS and convolutional
CS, the whole image is sensed by two convolution net-
works with different scale filters in two-branch convolution
sensing network. In the de-convolution decoder network,
the measurements are preliminarily reconstructed to obtain
pre-reconstructed images. Then the pre-reconstructed images
are optimized and reconstructed to high-quality images in the
residual reconstruction network. Through end-to-end train-
ing, all networks can be jointly optimized. Extensive exper-
iments have shown that TCR-CS is superior to the exist-
ing iterative-based and deep learning-based methods in the
aspects of structural similarity, reconstruction performance
and visual quality at different measurement rates.
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