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ABSTRACT We present a simple pairwise matching method for 3D fragment reassembly that uses boundary
curves and concave-convex patches to accelerate and optimize the matching. Given the boundary curves
of two fracture surfaces that completely or partially coincide, we can quickly exclude the fracture surface
pairs with low boundary curve similarities, which can substantially reduce the computational cost of the
subsequent patch matching, where we extract and delineate concave-convex patches of the selected fracture
surfaces. Amodified iterative closest point algorithm is applied on these concave-convex patches to refine the
alignment. Finally, we determine the matched 3D fragments according to the overlap ratio of their fracture
surfaces. The results of experiments on real-world examples demonstrate that our proposed algorithm is both
accurate and efficient.

INDEX TERMS Boundary curve, concave-convex patch, fracture surface, fragment matching.

I. INTRODUCTION
Computer-aided 3D fragment reassembly is highly important
in many fields, such as archaeology, paleontology and
medicine. In many cases, 3D reconstruction focuses mainly
on the geometry of the fragments, since information such
as color and texture is not reliable for assembly [1]. Hence,
shape matching and 3D scanned digital fragment alignment
are challenging problems in computer graphics and computer
vision [1], [2].

Geometry-matching-based reconstruction consists of two
main successive steps: pairwise matching andmulti-fragment
matching. The former focuses on pairwise matching of the
fracture surfaces among all fragments, while the latter aims
at reconstructing the entire original object according to a set
of candidate matching pairs of fragments. Pairwise matching
is crucial to multi-fragment matching and has been a very
important technique for 3D fragment alignment [3], [4].

Recently, studies [3]–[13] matched fragments based on
features of the fracture surface, which used feature patches
[4], [5], feature curves [3], [6], [8], and feature points [9].
For example, Huang et al. [4] clustered points to generate
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feature patches of a fracture surface and used a forward
search algorithm to identify similar feature patches for pair-
wise matching. Wu and Wang [6] used the Hausdorff dis-
tance and the modified 4-point congruent set algorithms
to identify potential simple chordless cycles for matching
fragments for the reassembly of fractured sand particles. In
their follow-up work [7], for matching individual fragments
to their mother particle, the iterative closest point (ICP)
algorithm was used to attempt to match each face of each
child particle to the mother particle and to evaluate the
matching results. Altantsetseg et al. [8] guided the pairwise
matching of fragments by applying a descriptor that con-
tained a cluster of feature points to the fracture surfaces and
curves along the principal directions of the cluster. Others
proposed non-feature-based methods for the pairwise match-
ing of fragments. Winkelbach and Wahl [10] used a binary
tree structure in a depth-first approach. Mavridis et al. [11]
found an optimal match according to all vertices on the frac-
ture surfaces and used the centroid and the normal distribution
of the fracture surfaces or a standard RANSAC (Random
sample consensus) for coarse alignment. Stanford’s Digital
Forma Urbis Romae project [12] dealt with heavily eroded
fragments. Instead of using the geometry of the fracture
surface, reconstruction was conducted bymatching annotated
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FIGURE 1. Original fragment and smoothed fragment. (a) An original
fragment and (b) the corresponding smoothed fragment.

incisions on the fragments’ top surfaces. In medicine,
Paulano et al. [13] presented an automatic method for cal-
culating the contact zone between two bone fragments from
computed tomography (CT) images and applied the ICP
algorithm to the fragment to reduce the fracture.

In this work, we combine curve matching and surface
matching to improve the accuracy and efficiency of frag-
ment matching. We directly extract the 3D boundary curve
and surface features from the fracture surfaces, which are
used for coarse matching and fine alignment, respectively.
Our method can handle arbitrarily shaped fracture surfaces
and partial matches. Our work is inspired by the work
of Huang et al. [4]; however, there are several differences
between our method and theirs in the aspects of fragment
preprocessing, surface segmentation, feature extraction and
the process of pairwise matching.

Our algorithm makes two main contributions: First, fast
and simple curve matching can exclude most pairs with low
surface similarities while keeping only a few candidates with
high similarities. This can massively reduce the computa-
tional cost of the subsequent patch matching. Second, after
extracting concave-convex patches of fracture surface pairs,
a modified iterative closest point algorithm is proposed for
application on the patches to optimize the assembly results.
In the experiments, we evaluate the performance of the
proposed algorithm on real-world examples.

In the following, we introduce two geometric features,
namely, boundary curves and concave-convex patches, in
Section II and Section III, respectively. In Section IV, we
introduce the proposed pairwise matching approach by using
the extracted features. The experimental results are presented
in Section V. Finally, we present the conclusions of the paper
in Section VI.

II. BOUNDARY CURVE EXTRACTION AND COMPARISON
A. IDENTIFYING THE FRACTURE SURFACE AND
EXTRACTING THE BOUNDARY CURVE
Our target object is typically broken into several fragments,
whose fracture surfaces are often bumpy; these bumps are
defined as noise. Therefore, we first smooth the fragments by
using adaptive smoothing [14] without shrinking, which has
the advantage of controlling the degree of noise by adjusting a
smoothing radius. Fig. 1 shows an original brick fragment and
its smoothed version. The degree of noise of the smoothed
fragment is obviously reduced, which facilitates the extrac-
tion of more accurate concave and convex patches. After
smoothing, to segment the fragments into a set of surfaces

that are bounded by sharp edges, we distinguish edge points
and non-edge points using multi-scale curvedness [15]. The
curvedness at a point p on a surface can be estimated as:

cp =
√
(k21 + k

2
2 )/2. (1)

where k1 and k2 are the maximum and minimum principal
curvatures, respectively. The curvedness can be used to indi-
cate how sharp or gentle a surface is. We use the multi-
scale method that is proposed in [15] to robustly estimate
the curvedness by fitting a quadratic surface to neighborhood
points at various scales [16]. Then, surface segmentation
is realized by using a simple patch-growing algorithm [3].
Afterwards, we use the surface roughness [4] to recognize
coarse fracture surfaces created by the broken object, which
typically differ from the smooth and fine surfaces of the
unbroken object. If the original and fracture surfaces do
not differ substantially in terms of roughness, our algorithm
cannot distinguish them. In this case, we must match all sur-
faces, including all original and fracture surfaces. However,
the original surfaces can be easily excluded in the stage
of pairwise matching because it is difficult to find proper
surfaces that match with them.

We now have identified all fracture surfaces of the frag-
ment; however, their boundary points are unordered and
inaccurate. Thus, we use the boundary tracking algorithm
[17] to obtain ordered and more accurate boundary points,
which constitute the final boundary curves. Fig. 2 illus-
trates the extraction procedure of the fracture surface and
the boundary curve of a fragment of a stone brick. Fig. 2(a)
presents the multi-scale curvedness of the key points and
Fig. 2(b) presents the segmentation of the fracture surface.
After boundary tracking, we obtain the boundary curves,
as shown in Fig. 2(c).

B. BOUNDARY CURVE COMPARISON
When two fracture surfaces can be matched, their boundary
curves should completely or partially coincide. Therefore,
we can compare two boundary curves to judge their similarity.
As illustrated in Fig. 2(c), because the extracted boundary
curve includes a few noise points, the boundary curve is
smoothed using a Gaussian filter to remove the noise prior
to the similarity comparison. The points p(i) on the extracted
boundary curve and the Gaussian filter fG for p(i) are defined
as follows:

pfilt (i) =
w∑

j=−w

p(i− j) · fG(j)

fG(i) =
e−i

2/2σ 2

w∑
j=−w

e−j2/2σ 2
. (2)

A filter of widthw = 6 performswell, and the performance
at a specified filter width is related to the resolution of the
boundary curve. As points with a distance of greater than 3σ
from the central point make a negligible contribution when
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FIGURE 2. Illustration of fracture surface identification and boundary curve extraction. (a) The red points are distinguished as edge points by
their curvedness. (b) The fracture surface is identified via a simple patch-growing algorithm, and each color represents a segmented surface.
(c) The ordered boundary curve is obtained by boundary tracking. (d) The boundary curve after Gaussian filtering.

applying a Gaussian filter with a standard deviation of σ ,
the filter is designed using σ = w/3. The details are available
in [3]. Fig. 2(d) shows the smoothed boundary curve after the
application of the Gaussian filter.

We compare the boundary curves C1 and C2, which are
described by strings C1

= {(κ11 , τ
1
1 ), . . . , (κ

1
m, τ

1
m)} and C

2
=

{(κ21 , τ
2
1 ), . . . , (κ

2
n , τ

2
n )}, based on the discrete curvature κ and

torsion τ . Here, m and n are the numbers of points of C1 and
C2, respectively.

This problem is addressed as a circular substring matching
problem. This substring matching problem is based on an
m × n similarity matrix 3, in which element 3(i, j) is the
difference between points p1i ∈ C1 and p2j ∈ C2, which is
expressed as the mean Euclidean distance of p1i and p

2
j in the

vicinity of the two points [3]. It is defined as follows:

3(i, j) =
1
3

1∑
q=−1

∥∥∥p1i+q − p2j−q∥∥∥
=

1
3

1∑
q=−1

√
(κ1i+q − κ

2
j−q)

2 + (τ 1i+q − τ
2
j−q)

2. (3)

We assume that the two points are similar if 3(i, j) <
ε3. A similar curve segment is a sequence of consecutive
diagonal elements of 3: {3(i, j),3(i + 1, j + 1), . . . , 3(i +
L, j+ L)}, where L is the length of the detected segment.

The boundary curves of fragments that are matched
partially coincide only on a small segment. We require that
two similar surfaces share a boundary of at least 1/8th the
length of the shortest boundary curve to avoid failing to detect
the correct match.

III. CONCAVE-CONVEX PATCH EXTRACTION AND
COMPARISON
A. CONCAVE-CONVEX PATCH EXTRACTION
Based on the mean curvature and the Gaussian curvature at
each point on a surface, local surfaces that surround the point
can be subdivided into eight basic types: peak, pit, ridge,
saddle ridge, valley, saddle valley, flat and minimal surface
[18]. After analyzing various material fragments, we find that
concave patches and convex patches mainly include pit points
and peak points, respectively. The main point types between
concave patches and convex patches are saddle ridges and
saddle valleys.

We cluster peak points to form convex patches and cluster
pit points to form concave patches. There may be several
non-peak points within a group of peak points or several
non-pit points within a group of pit points; we merge them to
large adjacent groups. Because fracture surfaces are compli-
cated and irregular, an ideal surface type is rarely expected.
We set two thresholds, namely, εK and εH : if the Gaussian
curvature satisfies K ≥ εK and the mean curvature satisfies
H ≤ εH , the point is a peak point; if K ≥ εK and H > εH ,
the point is a pit point.

B. CONCAVE-CONVEX PATCH COMPARISON
We define each patch R as follows:

R = {µ(R), σ (R), S(R),A(R)} . (4)

whereµ(R) and σ (R) are themean and the standard deviation,
respectively, of the curvature values of all points on patch
R, which are used to represent the concavity or convexity
degree of the patch R. The size signature S(R) and anisotropy
signature A(R) that are associated with R are computed via
principal component analysis (PCA) [19] as follows.

Let m be the total number of points on the patch R and Hi
be the mean curvature of a point pi ∈ R. Then, µ(R) and σ (R)
are respectively defined as

µ(R) =
1
m

m∑
i=1

Hi. (5)

σ (R) =

√√√√ 1
m

m∑
i=1

(Hi − µ(R))2. (6)

Let p be the barycenter of patch R = {p1, . . . , pm}, and let
M be a 3× 3 covariance matrix:

M =
m∑
i=1

(pi − p)(pi − p)T . (7)

where λR0 ≥ λR1 ≥ λR2 and nR0 ,n
R
1 ,n

R
2 are the eigenvalues

and the corresponding eigenvectors, respectively, of M . λRi
and nRi are also known as the principal components and the
principal directions of R. S(R) = (λR0 + λ

R
1 + λ

R
2 )

1/2 and
A(R) =

∣∣λR1/λR2 ∣∣1/2 are the size signature and the anisotropy
signature, respectively. The size similarity SS(R1,R2) and the
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anisotropy similarity AS(R1,R2) are defined as follows:

SS(R1,R2) =

∣∣∣∣S(R1)− S(R2)S(R1)+ S(R2)

∣∣∣∣ . (8)

AS(R1,R2) =

∣∣∣∣A(R1)− A(R2)A(R1)+ A(R2)

∣∣∣∣ . (9)

If two patches R1 and R2 satisfy the following:

|µ(R1)− µ(R2)| ≤ εµ
|σ (R1)− σ (R2)| ≤ εσ
AS(R1,R2) ≤ εa
SS(R1,R2) ≤ εs. (10)

we claim that (R1,R2) is a similar patch pair.

IV. PROPOSED PAIRWISE FRAGMENT MATCHING
If two fracture surfaces match with each other, their boundary
curves will completely or partially coincide, and the con-
vex/concave patches of one fracture surface should match
with the concave/convex patches of the paired fracture sur-
face. In addition, since curve matching is much faster than
surface matching, it can directly exclude many redundant
surface pairs and reduce the high computational complexity
of the subsequent concave-convex patch matching.

Our pairwise matching method consists of three steps:
(a) Two fragments are roughly aligned quickly via boundary
curve matching. (b) A modified ICP algorithm that is based
on concave-convex patches is used for fine alignment, which
is more effective than the ICP algorithm that is based on all
points. (c) A validity testing strategy that is based on the
overlap ratio of two fracture surfaces is applied to determine
whether the two corresponding fragments match well. In our
algorithm, when two fragments match successfully, both their
fracture surfaces and their boundary curves match. Therefore,
our algorithm yields fewer mismatches than methods that
only use curve matching or surface matching.

A. BOUNDARY-CURVE-BASED COARSE ALIGNMENT
For boundary curves of two fracture surfaces, we employ the
boundary curve comparison algorithm that was proposed in
Section II and obtain all similar curve segment pairs. For each
pair of similar curve segments, we calculate a transformation
via the dual quaternion method [20] to coarsely align the two
fragments. Next, we assign scores to all coarse alignments
according to the lengths of the overlapping curve segments
and store the corresponding coarse alignments in a priority
queue. Starting from the head of the queue, we apply a modi-
fied ICP algorithm that integrates concave-convex patches to
obtain a fine alignment.

B. CONCAVE-CONVEX-PATCH-BASED FINE ALIGNMENT
For fracture surface matching, in most cases, part of one
surface coincides with part of the other surface. We present
a modified ICP algorithm that is based on the probability
iterative closest point algorithm (PICP) [21] and apply it to
the concave-convex patches to obtain the fine alignment.

First, we use points on concave-convex patches instead of
all surface points to find the closest points. For each point
xi ∈ R1j ⊂ S1, we find its closest point yi ∈ R2j ⊂ S2, where
patch R2j is the similar patch of R1j . If R

1
j is not similar to patch

R2j on S
2, we discard point xi. The similarity between patch

R1j and R
2
j is computed according to formula (10). In this case,

S1 and S2 either partially coincide or do not coincide at all.
Moreover, we only use some of the points on the concave-
convex patches instead of all points on the fracture surfaces
for the ICP algorithm. This is sufficient for the convergence
of the algorithm to the correct solution. Hence, this strategy
reduces the search space for reasonable closest points and
accelerates the algorithm.

Second, we use three constraints to discard outliers. The
closest point pair (xi, yi) is identified as an outlier if one
of the following constraints is satisfied: (a) the distance
constraint: ‖xi − yi‖ > εd , namely, the distance of points xi
and yi is larger than a threshold εd ; (b) the normal constraint:
‖n(xi)− n(yi)‖ > εn, namely, the difference between the
normals at points xi and yi exceeds a threshold εn; and (c) the
concavity-convexity degree constraint: |H (xi)− H (yi)| > εc,
where H (·) is the mean curvature, namely, the concavity-
convexity degree differs substantially between points
xi and yi.

The method of removing outliers enables us to realize
part-part surface matching. Using the three constraints to
remove outliers, we can obtain the closest point pairs with
fewer outliers. The closest point pairs are used to compute
the transformation, which yields an accurate estimate and
accelerates the convergence.

C. VALIDITY TESTING STRATEGY
The validity testing strategy is based on the overlapping
area ratio of two fracture surfaces. The area of a surface is
described by the number of points on it. According to our
experimental analysis, when the fracture surfaces matched
correctly, the minimum overlapping percentage between the
surfaces was approximately 20%. Hence, 20% is set as the
threshold for successful matching.

Therefore, we consider two fracture surfaces S1 and S2

to be correctly matched or to fit well if the size of their
overlapping area is larger than 20% of the area of one of the
fracture surfaces [19].

To define the overlapping area between surface S1 and S2,
we consider points from both S1 and S2 and their closest
points on another surface. Considering a point xi from S1 as
an example, we define yi in the overlapping area between S1

and S2 if it satisfies:

‖xi − yi‖ ≤ εdis
‖n(xi)− n(yi)‖ ≤ εθ
|H (xi)− H (yi)| ≤ εcurv. (11)

where yi is the closest point of xi on S1, n(·) denotes the
normal and H (·) is the mean curvature.
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FIGURE 3. Pairwise matching demonstration of two fragments. (a) Two similar fractures and their
boundary curves and concave-convex patches. (b) Coarse alignment via boundary curves; (c) Fine
alignment via concave-convex patches.

In the implementation, we find that even if a pair of
incorrectly matched fracture surfaces have several consistent
point correspondences, their overlapping fracture surface is
small. Therefore, most incorrect fracture surface matches are
eliminated by the validity test.

V. EXPERIMENTAL RESULTS
We applied the proposed algorithm to several real-world bro-
ken objects of various materials, which included brick (stone)
and cake (mortar) models from Vienna University of Tech-
nology [4]. The brick and cake fragments are presented
in [22]. The triangular meshes of the head (terracotta)
fragments are obtained using a 3D laser scanner, namely,
Handy3dscan. All fragments are scanned from real fractured
models. The experiment was conducted on a computer with
a Pentium(R)/3.4 GHz CPU and 8.0 GB of RAM.

A. THRESHOLD PARAMETER SETTING
Parts of our algorithm are guided by thresholds. Following
references [4] and [19], we use statistical methods to estimate
the thresholds. According to the attributes of the thresholds,
we classify the thresholds into two categories.

The thresholds in the first category are used in the sim-
ilarity comparison of surfaces. They include mainly ε3 for

FIGURE 4. Convergence processes of PICP and the modified ICP on two
fragments in Fig. 3.

boundary curve similarity; εµ, εσ , εa, εs in Eq. (10) for
concave-convex patch similarity; and εdis, εθ , εcurv in Eq. (11)
for validity testing. To prevent failure to detect the correct
match, these thresholds are set to large values. For false
matches, the corresponding error is much larger than these
thresholds. We set ε3 = 0.3, εµ = 0.3, εσ = 0.2, εa = 0.1,
εs = 0.1,εdis = 0.01,εθ = 0.01 and εcurv = 0.03.
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FIGURE 5. Brick fragments and their pairwise matching results, and the global reassembly result. (a) Six brick fragments; (b) The
pairwise matching results; (c) The reassembly result.

FIGURE 6. Broken fragments, their pairwise matching results, and the global reassembly result. (a) and (b) Two views of five head
fragments; (c) The pairwise matching results. (d) and (e) Two views of the global reassembly result.

The thresholds in the second category include εK and εH
for concave-convex patch extraction and εd , εn and εc for dis-
carding outliers when finding the closest point pairs. We use
all fragments to estimate and analyze these thresholds. When
εK and εH are set in the interval [0.001, 0.01], the difference
in the results of concave and convex region extraction is
small. Thus, we set εK = 0.005 and εH = 0.005. We found
that large values of εd , εn and εc, which are used to prune the
false point pairs, do not greatly influence the final results but
do affect the running time of the ICP algorithm. Therefore, in

our experiments, εd , εn and εc are respectively set as εd =
5
N

N∑
i=1
‖xi − yi‖, εn = 5

N

N∑
i=1
‖n(xi)− n(yi)‖ and εc = 0.3,

where N is the total number of closest point pairs of the two
fracture surfaces in the iteration.

B. ILLUSTRATION AND CONVERGENCE ANALYSIS OF THE
PROPOSED PAIRWISE MATCHING APPROACH
Fig. 3 presents the matching results of boundary curves
and fracture surfaces before and after the application of
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TABLE 1. Comparison between PICP and our proposed method on the brick fragments.

TABLE 2. Comparison between PICP and our proposed method on the head fragments.

our ICP algorithm. Fig. 3(a) shows two similar fractures
and their boundary curves and concave-convex patches. The
coarse alignment results of two fragments, boundary curves
and concave-convex patches via similar curve segment pair
(C1,C2) in Fig. 3(a) are present in Fig. 3(b), and the fine
alignment results that are obtained using our ICP algo-
rithm based on similar concave-convex patches are presented
in Fig. 3(c).

Fig. 4 presents the convergence processes of PICP [21]
and our modified ICP on two fragments that are shown
in Fig. 3. The root mean square (RMS) error [21] is used
to measure the residual error in registration algorithms. Our
modified ICP method converges faster than PICP under the
same convergence condition.

C. PAIRWISE MATCHING AND GLOBAL ASSEMBLY VIA
THE PROPOSED METHOD FOR REAL FRAGMENTS
Fig. 5 shows six brick fragments (Fig. 5(a)), their pairwise
matching results (Fig. 5(b)), and the global reassembly result
(Fig. 5(c)) that is based on pairwise matching. Similarly,
Fig. 6 shows a matching example of a head model with five
fragments.

In this work, we focus mainly on the pairwise matching
of fragments. Based on our pairwise matching, we use the
simple and greedy method in [5] to globally reassemble
fragments. It is used to evaluate the performance of our
method. Based on the proposed pairwise matching method,
we can obtain all fracture surface pairs of all fragments for
the subsequent complete reconstruction. The global assembly
process is as follows: First, the fracture surface pair with
the maximum overlap region is selected and assembled after
calculating the related transformation matrix. This process is
repeated for the remaining fracture surface pairs of unassem-
bled fragments until all fragment pairs have been assembled.

For the brick and head fragments, we can find all potential
matches. A complete match is a match in which two frac-
ture surfaces coincide entirely. The remaining matches are
partial matches, in which only part of the surface coincides
with all or part of the other surface. The related experimen-
tal results in Fig. 5(b) and Fig. 6(c) demonstrate that our
method can realize the complete or partial matching of broken
objects.

Tables 1–2 compare the performances of the PICP
algorithm [21] and our algorithm on the brick and head
fragments that are presented above in terms of the RMS
error, number of iterations and speed. The proposed method
outperforms the PICP algorithm [21] with fewer iterations
and higher execution speed under the same convergence con-
dition. The accuracy of our algorithm is also slightly higher
than that of the PICP algorithm [21].

D. ABLATION STUDY OF THE PROPOSED METHOD
Fig. 7 and Table 3 present an experimental comparison
between the original surfaces and the smoothed surfaces of
the brick fragments. From the original fragment in Fig. 7(a),
131 concave-convex patches (Fig. 7(b)) were extracted. Most
of these patches are too small to accurately reflect the con-
cavity and convexity characteristics of the fracture surface.
Then, 34 concave-convex patches (Fig. 7(d)) were extracted
from the smoothed fragment in Fig. 7(c).

Compared with the original fragments, the speeds of
the algorithms on the smoothed fragments increased by
approximately 18.5%. For the smoothed fragments, we can
find all potential matches, whereas original brick fragments
2-5 were not matched successfully. In Table 3, for those
successfully matched fragment pairs, the average RMS errors
of smooth fragments is approximately 0.078 of the error of
the original fragments with the same number of iterations.
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FIGURE 7. Comparisons of original fragment and smoothed fragment in concave-convex patches. (a) Original fragment; (b) The
concave-convex patches that were extracted from the original fragment; (c) The corresponding smoothed fragment of (a); (d) The
concave-convex patches that were extracted from the smoothed fragment.

TABLE 3. Comparison between the original surface and the smoothed surface for the matching of brick fragments.

FIGURE 8. Reassembly results with a piece of a fragment missing. (a) The reassembly result with brick 5 missing;
(b) The reassembly result with brick 1 missing.

Although fewer concave-convex patches were extracted
based on the smooth fragments, these patches can more
robustly describe the concave and convex shapes and char-
acteristics of the fracture surface. Furthermore, because the
search space can be reduced and the matching speed can be
increased, higher accuracy is realized.

In both archeological and medical applications, it is very
common for some fragments to be unavailable. If a piece of
a fragment is missing, our method can still find all poten-
tial fragment pairs in the remaining fragments. However,
the global reassembly results are affected. For example,
Fig. 8(a) presents the reassembly results with brick 5 missing.
In this case, the absence of brick 5 will not affect the assembly

result of the remaining fragments. Fig. 8(b) presents the
reassembly results with brick 1 missing, in which brick 3 is
isolated because it only pairs with brick 1.

VI. CONCLUSION
In this paper, we present a simple but effective method for
the pairwise matching of 3D fragments, which consists of
boundary-curve-based coarse matching and concave-convex-
patch-based fine alignment. First, we compare the fracture
surfaces’ boundary curves of 3D fragments that have high
similarities, which are regarded as matched surfaces. This
simple boundary-curve-based comparison can facilitate fast
coarse matching to quickly exclude low-similarity boundary
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curves from surface pairing. Next, based on the results of
the previous step, we conduct fine alignment according to
concave-convex patches of the selected fracture surfaces.
Afterwards, we determine whether two fragments fit well
based on their overlap ratio. The experimental results demon-
strate that ourmethod realizes efficient and accuratematching
for various types of fragments.
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