
Received September 20, 2019, accepted November 8, 2019, date of publication December 23, 2019, date of current version January 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2960838

An Empirical Performance Evaluation of
Transactional Solid-State Drives
YONGSEOK SON 1, HEON YOUNG YEOM 2, AND HYUCK HAN 3
1School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea
2Department of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
3Department of Computer Science, Dongduk Women’s University, Seoul 02748, South Korea

Corresponding author: Hyuck Han (hhyuck96@dongduk.ac.kr)

This work was supported in part by the Chung-Ang University Research Grant, in 2018, and in part by the National Research Foundation
of Korea (NRF) under Grant 2015M3C4A7065645.

ABSTRACT Solid-state drives (SSDs) have accelerated the architectural evolution of storage systems with
several characteristics (e.g., out-of-place update) compared with hard disk drives (HDD). Out-of-place
update of SSDs naturally can support transaction mechanism which is commonly used in systems to provide
crash consistency. Thus, transactional functionality has been recently implemented inside solid-state drives
(SSDs). However, this approach must be re-evaluated for enterprise storage with a standard interface to
investigate their benefits in a more realistic and standard fashion. In this article, we explore the implications
and challenges of transactional SSDs with different experiments. To evaluate the potential benefit of
transactional SSDs, we design and implement the transactional functionality in a Samsung enterprise-class
and SATA-based SSD (i.e., SM843TN) called TxSSD. We modify the local file systems (i.e., ext4 and btrfs)
and a distributed parallel file system (i.e., Lustre) to utilize TxSSDs. Our modified file systems with TxSSDs
provide crash consistency without redundant writes. We evaluate our file systems by using multiple micro
and macro benchmarks. We analyze the performance results and demonstrate that TxSSDs may generate an
overhead for supporting transactional functionality inside SSD.

INDEX TERMS Solid-state drives, file system, distributed file system, performance, consistency, transac-
tion.

I. INTRODUCTION
Flash memory is widely used for storage devices from sin-
gle to large-scale high performance systems since it pro-
vides lower latency, lower power consumption, and higher
throughput than hard disk drives (HDDs) [5], [43]. In addi-
tion to the advantages, as the cost per byte is falling while
the storage capacity is increasing, large-capacity flash mem-
ory devices are more commonly employed for high-end
desktops and enterprise storage servers. Large-scale dat-
acenters host many simultaneously running applications,
cater to many millions of active users, and service billions
of transactions daily. Thus, the load on the storage sys-
tems in these datacenters has been enormously increasing.
Flash-based solid-state drives (SSDs) are attractive solu-
tions to meet these performance demands for large-scale
datacenters [8], [21].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

To match the required load, the storage systems must be
designed to scale in performance, and clustering techniques
are used to provide scalability. For example, distributed par-
allel file systems assemble the cluster elements into one large
and seamless storage system. The file system ensures that all
clients have a consistent view of the file system by handling
the locations of the files and transmission of their data. The
file system distributes blocks in a file to different storage
locations by using a network protocol to provide high scala-
bility. This approach enhances the scalability of the storage
systems and provides higher performance to clients. How-
ever, scalability and performance can be negatively affected
by providing crash consistency to ensure that client data is
recovered consistently from a system crash. Thus, the file
systems have considered the trade-off between performance
and crash consistency to provide better-quality service. Gen-
erally, a higher level of consistency makes the file systems
more consistent but negatively affects the performance and
endurance of flash-based SSDs.

3848 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-4512-0121
https://orcid.org/0000-0001-6865-1756
https://orcid.org/0000-0003-0936-9181


Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

Most distributed parallel file systems, including Lus-
tre [38], Ceph [46], Gluster [10], and HDFS [4], [34], [40]
rely on local file systems to support crash consistency. Most
local file systems provide crash consistency to applications
by using journaling or copy-on-write (CoW) techniques.
Journaling file systems, such as ext4 [26], XFS [44], Reis-
erFS [13], JFS [15], and NTFS [9], provide transaction pro-
cessing for atomicity and durability by using write-ahead
logging (WAL) [12]. The file systems write data and meta-
data to the journal area before writing them to the original
area. When hardware or software failures occur, the file
systems recover the data and metadata by replaying the writ-
ten journals. CoW file systems (e.g., btrfs [36], LFS [37],
and ZFS [7]) also provide transaction processing by using
out-of-place update techniques. When data and metadata are
written, CoW file systems copy, modify, and flush them
when a transaction commits. They leave older versions of
the data and metadata in a storage medium until garbage
collection is executed to remove them. However, although
these techniques provide crash consistency, they reduce the
I/O performance since the data and metadata are written
twice. It is a challenge to escape the trade-off between crash
consistency and performance.

To provide crash consistency without sacrificing perfor-
mance, previous studies [18], [30], [33] support transaction
functionality inside an SSD by using its characteristic (i.e.,
out-of-place update). They offload the burden of guaranteeing
the transactional atomicity from a host system to flash-based
SSDs. Since flash-based SSDs do not allow any page to
be overwritten in place, a page update leaves the existing
page intact and writes the new content into a clean page at
another location [18]. This copy-on-write strategy is adopted
by most flash-based SSDs. Since the flash-based SSDs inter-
nally perform out-of-place updates, transaction processing
inside SSDs can alleviate the trade-off between performance
and consistency. This article is in line with these previous
studies [18], [30], [33] in terms of the study of transactional
SSDs. In contrast, we perform extensive performance stud-
ies for a transactional SSD which is both enterprise-class
and SATA-based for a more realistic and standard
fashion.

In this article, we introduce TxSSD, a transactional SSD
with an enterprise-class and SATA interface, and evaluate it
with diverse file systems and workloads. TxSSD supports
transactional functionality inside SSD by using the nature
of flash memory. To do this, we modify the flash trans-
lation layer (FTL) of TxSSD and explain how we design
and implement transactional functionality in a Samsung
SM843TN SSD, which is widely used in datacenters due
to the low latency and high throughput. To make the file
systems exploit TxSSD, we modify the existing local file
systems (i.e, ext4 and btrfs) and evaluate the file systems
by using file I/O and online transaction processing (OLTP)
workloads. Furthermore, we modify a distributed parallel file
system (i.e., Lustre) and evaluate the file system by using
HPC workloads in a cluster system.

TxSSD-aware file systems preserve crash consistency and
retain transaction models of the existing file systems without
redundant writes for metadata and data. In TxSSD-aware
file systems, legacy and new applications benefit from file
systems transparently without any modification. With the
experimental results, we analyze the performance results
and demonstrate that TxSSD can generate an overhead due
to support the transactional functionality. We also disclose
and analyze the reason for the overhead. In our previous
work [41], we focused on the study of local file systems in a
single TxSSD. This article extends our scheme to distributed
file systems in a cluster environment. To the best of our
knowledge, this is the first study that provides a performance
evaluation for a distributed parallel file system as well as local
file systems on transactional SSDs at enterprise level with a
SATA-based interface.

The main contributions from this study are as follows:

• We design and implement the transactional functional-
ity in an enterprise-class and SATA-based SSD called
TxSSD.

• We modify local file systems and a distributed parallel
file system to utilize the benefit of TxSSD.

• We show an empirical evaluation from our comprehen-
sive performance study using diverse workloads.

• We show that transaction support in enterprise-class and
SATA-based SSDs can incur an overhead and analyze
the reason for the overhead.

The rest of this article is organized as follows. Section II
describes the background andmotivation. Section III explains
the design and implementation. Section IV shows the experi-
mental results. Section V discusses related work. Section VI
discusses a summary and implications of our study. Finally,
Section VII concludes this article.

II. BACKGROUND AND MOTIVATION
A. CRASH CONSISTENCY IN LOCAL FILE SYSTEMS
Local file systems such as ext4 [26], xfs [44], f2fs [20],
btrfs [36], etc provide crash consistency by using a variant
of write-ahead logging [12] or copy-on-write schemes. In the
midst of many file systems, ext4 [26] is the most widely used
file system in Linux and more general than other file systems.
Ext4 uses a fork of the journaling block device (JBD) called
JBD2 which is a variant of write-ahead logging [12].

Ext4 supports three journaling modes such as writeback,
ordered, and data journaling mode [16], [45]. Each mode
has a different consistency level and different performance
according to the level. The writeback mode supports trans-
action processing only for metadata writes. This mode does
not keep the write order between the metadata and data. The
ordered mode (default) supports transaction processing only
for the metadata writes but supports stronger consistency
compared with the writeback mode by keeping the write
order between the metadata and data. Before the metadata is
written to the journal location, data is written to their origi-
nal location. The data journaling mode performs transaction

VOLUME 8, 2020 3849



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

processing for both metadata and data. It writes both meta-
data and data to the journal location before they are written
to the original location. This mode supports the strongest
consistency with data integrity (crash consistency). However,
it shows the lowest performance because of redundant data
writes.

Btrfs [36] is a CoW file system. It allows atomic trans-
actions without a separate journal. Btrfs maintains B-trees
for both data and metadata and supports two modes such as
datacow and nodatacow [36]. The datacow mode (default)
performs out-of-place updates for the data and metadata by
creating a new version of an extent or a page at a different
location, which prevents a partial update on power failures.
This mode performs garbage collection for both data and
metadata. Meanwhile, the nodatacow mode performs only
out-of-place updates and garbage collection for metadata.
This supports higher performance compared with the default
mode. But, it does not provide crash consistency due to the
lack of data integrity.

B. CRASH CONSISTENCY IN DISTRIBUTED PARALLEL FILE
SYSTEMS
Distributed parallel file systems, including Ceph, Gluster, and
Lustre, distribute file data across multiple servers and support
concurrent access by multiple tasks of a parallel application.
Among the many distributed parallel file systems, Lustre is
generally used for large-scale cluster computing, such as sci-
entific supercomputing and industry. It can be part of clusters
with tens of thousands of client nodes, tens of petabytes of
storage on hundreds of servers, and a terabyte per second
of aggregate I/O throughput. This makes Lustre a popular
choice for large datacenters. Thus, the Lustre file system
has attracted increasing attention from research and industry
communities.

Traditionally, a Lustre file system has three major func-
tional units which are the metadata server (MDS), the object
storage server (OSS), and the client. The Lustre file system
includes one or more MDSs that have one or more metadata
targets (MDTs) that store namespace metadata, such as file-
names, directories, access permissions, and file layout. Also,
a MDT has a dedicated file system that controls file access
and notifies clients the layout of the objects that make up each
file. The OSS provides file I/O service and network request
handling for one or more object storage targets (OSTs) that
store file data. The number of objects per file is configurable
by the user and can be tuned to optimize the performance
for a given workload. An OST has a dedicated file system
that exports an interface for read/write operations. OSTs and
MDTs use a variant of ext4 called ldiskfs, which has the same
journaling mechanism as ext4.

Lustre presents all Lustre clients with a unified namespace
for all of the files and data in the file system using standard
POSIX semantics. Lustre allows concurrent and coherent
read and write access to the files. When a client tries to read
from or write to a file, it performs a filename lookup on the
MDS and fetches the file layout from the MDT object for the

file. The file layout is stored in a MDT identified by the file
identifier (FID), which contains information about where the
file data is located on the OST(s). The client then uses this
information to perform I/O on the file, directly interacting
with the OSS nodes where the objects are stored.

FIGURE 1. Transaction (tx) and FTL mapping tables (logical page number
(LPN), physical page number (PPN)).

III. DESIGN AND IMPLEMENTATION
A. TRANSACTIONAL SOLID-STATE DRIVE
In this section, we explain the design and implementation
for a transactional functionality inside SSDs (called TxSSD).
We exploit the out-of-place updates of SSDs while consider-
ing the features of enterprise and SATA based SSDs. Also,
we use the buffer memory with supercapacitors inside the
device and choose more efficient data structures for SSD.
To support the transactional functionality, TxSSD leverages
multiple table-based data structures to store information of
transaction in the FTL. TxSSD uses a table per transaction to
avoid the overhead from accessing the mapping information
of all transactions in a table. Figure 1 depicts FTL mapping
tables and transactions inside TxSSD. The FTL in TxSSD has
32 transaction tables (called tx tables) per transaction ID as
shown in Figure 1(a). The maximum number of concurrent
transactions is limited to 32 due to the restricted size of
the memory inside SSD. Each table supports 60,000 entries
and each entry is 20 bytes for a logical page number (LPN)
and a physical page number (PPN). The required space is
36.6 MiB for the tx tables. The number of tx tables (32)
are sufficient to process the transactions of file systems. It
is because most file systems such as ext4, btrfs, xfs leverage
a single compound transaction scheme which provides two
concurrent transactions such as a running transaction and
a committing transaction at most [32], [45]. Thus, under
existing file systems, we choose the enough number of tx
tables and txIDs and so that the transaction overflow never
occurs. If a file system supports multiple transactions, TxSSD
supports 32 transactions concurrently now. If the number of

3850 VOLUME 8, 2020



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

TABLE 1. Transactional operations supported by TxSSD.

transaction is larger than the 32 transactions, we can also
increase the number of tx tables and TxIDs. In addition, a file
system on top of our TxSSD have to commit a transaction
before the number of operations reaches the limit because the
number of operations per transaction is restricted to 60,000.

We design and implement TxSSD based on SM843TN
SSD. To enable transactional functionality, we do not include
new SATA commands and instead employ the reserved count
field (6 bits) and the NCQ tag field (5 bits) in the exist-
ing commands. Table 1 depicts transactional operations sup-
ported by TxSSD.We use the first 5 bits of the reserved count
field for the txID (called txID field) and the last bit for the
commit flag (called commit field). For the transactional read
and write operations, we store the transaction ID of the file
system to the txID field in the read and write commands of
SATA. In case of the commit operation, we use both the txID
field and the commit field in the write command of SATA.
We extend the flush command of SATA and assign 1 and
2 to the NCQ tag field1 for abort and recovery operations,
respectively, and set the txID field of the flush command.

When a write operation is performed with a new txID,
TxSSD stores the mapping information between the LPN and
PPN in the tx table. However, TxSSD delays propagating the
mapping information to the FTL table. If a page requested
by the write operation already exists, TxSSD does not per-
form garbage collection for the existing page until the com-
mit request arrives. When updating the transaction entries,
instead of in-place update, we choose an append operation.
It is because the in-place update can incur an overhead due to
the memory access time searching for appropriate entries.2

Thus, if there is more than one update for the identical LPN,
TxSSD just appends the mapping information at the end of
the tx table instead of searching and updating the previous
entry as shown in an example of the tx1 table in Figure 1(a). In
term of read operation, when TxSSD receives a read request
with a txID, it finds and returns the page according to the
corresponding LPN in the tx table. If there are several entries
for the LPN, TxSSD returns the most recently updated page
for consistency. If a requested LPN cannot be found in the tx
table, TxSSD returns the page in the FTL mapping table.

As shown in Figure 1(b), TxSSD propagates the entries in
the tx table to the FTLmapping table after receiving a commit
request. TxSSD performs garbage collection for the old pages
associated with the tx table after the commit operation is

1The NCQ tag field is not used for the flush operation of the file system.
2The memory access time for 4 bytes inside SSD is single-digit microsec-

onds.

completed. Unlike previous approaches [18], [27], in our
scheme, all entries in the tx table can be remapped without
checking whether the entries are active or committed since
TxSSD includes each tx table per transaction. During the
commit procedure, if there are multiple entries for identical
LPNs in the tx table, the mapping information of the last
written entry is applied for remapping.

When a power outage occurs during the commit procedure,
all information is preserved using the supercapacitor. TxSSD
applies the mapping information in the tx table to the FTL
mapping tablewhen the commit request is received at TxSSD.
In abort operation, TxSSD discards all entries in the given tx
table, enabling garbage collection for pages associated with
the transaction. The recovery operation discards all uncom-
mitted mapping information in all tx tables after a power
outage.

B. ENHANCED EXT4 (E2XT4)
Our enhanced ext4 (e2xt4) file system is based on transaction
model (i.e., single compound transaction) and ordered mode
of existing ext4. However, e2xt4 does not perform redundant
metadata writes to SSD. For metadata, e2xt4 redirects the
journaled metadata to its original location and disables the
checkpoint. When a transaction commits, e2xt4 performs the
transactional write operations for the data and metadata. To
do this, when the data and metadata are transferred to storage,
e2xt4 obtains the current transaction ID from the existing
journaling scheme, remaps the transaction ID to an unused
txID of TxSSD, and transfers the transaction ID through I/O
descriptions such as BIO structure. Then, e2xt4 issues a flush
command,3 however, TxSSDmay not flush all pages from the
device buffer to the flashmemory4 due to the supercapacitors.
Finally, e2xt4 creates a commit block and writes it to TxSSD.

When ex2xt4 performs write operation for the commit
block, it writes the commit block with the txID and a com-
mit flag to TxSSD (a transactional write operation). When
TxSSD receives the commit block, it applies the mapping
information in the tx table to the FTL mapping table. TxSSD
writes all pages to the flash memory according to its policy.
After the commit operation, TxSSD empties the tx table and
allows garbage collection for the old pages.

3Most commodity SSDs store in-processing pages to flash memory to
process the flush command, which leads to a significant overhead.

4When the flush command reaches TxSSD, TxSSD flushes pages in the
device buffer to the flash memory only when the number of dirty pages
exceeds the threshold. The size of device buffer is about 70 MiB, which can
be protected by the supercapacitor.

VOLUME 8, 2020 3851



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

FIGURE 2. Enhanced ext4 file system (e2xt4) with TxSSDs.

Before the commit operation, if the written data is not in
the page cache or a direct I/O is performed, transactional read
operations are performed. E2xt4 reads the data by referencing
the tx table because the mapping information associated with
the data exists in the tx table. If an I/O operation is failed,
e2xt4 performs an abort operation for the txID.

When a system failure or a power outage occurs, TxSSD
emergently stores all information, including the tx tables and
FTLmapping table, to extra area of the flash memory called a
safe region. If the last entry in the tx table is a commit block,
TxSSD remaps all mapping information of the tx table before
shutdown.When a recovery operation (i.e., mount procedure)
is performed, TxSSD discards all mapping information in the
uncommitted tx tables.

Figure 2 shows an example of an fsync call and the com-
mit procedure after write calls in e2xt4 on top of TxSSD.
As shown in the figure, an application updates the data (D′1,
D′2, and D′3 pages), which is written to the page cache in the
file system. The LPNs of D′1, D

′

2, and D′3 are 2, 3, and 4,
respectively. E2xt4 also updates the metadata page (M′) with
the LPN 5. The old pages for D′1, D

′

2, D
′

3, M
′, and commit

block (C′) are stored in TxSSD. From the FTL mapping table
in Figure 2(a), we can see that the PPNs of the old pages for
D′1, D

′

2, D
′

3, M
′, and C′ are 0, 1, 2, 3, and 4, respectively. If a

running transaction exists, the write operations are merged
into the current transaction; otherwise, e2xt4 starts a new
transaction. After the updates, the application calls fsync
to permanently store the data and metadata by committing
the transaction. When the write operations are performed by
a page flusher or the fsync call, e2xt4 assigns the updated
data and metadata pages in the page cache to a transaction

with a newly created txID or compounds them with an exist-
ing transaction with an existing txID.

Then, e2xt4 writes the data and metadata pages (D′1, D
′

2,
D′3, and M′ pages) with the transactional write operation.
When TxSSD receives the pages, it makes LPN/PPN map-
pings for the pages in the tx table of the device. From the
tx table of Figure 2(b), the PPNs for the D′1, D

′

2, D
′

3, and
M′ pages are 5, 6, 7, and 8, respectively. Then, e2xt4 issues
a flush command and creates a commit block (the C′ page
in Figure 2(c)) and writes it to TxSSD. To write the commit
block, e2xt4 performs a transactional write operation with the
txID and the commit flag to TxSSD. When TxSSD receives
the page for the commit block (PPN for the C′ page is 9 now),
TxSSD propagates the LPN/PPN mapping information in
the tx table to the FTL mapping table. Later, TxSSD stores
all pages (D′1, D′2, D′3, M′, and C′ pages) to the flash
memory according to the write policy of TxSSD. After then,
TxSSD empties the tx table and permits garbage collection
for old pages. From the description above, we see that the
write traffic of e2xt4 is approximately the same as that of
ext4 without journaling, but e2xt4 provides strong consis-
tency with data integrity as the data journaling mode does
(crash consistency).

C. ENHANCED BTRFS (EBTRFS)
Enhanced Btrfs (ebtrfs) is on the basis of the nodatacowmode
and transaction model of btrfs. In contrast, ebtrfs does not
perform copy-on-write for metadata like the data operations
of the nodatacow mode. Ebtrfs writes both metadata and
data into their original locations without garbage collection.
The commit procedure in ebtrfs is similar to that of e2xt4.

3852 VOLUME 8, 2020



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

FIGURE 3. Enhanced Lustre file system (elustre) with TxSSDs.

Thus, ebtrfs maintains txIDs and keeps the order between the
metadata and data updates. When ebtrfs performs a commit
operation, it writes metadata and data to TxSSD as transac-
tional operations. And then, ebtrfs issues a flush command
and performs a write operation for the superblock as a commit
block with a commit flag. Other operations (e.g., read, abort,
recovery operations) of ebtrfs are almost similar to those of
e2xt4.

D. ENHANCED LUSTRE (ELUSTRE)
Our elustre is based on the ordered mode and the transac-
tion model of ldiskfs. However, elustre does not perform
redundant write operations for metadata to SSD in both
MDT and OST. Thus, elustre supports transactions and crash
consistency without any redundant writes for both metadata
and data like e2xt4 and ebtrfs. The metadata managed by
MDT contains the layout about the OSTs on which the file
objects are located. This layout information is stored in the
extended attribute (xattr) section of the inode in the MDT.
Elustre processes the transactions for the metadata stored in
the MDT and both metadata and data stored in the OST. The
metadata operations in the MDT and the OST are similar to
those of e2xt4. We write the metadata in a transaction to its
original location and disable the checkpoint operation. When
a commit operation for the transaction occurs, the metadata
gets associated with the transaction by using the txID and
written according to the transaction table.

For the data operations in the OST, we allocate a txID to an
object. When a new transaction is generated, the transaction
associates the object to be written to storage with the txID.
Thus, the objects associated with the transaction are written
to storage, and the transaction table related to the txID is
updated before their metadata are written to storage as the
orderedmode of ext4 does.Meanwhile, themetadata and data
are processed as a transaction by using the same txID and a
commit block for the transaction.

Figure 3 shows an example of a write operation in elus-
tre. As shown in the figure, each MDT and OST has a
txSSD-aware file system and TxSSD. When a client writes
an object (object A) for a file, the client looks up the file
and creates a transaction (tx1) in the MDT. The txSSD-aware
file system in the MDT allocates a txID (e.g., txID: 1) and
associates the txID with the modified metadata of the file.
Then, the MDT returns the layout of the file to the client.
The client gets the layout information of the file, requests
the write operation to OST1, and makes a transaction in
OST1. The txSSD-aware file system in the OST allocates a
txID (e.g., txID: 1) and associates the txID with the modified
metadata and data. The modified metadata in the MDT and
the modified metadata and data in the OST are flushed to
the transactional SSDs with the commit blocks when the
transactions are committed.

As shown in the figure, the modified metadata and the
commit block in the MDT are included in a transaction; when
the two blocks are written to TxSSD, the LPNs/PPNs of
the two blocks are mapped to 1/11 and 2/21, respectively,
and written in the transaction table. When the transaction
commits, the FTL mapping table is modified. This procedure
is also performed in the OST. In the OST, the LPNs/PPNs
of the three blocks are mapped to 1/11, 2/21, and 3/31,
respectively, and written in the transaction table. Similar to
the case of theMDT, the FTLmapping table is modifiedwhen
the transaction commits. Consequently, our elustre supports
the transaction processing for both metadata and data without
redundant writes by using the transactional SSDs.

E. IMPLEMENTATION
To enable enhanced file systems and TxSSD, we create a
table with 32 entries to map the transaction IDs of the file
systems to the txIDs of TxSSD. The existing block I/O sub-
system cannot issue transactional operations of TxSSD since
the subsystem cannot access to the txID number, commit

VOLUME 8, 2020 3853



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

flag, and recovery/abort flag. Thus, we add three fields
to four descriptors (struct bio, struct request,
struct scsi_cmd, and struct ata_queued_cmd)
in the block I/O subsystem. Additionally, we modify the
block I/O subsystem to transfer the added fields from the
upper to lower layer of the block I/O subsystem. Themodified
lines of code in e2xt4, ebtrfs, elustre, and the block I/O
subsystem are 193, 202, 214, and 109, respectively. This
demonstrates that our scheme requires small modifications,
and so our scheme can be easily applied to other file systems.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
To evaluate local file systems, we use a machine, which has
two Intel Xeon CPU E5-2670 (2.6 GHz) (total 16 physical
cores), 8 GiB DRAM, SATA 3 interface, and Linux 3.14.3.
A separate client machine is used for the OLTP evaluation.
The machine has two Intel Xeon CPU E7-8837 (2.67 GHz)
with 16 physical cores each (64 cores in total with hyper-
threading). For TxSSD, we used SM843TN developed by
Samsung. It has a capacity of 240 GiB and is designed for
high-performance servers and storage in demanding data-
centers by providing a powerful controller and power-loss
protection. For comparison, we use unmodified SM843TN
SSD with ext4 and btrfs and TxSSD with e2xt4 and ebtrfs.
We use the FIO benchmark [14] to measure the file I/O
performance and the OLTP benchmark [19] to measure the
database performance (i.e., transactions per minute (TPM)).

To evaluate the Lustre file system, we use a cluster sys-
tem, which consists of 8 identical machines connected by
a network. Each machine has an Intel Core CPU i7-4790
(3.60 GHz) with 4 physical cores, which total up to 8 cores
with hyperthreading, 32 GiB DRAM, SATA 3 interface, and
a 10 GbE network card. We configure one node as a MDS
with one MDT, which has a TxSSD and six OSSs with each
OST,which has a TxSSD, and one node as a client. All servers
run CentOS 7 with a Linux kernel 3.10 patched for Lustre. To
measure the performance, we use the IOR benchmark [1] and
mdtest [2], which are data-intensive and metadata-intensive
workloads, respectively. All experimental results report the
average value of ten runs.

B. LOCAL FILE SYSTEM PERFORMANCE
1) FILE I/O PERFORMANCE
We present the performance evaluation of our enhanced local
file systems on TxSSD using the FIO benchmark [14]. We
configure FIO to perform random write operations using
32 threads. Each thread writes 1 GiB file with 4 KiB request
size and different numbers of writes per fsync call.

a: ENHANCED EXT4
We compare e2xt4 with the ext4 file system in three different
journaling modes such as data journal mode, ordered mode,
and journal off mode. We measured the bandwidth, the total
amount of writes, and the runtime as shown in Figure 4.

FIGURE 4. FIO results in e2xt4 with 32 threads, 1 GiB file size, 4 KiB
request size, and 10 random write operations between fsync.

Figure 4(a) shows that the bandwidth for data journaling
mode is 93.4 MiB/s whereas the bandwidth for the ordered
and journal off modes is 153 MiB/s (1.64X) and 158.4 MiB/s
(1.70X), respectively. The data journaling mode shows far
lower bandwidth comparedwith the other journaling configu-
rations because there is an overhead of redundant data writes.
However, the performance of the ordered mode is similar to
that of the journal off mode even though the orderedmode has
additional overheads such as redundant metadata writes and
flush command. It is because the workload is data-intensive
and the SSD with supercapacitor mostly returns to the host
without flushing the data in the device cache, resulting in
almost no overhead for flushing. E2xt4 shows a higher band-
width of 137 MiB/s (1.46X) compared to ext4 in the data
journaling mode. However, the bandwidth of e2xt4 is 10.5%
and 13.5% lower than those of the ordered and journal off
modes, respectively. This indicates the presence of transac-
tional support overhead, such as remapping transaction tables
in TxSSD.

In terms of the total amount of writes, Figure 4(b)
shows that the data journaling mode has written 72.9 GiB.
Meanwhile, ordered and journal off modes have written
approximately 34.2 GiB. This indicates that the amount of
the metadata journal and its overhead is almost negligible
compared to the data journal. According to the expectation,
e2xt4 also shows almost the same amount of total data writes
as the journal off mode. In terms of runtime, Figure 4(c)
shows that the data journal mode takes 1.66X and 1.70Xmore
time than the ordered and the journal off modes, respectively.
The runtime of e2xt4 is 10.8% longer than that of the ordered
mode, which is consistent with the bandwidth results pro-
vided in Figure 4(a). These results show that providing crash
consistency in the existing ext4 has a significant performance
tradeoff in terms of the bandwidth, write amplification, and
runtime. Meanwhile, e2xt4 shows relatively small overhead
while keeping strong consistency with data integrity.

Figure 6 shows the FIO performance according to different
fsync parameters. This indicates how many I/O operations
to perform before issuing an fsync [14]. An fsync opera-
tion flushes the dirty metadata and data, thus, a higher fsync
frequency results in a lower performance due to high I/O over-
head. As shown in the figure, there are performance drops
of 9.4%, 10.1%, 8.2%, and 11.0% as the fsync parameter
is reduced from 100 to 10 in the data journaling, ordered,

3854 VOLUME 8, 2020



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

FIGURE 5. FIO results in ebtrfs with 32 threads, 1 GiB file size, 4 KiB
request size, and 10 random write operations between fsync.

FIGURE 6. FIO results in e2xt4 with different fsync parameters.

journal off modes, and e2xt4, respectively. As the number
of write operations per fsync is reduced from 10 to 1, we
observe the performance reduction of 28.1%, 34.5%, 37.6%,
and 35.3%. E2xt4 shows 1.50X, 1.51X, 1.47X, and 1.32X
performance of the data journaling mode. By comparing
e2xt4 and the ordered mode, the overhead of the transactional
support in TxSSD is shown as 9.7%, 9.4%, 10.5%, and 10.3%
in the case of 1000, 100, 10, and 1 write operations per
fsync, respectively.

b: ENHANCED BTRFS
Figure 5 shows the performance of ebtrfs and btrfs using
FIO performance. We evaluate the btrfs with the datacow
and nodatacow modes. As shown in Figure 5(a), ebtrfs and
btrfs with the nodatacow mode improve 7.1X and 8.32X
random write performance compared with the default con-
figuration of btrfs. This result shows that btrfs generates a
significant performance overhead in trade with crash con-
sistency. Figure 5(b) shows the total amount of written data
and runtime. As shown in the figure, there is a larger gap
between the btrfs with datacow and nodatacow/ebtrfs It is
because datacow not only copies data but also performs
garbage collection on obsolete pages by performing discard
operations. Figure 7 shows the performance of ebtrfs and
btrfs under differentfsync parameters. Similar to the case of
ext4, as the number of write operations perfsync is reduced,
the overall performance is decreased. It also indicates that
more frequent copy and garbage collection increases fsync
frequency, which results in larger drop in performance. This
result demonstrates Ebtrfs has achieved higher performance
while keeping the same level of consistency as default btrfs
in a wide range of number of write operations per fsync.

FIGURE 7. FIO results in ebtrfs with different fsync parameters.

TABLE 2. InnoDB experimental parameters.

2) OLTP PERFORMANCE
We ran the sysbench OLTP benchmark with MySQL
5.6.21 and InnoDB for e2xt4 and ebtrfs to show a more
real application performance. Table 2 shows the experimen-
tal parameters and other parameters are configured as the
default. We configure the page size as 4 KiB instead of the
default page size (16 KiB) since a smaller page size leads
to better performance [17]. InnoDB supports a technique for
guaranteeing the atomicity by performing redundant writes
called Double-Write Buffer (DWB). InnoDB first writes and
flushes data to a double write buffer area and then writes and
flushes each data to its original location. E2xt4 and ebtrfs
can disable this technique because they perform transaction
processing within TxSSD.

a: ENHANCED EXT4
Figure 8 depicts OLTP results on ext4 with the ordered mode
and e2xt4. Three configurations are chosen, such as ext4

FIGURE 8. OLTP results between ext4 (ordered mode) and e2xt4 file
systems.

VOLUME 8, 2020 3855



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

FIGURE 9. OLTP results between btrfs and ebtrfs file systems.

(ordered mode) with or without DWB, and e2xt4 without
DWB. As shown in the figure, in the case of the ordered
mode with DWB, the TPM increases by 36% from 16 to
32 threads but does not scale after 32 threads. In the case
of 64 and 128 threads, the TPM decreases to 52729 (65.9%)
and 39384 (49.6%) respectively. The reason of performance
reduction is the increased I/O traffic and contention due to
DWB. That is, DWB does not have any parallelism and
the DWB operation writes to a DWB area sequentially,
which harms the scalability. Meanwhile, the performance of
ext4 and e2xt4 without DWB scales well since there is no
I/O contention on DWB. Ext4 without DWB improves the
performance by 2.21X and 3.17X compared to ext4 with
DWB in the case of 64 and 128 threads, respectively. The
large performance gap shows that enabling DWB incurs a
significant overhead in trade with consistency. E2xt4 without
DWB improves the performance by 1.23X, 1.19X, 1.95X,
and 2.82X in the case of 16, 32, 64, and 128 threads,
respectively while providing the same level of consistency as
ext4 with DWB. Compared to ext4 without DWB, e2xt4 with-
out DWB shows TPM of 96.3%, 93.7%, 87.9%, and 89.0%
with 16, 32, 64, and 128 threads, respectively. This result
indicates the transaction processing overhead presented in the
TxSSD.

b: ENHANCED BTRFS
Figure 9 shows the OLTP results on btrfs and ebtrfs with
four configurations such as default (datacow) without DWB,
nodatacow with DWB, nodatacow without DWB, and ebtrfs
without DWB. The default mode without DWB and the
nodatacow mode with DWB maintain the same level of
consistency but with different performance implications. As
shown in the figure, the nodatacow with DWB mode shows
higher performance than the default without DWB in 16 and
32 threads, respectively. Meanwhile, in the case of 64 and
128 threads, nodatacow with DWB shows 91.3% and 77.9%
higher TPM compared to the default btrfs without DWB.
This result shows that DWB has a more negative impact
on performance than datacow when the number of threads
increases.

Nodatacow without DWB outperforms the default mode
without DWB and the nodatacow mode with DWB due to no
redundant write operations for data. Ebtrfs without DWB out-
performs the default without DWB by 1.24X, 1.38X, 1.43X,
and 1.49X and it also outperforms nodatacow with DWB by
1.14X, 1.22X, 1.57X, and 1.89X in the case of 16, 32, 64,
and 128 threads, respectively. Owing to the transactional pro-
cessing overhead, ebtrfs without DWB generates an overhead
of 6.1%, 4.5%, 7.5%, and 2.2% compared with nodatacow
without DWB in the case of 16, 32, 64, and 128 threads,
respectively. However, this overhead is much smaller than
the overheads generated by datacow or DWB. Consequently,
our results demonstrate that ebtrfs keeps the same level of
consistency like datacow or DWB with small overhead.

TABLE 3. Recovery time.

3) RECOVERY PERFORMANCE
To measure recovery time, we cut the power of the machine
while it was executing the OLTP benchmark. Table 3 shows
the recovery time after rebooting the machine. The recovery
time of e2xt4 is 0.8 ms. Meanwhile the recovery time of the
ordered mode with DWB is 249.3 ms. The recovery proce-
dure of the ordered mode performs the scan and replay oper-
ations for the metadata. The datacow mode of btrfs increases
the recovery time since the datacowmode reconstructs its tree
nodes for both data and metadata. Meanwhile, the nodatacow
mode of btrfs with DWB reduces the recovery time since
the nodatacow mode only recovers the metadata. Similar to
e2xt4, the recovery time of ebtrfs is only 0.7 ms. Meanwhile,
the recovery time of the datacow mode without DWB and
the nodatacow mode with DWB in btrfs is 1379.5 ms and
20.6ms, respectively. In summary, recovery time of e2xt4 and
ebtrfs is the shortest while providing the same level of crash

3856 VOLUME 8, 2020



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

FIGURE 10. Mdtest benchmark results for directory creation, file creation, diretory removal, and file removal.

consistency. The reason is that e2xt4 and ebtrfs only perform
the recovery operation to TxSSD in which all mapping infor-
mation in the uncommitted tx tables is just discarded.

C. DISTRIBUTED PARALLEL FILE SYSTEM PERFORMANCE
We use mdtest and IORwhich are widely used to measure the
performance of distributed parallel file systems. Mdtest is an
MPI-coordinated metadata-intensive benchmark. Each task
creates, stats, and removes the specified number of directo-
ries and/or files and measures the performance in operations
per second. IOR is an MPI-coordinated data-intensive bench-
mark with various interfaces and access patterns. We con-
figured both IOR and mdtest in various numbers of options
and threads. We note that the current existing Lustre file
system does not support the data journaling mode due to the
performance issue. Thus, we compare our elustre file system
with the existing Lustre file system in the ordered mode, and
the consistency level of our enhanced Lustre file system is
higher than that of the existing Lustre file system.

1) MDTEST PERFORMANCE
We evaluate the metadata I/O performance in existing and
enhanced Lustre file systems by using the mdtest benchmark.
In our evaluation, we set five branch, five depth, and ten
items, which means the mdtest first creates a directory tree
with five branch and five depth, and each tree node creates
ten items (files or directories). We set the number of bytes to
write to each file after it is created as 4 KiB. Figure 10 shows
the operations per second for the directory/file creations and

the directory/file removal when the number of threads is
increased. Figure 10(a) shows the performance of the direc-
tory creation operations. As shown in the figure, elustre
improves the performance by 8%, 7%, 7%, 6%, 18%, 13%,
and 12% compared to Lustre at each number of threads,
respectively. For the improvement, the reason is that mdtest
generates metadata-intensive operations, and elustre pro-
cesses the transaction for the metadata without redundant
writes while Lustre processes the transaction with redundant
writes. Thus, elustre improves the metadata-intensive perfor-
mance compared to Lustre in the ordered mode. Figure 10(b)
shows the performance for file creation operations. The
results of the two file systems are similar. When the number
of threads is 32, we improve the performance up to 4.4%.

Figure 10(c) shows the performance of directory removal
operations. As shown in this figure, elustre improves the per-
formance by 4.3%, 0.3%, 38%, 10%, 13.7%, 8.4%, and 8.3%
at each number of threads, respectively, compared to Lus-
tre. Figure 10(d) shows the performance of the file removal
operations. Elustre improves the performance by 3.3%, 0.2%,
4.1%, 24.7%, 27.9%, 32.9%, and 42% at each number of
threads, respectively, compared to Lustre. When the number
of threads is 64, elustre achieves maximum improvement.
Consequently, we show a similar or better performance com-
pared to the existing file system while providing a higher
consistency level. It is because that the existing file system
provides the transactions for the metadata in the MDT and
the OST but does not provide the transactions for data for the
OST in which writes the data of the file.

VOLUME 8, 2020 3857



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

FIGURE 11. IOR benchmark results according to different block sizes and number of threads.

2) IOR PERFORMANCE
We evaluate existing and enhanced Lustre file systems by
using the IOR benchmark. Figure 11(a) shows the random
write performance with different request sizes when the num-
ber of threads is eight and the number of files is one per
thread, which means each thread creates a single file with six
stripes, and these stripes will be distributed into six OSTs.
The overall performance increases as the number of threads
increases. but the performance is decreased at 64 threads. As
shown in the figure, the performance of the two file systems
is similar. It is because that IOR generates data-intensive
operations, and most I/O operations are performed in the
OSTs with small metadata I/Os in both MDT and OSTs
unlike the case of mdtest. Unlike the result of local file
systems, the overhead of TxSSD is hidden since many layers
and components of Lustre and network overhead generate a
longer latency compared to a local file system. In terms of
the consistency level, elustre provides a higher consistency
level than that of Lustre since Lustre in the orderedmode only
supports the transaction for metadata, but our elustre supports
the transaction for metadata and data.

Figure 11(b) shows the result of random write in different
threads. In this evaluation, we set the request size as 16 KiB.
As shown in the figure, the performance of the two file
systems is similar as the performance results with different
request sizes. When the number of threads is 32, the two
file systems show the highest bandwidth. The bandwidth
of elustre and Lustre is 393.92 MiB/s and 384.11 MiB/s,
respectively. This demonstrates that the overhead of TxSSD
is completely hidden, and elustre shows a slightly better
performance even with fewer metadata operations. Figure 12
shows the performance of fsync per randomwrite operation
in the different number of threads. The frequent fsync call
decreases the overall performance. Meanwhile, the perfor-
mance increases as the number of threads increases. Similar
to other results of the IOR benchmark, the performance of
the two file systems is similar. This result shows that unlike
the case of local file systems, the fsync call affects the
performance less in the distributed parallel file system.

FIGURE 12. IOR benchmark results for fsync operation per write
operation on the different number of threads.

D. EXPERIMENTAL ANALYSIS
We disclose the overhead of the transactional support from
our file systems without the overhead inside TxSSD. To do
this, we disable the transactional functionality of TxSSD.
Then, we compare the our modified version with the unmod-
ified version in order to disclose the overhead of our imple-
mentation. Table 4 depicts that there is almost no overhead of
the transaction support in our file systems. Thus, the overhead
is attributed to the overhead of the transactional support
generated by the TxSSD.

TABLE 4. Performance of enhanced file systems and modified block I/O
subsystem when functionality of TxSSD is disabled.

To support this claim, we measure the latency of normal
and transactional operations with a request size of 4 KiB
using one thread. To reduce the overhead of measurement,

3858 VOLUME 8, 2020



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

FIGURE 13. Average latency of normal and transactional operations under the number of different
entries.

we use a raw device and the direct I/O mode. In the raw
device, we use commit-on-flush to commit a transaction with
the flush command, which remaps the entries in the tx table
to the entries in the FTL mapping table because there is no
commit block.

Figure 13 depicts the average latency of transactional oper-
ations (TxWrite/Read, Commit, Abort, and Recovery) and
normal operations (NoramlWrite/Read/Flush) under different
numbers of entries. For instance, 10 means that 10 entries are
updated and remapped to the FTL mapping table in TxWrite
and the commit operation, respectively. There is almost no
performance gap between the TxWrite/Read and Normal-
Write/Read. This result demonstrates that update and search
operations hardly affect performance in TxSSD.

Meanwhile, the commit operations produce a considerable
overhead compared with normal flush. In the SSD firmware,
the time taken by the remap function is 2474us, which is
similar to the measured result in the host side. In the case
of commodity or Open SSDs, the time taken by the flushing
command is a fewmilliseconds.Meanwhile, in the case of our
SSD, the flushing command produces about 30 us because it
returns instantly due to supercapacitors. Thus, the overhead
of remap operations5 becomes more noticeable to the host.
It affects the performance of applications as the number of
entries increases.

The latency of recovery operation is longer than that of
the abort operation because the recovery operation discards
mapping information in all tx tables. Even though the number
of entries increases, the latencies for the abort and recovery
operations are not increased. The reason is that TxSSD deal-
locates the tx tables with the uncommitted entries.

V. RELATED WORK
A. FILE SYSTEMS FOR FLASH-BASED SSDs
There are many studies on file systems for flash SSDs.
F2FS [20] is a file system designed for flash SSDs. F2FS
devises a flash-friendly on-disk layout to avoid unnecessary
data copying and multi-head logging for optimizing the write
performance. ParaFS [47] is a log-structured file system for

5The remap function performs copy operations (memory) for the entries
from the tx table to the FTL mapping table.

flash SSD to exploit internal parallelism inside SSD while
ensuring efficient garbage collection. ParaFS coordinates the
garbage collection at both the file system and FTL levels. It
also schedules read, write, and erase requests over multiple
channels to achieve consistent performance.

SpanFS [16] is a scalable file system for flash-based SSDs.
SpanFS consists of a collection of micro file system services
called domain to improve the scalability of file systems on
many cores. It distributes files and directories among the
domains and provides a global file system view on top of the
domains. This article is in line with the previous works [16],
[20], [47] in terms of improving the performance of file
systems based on flash-based SSDs. In contrast, we focus on
improving and evaluating the performance of file systems on
flash-based SSDs that support the transaction functionality.

B. DISTRIBUTED PARALLEL FILE SYSTEMS
There have been several studies on distributed parallel file
systems. Devulapalli and Wycoff analyze strategies for file
creation in file systems that distribute metadata across multi-
ple servers. They present designs, which reduce the message
complexity of the create operation and increase the per-
formance. IndexFS [35] provides scalable high-performance
operations on the metadata and small files for existing file
systems, such as PVFS, Lustre, and HDFS. IndexFS uses
a table-based architecture and an optimized log-structured
layout that stores the metadata and small files efficiently.

PLFS [6] is a parallel log structured file system. PLFS
remaps an application’s preferred data layout into one which
is optimized for the underlying file system. The layer of
indirection and reorganization reduces the checkpoint time.
Piernas et al. [31] propose a user-space implementation of
active storage for Lustre and compare it with the traditional
kernel-based implementations. They show that the user-space
approach prove to be faster, more flexible, portable, and
deployable than the kernel-space approaches.

Oral et al. [29] found that journaling in Lustre for the
object store considerably affects the overall performance.
To increase the overall performance of the file system,
they provide a hardware solution using external journaling
devices and propose software-based optimization to remove

VOLUME 8, 2020 3859



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

the synchronous commit. Our work is in line with these
studies [6], [11], [29], [31], [35] in terms of investigating
the distributed parallel file systems and their performance.
In contrast, we focus on improving the performance using
TxSSDs and investigate their implications.

C. TRANSACTIONAL SSDs
There are many studies for supporting transactional func-
tionality in SSDs. The transactional SSD concept was first
introduced by TxFlash [33], which provides cyclic commit
protocols. TxFlash links all pages in each transaction in one
cyclic list by keeping pointers in the page metadata. The
cyclic commit uses per-page metadata to remove the need
for a separate commit record. It requires judging whether a
transaction is committed or not. Meanwhile, this scheme can
be inappropriate for current enterprise SSDs. The reason is
that themetadata area can be reserved formultiple purposes to
contain information about error correcting code (ECC) data,
bad blocks, etc [42].

LightTx [22], [23] supports transaction flexibility using
a lightweight embedded transaction design. LightTx uses a
commit protocol that determines the transaction state solely
inside each transaction in order to support parallel transac-
tion execution. In addition, LightTx periodically retires the
dead transactions to reduce transaction state tracking cost.
DiffTx [24] is an embedded transaction protocol which dif-
ferentially logs partial page updates in a write-ahead logging
way and writes full page updates in a shadow paging way,
aiming at low write amplification. TxCache [25] is a new
embedded transaction mechanism for SSDs with non-volatile
disk cache. TxCache design leverages non-volatile disk cache
to efficiently support transactions inside SSDs. It persists
new-version data in non-volatile disk cache in a shadow way
while protecting old-version data from being overwritten.
LightTx, DiffTx, and TxCache are design and implemented
on a trace-driven SSD simulator based on DiskSim. In con-
trast with these studies, we aim to show the experimental
results by using SSDs which satisfies enterprise and standard
interface.

Shi et al. [39] is a transactional SSD design which provides
different types of transactional primitives to support static
and dynamic transactions separately. Mobius flash transla-
tion layer (mFTL) combines normal FTL with transaction
processing by storing mapping and transaction information
together in a physical flash page by using out-of-band (OOB).
In this case, this design may not adapt to other flash-based
SSDs. It is because that OOB area can be used for error
correction code (ECC) and metadata by each vendor. Mobius
is designed and implemented on openSSD platform which is
not enterprise-class SSD. The one of main differences point
between OpenSSD and enterprise SSD is whether the super-
capacitor is supported or not. In the case of enterprise SSD,
the supercapacitor is supported so that the flush command
overhead is very low. Thus, the results of evaluation can
be totally difference between OpenSSD and enterprise SSD.

This paper discloses the evaluation results and analyze the
results.

FusionIO [30] presents an atomic-write in an enterprise
flash-based SSD. It provides atomic write that puts a batch of
multiple I/O operations into a single logical group, which is
persisted successfully or rolled back upon a failure. FusionIO
modifies MySQL to use the atomic write call. Meanwhile,
there is no performance evaluation on file systems. We also
focus on the performance for transactional SSD based on
SATA and the firmware FTL rather than a host-based FTL
that consumes host resources.

X-FTL [18] improves the performance of SQLite by
exploiting the transactional atomicity provided by SSDs.
SQLite is a DBMS used by Android phones, which relies
on costly page-oriented journaling to support transactional
atomicity. This results in slow responses to mobile appli-
cations. CFS [27] is a file system built on X-FTL [18].
CFS guarantees crash consistency in application level by
enabling applications to declare arbitrary code regions which
is required for providing crash consistency. CFS improves
performance of SQLite and solves the problem of false
sharing of metadata. Unfortunately, their [18], [27] perfor-
mance evaluation is based on openSSD [3], which is not an
enterprise-class SSD.

SHARE interface [28] provides an abstraction which
allows applications to change the address mapping inside
flash storage. It allows the applications to achieve write atom-
icity without write amplification. The goal of the previous
studies [18], [22]–[24], [27], [28], [30], [33], [39] is similar
to our goal in terms of supporting transactional functionality
inside SSD. Meanwhile, to the best of our knowledge, this
work is the first evaluation study on transactional SSDs that
satisfies both enterprise and SATA interface to provide per-
formance results for a more realistic and standard fashion.
Furthermore, we evaluate the effectiveness of transactional
SSDs in a distributed parallel file system, as well as local file
systems.

VI. SUMMARY AND IMPLICATION
We summarize implications of our evaluation study. Espe-
cially, we make the following main findings and insights
throughout our measurements and observations.

• Redundant writes for providing crash consistency affect
the performance and endurance, especially in btrfs,
while the overhead from flush operations is small due
to the supercapacitor.

• The overhead of memory copy operations inside TxSSD
during the commit operation is noticeable because the
overhead of the flush command is low. Except for the
commit operations, the latency of other transactional
operations on TxSSD is the same as those on the original
SSD.

• E2xt4 and ebtrfs on TxSSD improve I/O and recovery
performance compared with the original ext4 and btrfs
while providing the same consistency level. However,

3860 VOLUME 8, 2020



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

the I/O performance in the data-intensive workloads is
slightly lower than that of the weak-consistent modes
(ordered and nodatacow) due to the overhead of trans-
actional support inside TxSSD.

• Furthermore, elustre with multiple TxSSDs improves
the I/O performance in the metadata-intensive workload
and shows a similar performance in the data-intensive
workload but provides a higher consistency level com-
pared with Lustre.

VII. CONCLUSION
In this article, we investigated the implications of trans-
actional SSDs. We evaluated the effect of transactional
SSDs with diverse file systems and configurations. Then
we found insights and observations through our evaluation.
Our results show that TxSSD-aware file systems increase the
performance compared with crash-consistent modes while
maintaining crash consistency. Additionally, they improve
the endurance of SSDs because the total number of writes
decreases. Finally, we show that providing transactional func-
tionality in SSDs may incur overhead. It must be consid-
ered carefully when we design transactional functionality or
in-storage computing.

REFERENCES
[1] IOR HPC Benchmark. Accessed: Sep. 1, 2019. [Online]. Available:

https://sourceforge.net/projects/ior-sio/
[2] Mdtest: HPC Benchmark for Metadata Performance. Accessed:

Sep. 1, 2019. [Online]. Available: http://sourceforge.net/projects/mdtest/
[3] The Openssd Project. Accessed: Sep. 1, 2019. [Online]. Available:

http://www.openssd-project.org/wiki/The_OpenSSD_Project
[4] I. Polato, R. Ré, and F. Kon, ‘‘A comprehensive view of Hadoop research—

A systematic literature review,’’ J. Netw. Comput. Appl., vol. 46, pp. 1–25,
Nov. 2014.

[5] D. G. Andersen and S. Swanson, ‘‘Rethinking flash in the data center,’’
IEEE Micro, vol. 30, no. 4, pp. 52–54, Jul. 2010.

[6] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, ‘‘PLFS: A checkpoint filesystem for parallel
applications,’’ in Proc. Conf. High Perform. Comput. Netw., Storage Anal.,
2009, p. 21.

[7] J. Bonwick and B. Moore, ‘‘ZFS: The last word in file systems,’’ Sun
Microsyst., Tech. Rep., 2007.

[8] V. Chang and G. Wills, ‘‘A model to compare cloud and non-cloud storage
of Big Data,’’ Future Gener. Comput. Syst., vol. 57, pp. 56–76, Apr. 2016.

[9] D. A. Solomon, Inside Windows NT (Microsoft Programming Series).
Seattle, WA, USA: Microsoft Press, 1998.

[10] A. Davies and A. Orsaria, ‘‘Scale out with GlusterFS,’’ Linux J., vol. 2013,
no. 235, p. 1, 2013.

[11] A. Devulapalli and P. Wyckoff, ‘‘File creation strategies in a distributed
metadata file system,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
Mar. 2007, pp. 1–10.

[12] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques,
1st ed. San Francisco, CA, USA: Morgan Kaufmann, 1992.

[13] H. Reiser. (2004). Reiserfs. [Online]. Available: http://www.namesys.com
[14] J. Axboe. (Apr. 1998). Fiobenchmark. [Online]. Available:

http://freecode.com/projects/fio
[15] (2002). JFS for Linux. [Online]. Available: http://oss.software/ibm.com/jfs
[16] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and J. Huai, ‘‘Spanfs:

A scalable file system on fast storage devices,’’ in Proc. USENIX Conf.
Usenix Annu. Tech. Conf. (USENIX ATC). Berkeley, CA, USA: USENIX
Association, 2015, pp. 249–261.

[17] W.-H. Kang, S.-W. Lee, B. Moon, Y.-S. Kee, and M. Oh, ‘‘Durable write
cache in flash memory SSD for relational and NOSQL databases,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), NewYork, NY, USA,
2014, pp. 529–540.

[18] W.-H. Kang, S.-W. Lee, B. Moon, G.-H. Oh, and C. Min, ‘‘X-FTL:
Transactional FTL for SQLite databases,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, New York, NY, USA, 2013, pp. 97–108.

[19] (Sep. 1, 2019). SysBench: A System Performance Benchmark. [Online].
Available: http://sysbench.sourceforge.net

[20] C. Lee, D. Sim, J. Hwang, and S. Cho, ‘‘F2FS: A new file system for flash
storage,’’ in Proc. 13th USENIX Conf. File Storage Technol. (FAST), 2015,
pp. 273–286.

[21] Y.-S. Lee, L. C. Quero, S.-H. Kim, J.-S. Kim, and S. Maeng, ‘‘Activesort:
Efficient external sorting using active SSDs in the mapreduce framework,’’
Future Gener. Comput. Syst., vol. 65, pp. 76–89, Dec. 2016.

[22] Y. Lu, J. Shu, J. Guo, S. Li, andO.Mutlu, ‘‘LightTX:A lightweight transac-
tional design in flash-based SSDs to support flexible transactions,’’ inProc.
IEEE 31st Int. Conf. Comput. Design (ICCD), Oct. 2013, pp. 115–122.

[23] Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, ‘‘High-Performance and
Lightweight Transaction Support in Flash-Based SSDs,’’ IEEE Trans.
Comput., vol. 64, no. 10, pp. 2819–2832, Oct. 2015.

[24] Y. Lu, J. Shu, J. Guo, and P. Zhu, ‘‘Supporting system consistency with dif-
ferential transactions in flash-based SSDs,’’ IEEE Trans. Comput., vol. 65,
no. 2, pp. 627–639, Feb. 2016.

[25] Y. Lu, J. Shu, and P. Zhu, ‘‘TxCache: Transactional cache using byte-
addressable non-volatile memories in SSDs,’’ in Proc. IEEE Non-Volatile
Memory Syst. Appl. Symp. (NVMSA), Aug. 2014, pp. 1–6.

[26] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and
L. Vivier, ‘‘The new ext4 filesystem: Current status and future plans,’’
in Proc. Linux Symp., Ottawa, ON, Canada, 2007. [Online]. Available:
http://ols.108.redhat.com/2007/Reprints/mathur-Reprint.pdf

[27] C. Min, W.-H. Kang, T. Kim, and S.-W. Lee, ‘‘Lightweight application-
level crash consistency on transactional flash storage,’’ in Proc. USENIX
Conf. Usenix Annu. Tech. Conf., 2015, pp. 221–234.

[28] G. Oh, ‘‘SHARE interface in flash storage for relational and NoSQL
databases,’’ in Proc. SIGMOD, New York, NY, USA, 2016, pp. 343–354.

[29] S. Oral, F. Wang, D. Dillow, G. M. Shipman, R. Miller, and O. Drokin,
‘‘Efficient object storage journaling in a distributed parallel file system.,’’
in Proc. FAST, 2010, pp. 143–154.

[30] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K. Panda, ‘‘Beyond
block I/O: Rethinking traditional storage primitives,’’ in Proc. IEEE
17th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2011,
pp. 301–311.

[31] J. Piernas, J. Nieplocha, and E. J. Felix, ‘‘Evaluation of active storage
strategies for the lustre parallel file system,’’ in Proc. ACM/IEEE Conf.
Supercomput., Nov. 2007, Art. no. 28.

[32] V. Prabhakaran, A. C. Arpaci-Dusseau, andR.H.Arpaci-Dusseau, ‘‘Analy-
sis and evolution of journaling file systems,’’ in Proc. USENIX Annu. Tech.
Conf., Gen. Track, 2005, pp. 105–120.

[33] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, ‘‘Transactional flash,’’
in Proc. 8th USENIX Conf. Operating Syst. Design Implement. (OSDI),
Berkeley, CA, USA, 2008, pp. 147–160.

[34] V. R. Chandakanna, ‘‘REHDFS,’’ J. Netw. Comput. Appl., vol. 103,
pp. 85–100, Feb. 2018.

[35] K. Ren, Q. Zheng, S. Patil, and G. Gibson, ‘‘IndexFS: Scaling file system
metadata performance with stateless caching and bulk insertion,’’ in Proc.
SC14: Int. Conf. for High Perform. Comput., Netw., Storage Anal., 2014,
pp. 237–248.

[36] O. Rodeh, J. Bacik, and C. Mason, ‘‘Btrfs: The Linux b-tree filesystem,’’
ACM Trans. Storage, vol. 9, no. 3, 2013, Art. no. 9.

[37] M. Rosenblum and J. K. Ousterhout, ‘‘The design and implementation of
a log-structured file system,’’ ACM Trans. Comput. Syst., vol. 10, no. 1,
pp. 26–52, 1992.

[38] P. Schwan, ‘‘Lustre: Building a file system for 1000-node clusters,’’ in
Proc. Linux Symp., 2003, pp. 380–386.

[39] W. Shi, D. Wang, Z. Wang, and D. Ju, ‘‘Mobius: A high performance
transactional SSD with rich primitives,’’ in Proc. 30th Symp. Mass Storage
Syst. Technol. (MSST), Jun. 2014, pp. 1–11.

[40] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop dis-
tributed file system,’’ in Proc. IEEE 26th Symp. Mass Storage Syst. Tech-
nol. (MSST), Washington, DC, USA, May 2010, pp. 1–10.

[41] Y. Son, H. Kang, J. Y. Ha, J. Lee, H. Han, H. Jung, and H. Y. Yeom,
‘‘An empirical evaluation of enterprise and SATA-based transactional
solid-state drives,’’ in Proc. IEEE 24th Int. Symp. Modeling, Anal. Sim-
ulation Comput. Telecommun. Syst. (MASCOTS), Sep. 2016, pp. 231–240.

[42] STMicroelectronics. (2014). Stmicroelectronics NAND ECC Schemes.
[Online]. Available: http://www.stlinux.com/howto/NAND/ST-ECC

VOLUME 8, 2020 3861



Y. Son et al.: Empirical Performance Evaluation of Transactional SSDs

[43] H. Sun, G. Chen, J. Huang, X. Qin, and W. Shi, ‘‘CalmWPC: A buffer
management to calm down write performance cliff for NAND flash-based
storage systems,’’Future Gener. Comput. Syst., vol. 90, pp. 461–475, 2018.

[44] A. Sweeney, D. Doucette,W.Hu, C. Anderson,M.Nishimoto, andG. Peck,
‘‘Scalability in the XFS file system,’’ in Proc. USENIX Annu. Tech. Conf.,
vol. 15, 1996.

[45] S. C. Tweedie, ‘‘Journaling the Linux ext2fs filesystem,’’ inProc. 4th Annu.
Linux Expo, 1998.

[46] S. A.Weil, S. A. Brandt, E. L.Miller, D. D. Long, and C.Maltzahn, ‘‘Ceph:
A scalable, high-performance distributed file system,’’ in Proc. 7th Symp.
Operating Syst. Design Implement., 2006, pp. 307–320.

[47] J. Zhang, J. Shu, and Y. Lu, ‘‘Parafs: A log-structured file system to exploit
the internal parallelism of flash devices,’’ in Proc. USENIX Annu. Tech.
Conf. (USENIX ATC). Denver, CO, USA: USENIX Association, 2016,
pp. 87–100.

YONGSEOK SON received the B.S. degree in
information and computer engineering from Ajou
University, in 2010, and the M.S. and Ph.D.
degrees from the Department of Intelligent Con-
vergence Systems and Electronic Engineering and
Computer Science, Seoul National University,
in 2012 and 2018, respectively. He was a Post-
doctoral Research Associate in electrical and com-
puter engineering with the University of Illinois
at Urbana–Champaign. He is currently an Assis-

tant Professor with the School of Computer Science and Engineering,
Chung-Ang University. His research interests include operating, distributed,
and database systems.

HEON YOUNG YEOM received the B.S. degree
in computer science from Seoul National Univer-
sity, in 1984, and the M.S. and Ph.D. degrees in
computer science from Texas A&M University,
in 1986 and 1992, respectively. He is currently a
Professor with the Department of Computer Sci-
ence and Engineering, Seoul National University.
His research interests include database systems
and distributed systems.

HYUCK HAN received the B.S., M.S., and Ph.D.
degrees in computer science and engineering from
Seoul National University, Seoul, South Korea,
in 2003, 2006, and 2011, respectively. He is cur-
rently an Assistant Professor with the Department
of Computer Science, Dongduk Women’s Uni-
versity. His research interests include distributed
computing systems and algorithms.

3862 VOLUME 8, 2020


	INTRODUCTION
	BACKGROUND AND MOTIVATION
	CRASH CONSISTENCY IN LOCAL FILE SYSTEMS
	CRASH CONSISTENCY IN DISTRIBUTED PARALLEL FILE SYSTEMS

	DESIGN AND IMPLEMENTATION
	TRANSACTIONAL SOLID-STATE DRIVE
	ENHANCED EXT4 (E2XT4)
	ENHANCED BTRFS (EBTRFS)
	ENHANCED LUSTRE (ELUSTRE)
	IMPLEMENTATION

	PERFORMANCE EVALUATION
	EXPERIMENTAL SETUP
	LOCAL FILE SYSTEM PERFORMANCE
	FILE I/O PERFORMANCE
	OLTP PERFORMANCE
	RECOVERY PERFORMANCE

	DISTRIBUTED PARALLEL FILE SYSTEM PERFORMANCE
	MDTEST PERFORMANCE
	IOR PERFORMANCE

	EXPERIMENTAL ANALYSIS

	RELATED WORK
	FILE SYSTEMS FOR FLASH-BASED SSDs
	DISTRIBUTED PARALLEL FILE SYSTEMS
	TRANSACTIONAL SSDs

	SUMMARY AND IMPLICATION
	CONCLUSION
	REFERENCES
	Biographies
	YONGSEOK SON
	HEON YOUNG YEOM
	HYUCK HAN


