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ABSTRACT B-spline data interpolation and approximation require parameterization at the first step. For
this purpose, many algorithms have been developed, such as the uniform, centripetal, chord length, Foley
and universal methods. The uniform method works well if the input data points are distributed regularly.
The chord length method produces large deflections if long chords exist in the data polygon. To remove
this effect, the centripetal method was developed. The traditional centripetal method uses a fixed power for
chord lengths for parameter distribution. In this paper, we propose an improved version of the centripetal
parameterization method for B-spline data interpolation. Our experiments show that individual dynamic
power calculation can be possible for each chord length. This new parameterization method produces better
behavior when compared to the traditional centripetal method and is more robust against fast changes in
chord lengths since it uses the natural logarithm of chord lengths to calculate the parameters.

INDEX TERMS B-spline curves, parameterization, interpolation.

I. INTRODUCTION
B-splines are widely used to model curves and surfaces in
computer-aided design (CAD). They provide smooth curves
and surfaces and allow local control.

If a set of points is given, B-splines can be used to fit a curve
to this given data set. Here, interpolation or approximation
methods can be used. In this work, we focus on parameteriza-
tion methods for global interpolation and attempt to improve
the centripetal (exponential) method by converting it from a
static exponential form to a dynamic exponential form using
some chord properties [1]–[5].

The curve that is produced from given data points using
interpolation is affected by the selected parameterization
method [6]–[8]. The uniform (equidistant), chord length, cen-
tripetal and Foley methods are widely used to find proper
parameters from a given data set [9]. Most of them use the
geometric properties of the data points, while some use the
standard deviation of points and angles between consecutive
data lines [10]–[14].

The centripetal method is used in CAD applications with
a static exponent form. In this work, we propose a dynamic
exponent form of the centripetal parameterization method.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

Assume a set of points {Dk} , k = 0, . . . n, are given; we
want to interpolate these target data points with a pth degree
B-spline curve C(t) [15]–[18]. Let us define the number of
knots as m+ 1 and m = n+ p+ 1. If we assign a parameter
value tK for each target data pointDk and select a knot vector
U = {u0, . . . , um}, it is possible to find necessary control
points pi and then to interpolate target data points by solving
an (n+ 1)× (n+ 1)-dimensional system of linear equations
as given below [19], [20].

Dk = C (tk) =
n∑
i=0

Ni,p (tk)Pi 0 ≤ k ≤ n (1)

Here,Ni,p represents the basis functions. The control points
Pi are unknowns and need to be calculated. To calculate these
unknowns, in the first step, we need to calculate the parameter
values and knot vector using target data points represented
by Dk that we want to interpolate. In this work, we use
normalized parameters distributed in the range of (0,1) and
clamped B-splines [19]. Furthermore, we use the averaging
technique given below [19], [20], if applicable, to calculate
the knot vector.

u0 = u1 = . . . up = 0

uj+p =
1
p

j+p−1∑
i=j

ti j = 1, 2, . . . , n− p

um−p = um−p+1 = . . . um = 1 (2)
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The rest of the paper is organized as follows. Section 2
describes the most common parameterization methods.
Section 3 introduces the proposed dynamic centripetal
method. Section 4 shows our experimental results on multiple
data sets. Finally, Section 5 presents our conclusions.

II. COMMON PARAMETERIZATION METHODS
In CAD applications, to interpolate more desirable B-spline
curves on data points, many parameterization methods have
been developed. The uniform, chord length, centripetal, uni-
versal and Foley methods are usually fast and sufficient to
calculate these parameters. Here, we provide a short summary
of each.

A. UNIFORM PARAMETERIZATION
This is the simplest method for calculating the parameter
values. If the target data points are regularly distributed,
this method is preferred. Assuming the use of normalized
parameterization, the parameters are distributed in the range
of (0,1). Given n + 1 data points, this range is divided into
n pieces linearly. Here, we set t0 = 0 and tn = 1. Other
parameters are calculated as below [21].

ti =
i
n

1 ≤ i ≤ n− 1 (3)

Although uniform parameterization is easy to calculate,
it may produce unwanted results. If the data distribution
is not linear, such as in a uniform parameter distribution,
this parameterization method produces unwanted wiggles.
To overcome this problem, some alternative methods have
been developed.

B. CHORD LENGTH PARAMETERIZATION
If the data point distribution is not linear, chord length param-
eterization produces better results compared to those of uni-
form parameterization. Chord lengths are distances between
consecutive data points.

Let us assume that D0, D1, . . . . .Dn target data points are
given. The distance between points Di−1 and Di is indicated
by |Di − Di−1|. Here, the total chord length between con-
secutive data points is defined as L =

∑n
i=1 |Di − Di−1|.

We set t0 = 0 and tn = 1. Other parameters are calculated as
follows [21].

tk =
1
L
∑k

i=1
|Di − Di−1| (4)

C. CENTRIPETAL PARAMETERIZATION
This method was proposed by Lee [21]. Assume that
D0, D1, . . . . .Dn data points are given. The power factor is
e = 0.5. The distance between two adjacent data points
is defined by |Di − Di−1|e. In this case, the length of the
data polygon is L =

∑n
i=1 |Di − Di−1|

e. The first and last
parameters are defined as t0 = 0 and tn = 1, respectively.
The middle parameters are distributed in the range of (0, 1)

according to the following equation.

tk =
1
L

k∑
i=1

|Di − Di−1|e (5)

D. UNIVERSAL METHOD
This method was proposed by Choong-Gyoo Lim in
1999 [22]. While other methods calculate the knot vector
from the parameters, Lim starts with a uniformly distributed
knot vector and takes maximums of the basis functions as
the parameters. This method produces more natural-looking
curves but may produce undesired wiggles.

Assume that we are given n + 1 data points and use pth-
degree B-splines. Let us define m = n + p + 1. In this
case, the number of knots is m + 1. The clamped knots are
distributed according to the following equation [20].

u0 = u1 = . . . up = 0

up+i =
i

n− p+ 1
i = 1, 2, . . . , n− p

um−p = um−p+1 = . . . um = 1 (6)

The locations on which the maximum value points of the
basis functions are produced by this knot vector are chosen
as the parameters.

E. FOLEY-NEILSON METHOD
In 1989, Foley and Neilson suggested a method based on the
Nielson metric [23]. This method uses the angles between
consecutive target data points. The chord lengths between
consecutive data points are calculated using the Neilson
metric.

In the case of two-dimensional data points, m = 2, the
coefficient matrixQ, whereQ =

{
qi,j
}
, i, j = 1, 2, is defined

as in 1999 by Lim.

q11 =
Vy
g
, q22 =

Vx
g
, q12 = q21 =

Vxy
g

g = VxVy − (Vxy)2

Vx =

n∑
i=0
(xi − x)2

n+ 1
, Vy =

n∑
i=0
(yi − y)2

n+ 1

Vxy =

n∑
i=0
(xi − x) (yi − y)

n+ 1

x =
1

n+ 1

n∑
i=0

xi, y =
1

n+ 1

n∑
i=0

yi (7)

In this case, the Neilson metric between points U and V can
be determined from [22]

M [D](U ,V ) =
√
(U − V )Q(U − V )T (8)

Here, if we distribute the parameters based on the Neilson
metric chord lengths, we obtain an affine-invariant parameter
set.
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FIGURE 1. Parameters for Foley method, from Hoschek’s book [7].

The Foley method also uses the angles between data lines.
The parameter step 1ti is defined as [9], [22], [23]

1t0 = d0

[
1+

3
_

θ 1d1
2(d0 + d1)

]

1ti = di

[
1+

3
_

θ idi−1
2(di−1 + di)

+
3
_

θ i+1di+1
2(di + di+1)

]
i = 1, 2...., n− 2

1tn−1 = dn−1

[
1+

3
_

θ n−1dn−2
2(dn−2 + dn−1)

]
(9)

where di = M [D](Di,Di+1),
_

θ i = min(θi, π/2) and θi = π−

arccos
[
d2i−1+d

2
i +M

2[D](Di−1,Di+1)
2didi−1

]
. Here, since θi is calculated

using the Neilson metric, the angles are also affine-invariant.
Fig. 1 shows the parameters used in the Foley method.

III. PROPOSED METHOD: DYNAMIC CENTRIPETAL
PARAMETERIZATION
The centripetal method proposed by E.T.Y. Lee is
widely used in CAD-CAM applications for B-spline data
interpolation [21]. In the current design, this algorithm uses
the same exponent for each chord between data points.
Our experiments show that instead of using a static expo-
nent, an individual dynamically calculated exponent related
to the chord lengths between consecutive data points can
be employed for the centripetal parameterization method.
Distributing exponents between the maximum and minimum
values with respect to the natural logarithm of the chord
lengths improves the performance of the centripetal method.

Let us rearrange the centripetal parameterization with the
addition of dynamic exponents. Assume thatD0, D1, . . . . .Dn
data points are given and that the dynamic exponent is defined
as ei. In this case, the distance between data points Di−1 and
Di is calculated by |Di − Di−1|ei . Here, the total length of the
data polygon for the proposed method is defined by

L =
n∑
i=1

|Di − Di−1|ei (10)

In the case of normalized parameterization, the parameters
are calculated from the following equations:

t0 = 0

tk =
1
L

k∑
i=1

|Di − Di−1|ei

tn = 1 (11)

In the original centripetal method, the exponent value
chosen is a constant, such as e = 0.5. Although cen-
tripetal parameterization generates better parameter distribu-
tions compared to those of the uniform and chord length
methods, our experiments show that since the traditional
centripetal method uses the same exponent value for long and
short chords, it produces an irregular parameter distribution
for a data set and needs some corrections. As a solution,
we suggest an exponent distribution according to the natu-
ral logarithm of the chords. Assuming that e < 1 and all
chord lengths are greater than 1, i.e., |Di − Di−1| > 1, ∀i,
we distribute exponents between the maximum and mini-
mum allowed values, inversely proportional to the natural
logarithm of the chord lengths. For each step, the dynamic
exponent value ei that is valid for the related chord is
calculated using the following definitions.

chordi : ithchord length, i.e., |Di − Di−1|

chordmax : the maximum chord length value

chordmin : the minimum chord length value (12)

emax : maximum allowed value, default: 0.65

emin : minimum allowed value, default: 0.35 (12)

In this case, the individual dynamic exponent value ei is
calculated using the equations below.

(emax − emin)

log
[
chordmax
chordmin

] = (ei − emin)

log
[
chordmax
chordi

] (13)

ei=
log

[
chordmax
chordi

]
log

[
chordmax
chordmin

] (emax−emin)+emin (14)

Using an individual exponent value ei for each chord,
we shorten the parameter increase for long chords in a bal-
anced manner with other chords. This procedure produces a
tightening effect for long chords. For short chords, a loosen-
ing effect is produced without disturbing the whole balance of
the parameter distribution. In our experiments, we choose the
following maximum and minimum exponent values: emin =

0.35, which is used for chordmax, and emax = 0.65, which is
used for chordmin. The exponent values for other chords are
distributed between emax and emin, inversely proportional to
the natural logarithm of the chord lengths. The natural log-
arithm of the chord lengths produces the far-sighted glasses
effect [21].

IV. EXPERIMENTS ON MULTIPLE DATA SETS
Here, we use four different data sets to test our algorithm.
The dynamic centripetal method usually outperforms the cen-
tripetal method, and it proves to be more powerful than the
Foley method on four data sets.

As an error measurement criterion, the technique of mea-
suring the distance of the chords connecting the data points
is used in each step of the data polygon, as mentioned in
the work of Fang and Hung [24]. Equation (15) shows the

VOLUME 8, 2020 591



C. Balta et al.: Dynamic Centripetal Parameterization Method for B-Spline Curve Interpolation

FIGURE 2. Cubic curve interpolation results for data set 1: (a) uniform, (b) chord, (c) universal, (d) Foley, (e) centripetal, and
(f) proposed method.
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FIGURE 3. Cubic curve interpolation results for data set 2: (a) uniform, (b) chord, (c) universal, (d) Foley, (e) centripetal, and
(f) proposed method.
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FIGURE 4. Cubic curve interpolation results for data set 3: (a) uniform, (b) chord, (c) universal, (d) Foley, (e) centripetal, and
(f) proposed method.
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FIGURE 5. Cubic curve interpolation results for data set 4: (a) uniform, (b) chord, (c) universal, (d) Foley, (e) centripetal,
and (f) proposed method.
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TABLE 1. Maximum deviations from data segment for data set 1 in Figure 2.

TABLE 2. Maximum deviations from data segment for data set 2 in Figure 3.

TABLE 3. Maximum deviations from data segment for data set 3 in Figure 4.

mathematical expression of the error measurement.

Di = max
ūi<u<ūi+1

dist [C(t), Li] (15)

Here, the value of the expression dist [C(t), Li] indicates the
distance to the chord L at the instant t .
Figs. 2 − 5 show the cubic B-spline curves and error

functions generated by the various methods for different data
sets, as well as a comparison of the parameters. The devi-
ation errors are shown in Tables 1 − 4. The first data set
interpolated in Fig. 2 is taken from Irvine et al. [25]. This
data set can be problematic for interpolation methods due to
sudden directional changes and sparse data points. In the case
of long-distance chords, a tension effect is produced on the
curve by lowering the chord exponent ei value dynamically.
The curves produced by the uniform, chord length and uni-
versal methods seem to produce unwanted oscillations in the
curves. In Table 1, the maximum deviations of the curves
generated for the first data set from the data polygons are
shown as error criteria. If we consider the average of the
maximums, the proposed method produces the lowest error

between successful curves. Although the mean error of the
universal method does not seem low, it does not produce a
successful curve. The mean error of the centripetal method
has been succeeded by that of the Foley method with the
dynamic power development of the proposed method.

In Fig. 3, the deviation error functions of the cubic B-spline
curves and curve segments generated by the various parame-
terization methods for the second data set are shown together
with the selected parameters. This second data set [25] was
taken from the same work as that of the first data set.
Similarly, sudden changes in direction and infrequent data
difficulty exist here.

It is shown that the performances of the curve interpola-
tion of the centripetal and the proposed methods are higher
than those of the other methods. In Table 2, the maximum
deviations of the curves generated for the second data set
from the data polygons are shown as the error criteria. Taking
into account the average error, the proposed method pro-
duces an error near the performance of the Foley method.
The maximum deviation in the long chords is reduced by
the proposed method. The third data set in Fig. 4 is taken
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TABLE 4. Maximum deviations from data segment for data set 4 in Figure 5.

from Fritsch and Carlson [26]. Sudden distance changes are
tested here. For this data set, the Foley and proposed meth-
ods produce better curve interpolation performances than do
the other methods. Table 3 shows the maximum deviations
of the curves produced by the third data set from the data
polygon. With the proposed method, the mean deviation of
the centripetal method is reduced, and unwanted oscilla-
tions in the long chords are decreased. The fourth data set
in Fig. 5 was taken from Lee [21]. Here, there are more data
points near the corners. Lee suggests that, in industry, corner
points require more attention and should be represented with
frequent data points. Table 4 shows the maximum deviations
of the curves produced for the fourth data set from the data
polygon. According to Table 4, the proposed method had a
similar performance to that of the centripetal method. With
the proposed method, the centripetal method improves, and
in the case of long chords, the curve approaches the current
data segment.

V. CONCLUSION
The centripetal parameterization method can be improved
using the dynamic exponent presented in this work. Our
experiments show that the centripetal method becomes more
resistant to sudden chord length changes with the support of
dynamic exponents.

Here, we use natural logarithms of the chord lengths of
the data polygon, in an inverse proportion, to calculate the
individual exponents of each chord. This method can be
expanded to more artificial decision methods with the sup-
port of neural and fuzzy artificial intelligence algorithms.
Hence, the calculation of better individual exponents can be
achieved.

By using dynamic exponents, the centripetal methods
become more robust against sudden changes in chord length.
This makes the centripetal method more data-aware, and the

method produces more desirable curves. In possible future
works, this dynamic exponent method can be hybridized
using angle aware methods. Furthermore, more intelligent
dynamic exponent methods can be obtained by using artificial
intelligence methods.
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