
SPECIAL SECTION ON INTELLIGENT DATA SENSING, COLLECTION AND DISSEMINATION IN
MOBILE COMPUTING

Received November 19, 2019, accepted December 10, 2019, date of publication December 23, 2019,
date of current version January 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2961453

A Fast Algorithm for Energy-Saving Offloading
With Reliability and Latency Requirements
in Multi-Access Edge Computing
HAOLIN LIU 1,2,3, LE CAO 1, TINGRUI PEI 1,2, QINGYONG DENG 1,2, (Member, IEEE),
AND JIANG ZHU 1,2
1College of Information Engineering, Xiangtan University, Xiangtan 411105, China
2Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411105, China
3Postdoctoral Research Station for Mechanics, Xiangtan University, Xiangtan 411105, China

Corresponding author: Tingrui Pei (peitingrui@xtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61902336 and Grant 61672447, and in
part by the Natural Science Foundation of Hunan Province, China, under Grant 2017JJ3316 and Grant 2019JJ50592.

ABSTRACT Multi-Access Edge Computing (MEC) is a promising paradigm that providing cloud-like
service for handling the high-complexity and latency-sensitive applications on user equipment (UE) via
computation offloading. However, the execution reliability is rarely considered in current MEC studies,
which is an important factor to guarantee the quality of service (QoS). For that, this paper considers an
energy-saving offloading to satisfy the reliability and latency requirements of the application. Specifically,
we formulate an optimization problem to minimize the UE’s energy consumption with reliability and
latency constraints. To tackle this NP-hard problem, we first divide the entire application into multiple
directed-acyclic-graph-(DAG)-based subtasks, where the subtask can be executed on the UE locally or
MEC server remotely. Then, we decompose the overall reliability and latency requirements into multiple
constraints for each subtask. Finally, we propose a fast heuristic algorithm to find a solution satisfying
the constraints. Simulation results demonstrate the proposed algorithm obtains lower energy consumption
compared with the local execution and random assignment and costs less runtime compared with the greedy
algorithm.

INDEX TERMS Multi-access edge computing, computation offloading, energy consumption minimization,
reliability guarantee.

I. INTRODUCTION
In recent years, with the development and popularity of
mobile devices and mobile Internet traffic [1], [2], more and
more applications, such as augmented reality, virtual reality,
face recognition, mobile healthcare, and interactive games,
gradually go deep into our lives [3], [4]. However, due to the
limited battery capacity and computation resources [5], it is
difficult for the mobile devices to run the high-complexity
applications with a satisfactory quality of experience (QoE)
and quality of service (QoS). Although Cloud Computing
provides a solution to this problem, it leads to the heavy load
and congestion in the network which influences the latency-
sensitive applications [4]. It is estimated that tens of billions
of edge devices with growing computation capability will

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhongming Zheng.

be deployed in the near future. A novel paradigm named as
Multi-Access Edge Computing (MEC) can be envisioned as
a promising technique for taking advantage of the compu-
tation and storage resources at the edge of the network to
provide cloud-like service for handling the high-complexity
and latency-sensitive applications on user equipment (UE)
via computation offloading [3].

To guarantee the QoS, there have been several studies on
MEC. Especially, latency, can be regarded as the response
time of an application or a task, is always considered [3],
[4]. Reliability, also known as robustness in some aspects,
plays a critical role in the QoS guarantee for applications
in cloud computing [7]. However, the reliability requirement
of the application in the field of MEC has received little
attention. In the cloud-based system, reliability is defined as
the probability that the scheduling is successfully completed
for an application [7], which can also be applied to the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 151

https://orcid.org/0000-0003-3192-6378
https://orcid.org/0000-0002-7795-5804
https://orcid.org/0000-0002-1205-5899
https://orcid.org/0000-0001-9434-3968
https://orcid.org/0000-0003-3570-7594


H. Liu et al.: Fast Algorithm for Energy-Saving Offloading With Reliability and Latency Requirements in MEC

field of MEC [8]. In practice, due to the presence of faults
in the hardware and software system, the 100% reliability
cannot be easily achieved in any application [8]. So, if an
application achieves its certified reliability goals, it can be
considered reliable in a security-critical scenario. Reliability
goals have been set in many industrial safety standards, such
as the ISO 26262 standard for automotive software systems,
the DO-178C standard for avionics software, and the IEC
61508 standard for various industrial software systems [9],
[10]. In the combination of MEC and some security-critical
applications (e.g., autonomous driving, Internet of vehicles,
smart home, etc.), if the reliability goals of these applications
are not achieved, it may lead to the serious consequences.
Therefore, reliability is an important safety factor that should
be guaranteed for security-critical applications in MEC.

Due to the faults in execution and communication, repeat-
ing execution or repeating transmission many times is an
easy way to meet the reliability requirements. However, this
approach not only takes a lot of time but also causes energy
waste, which is not a good way for the UE whose energy
resources are limited [11], [12]. For that, according to ref-
erences [13], [14], we mainly consider the reliability during
execution, for which the task of an application is divided into
multiple sub-tasks. It would reduce the complexity of running
the entire application and decrease execution latency by the
parallel processing, and then the sub-tasks will be offloaded
to the various MEC servers or performed locally to guarantee
the task’s overall reliability.

Routinely, the UE’s resource is often limited in MEC and
should be optimized via the computation offloading. In the
computation offloading, the tasks in UE can be executed
locally or on the MEC server. The task’s execution on the
MEC server can provide low execution latency, high reliabil-
ity, unlimited energy supply that is no need to worry. But even
so, the latency and energy cost during the transmission cannot
be ignored. Therefore, a tradeoff between the latency, the reli-
ability, and the energy consumption should be addressed.
For that, we consider a scenario to save the UE’s energy by
optimizing the offloading decision in which the latency and
reliability requirements are satisfied.

The main contributions of our work are summarized as
follows:

1) To guarantee the satisfactory reliability of the entire
task of an application, it is divided into multiple subtasks
that can be offloaded to the MEC servers for execution.
It avoids the repeating execution of the task in a single UE
for the reliability and would save the UE’s energy. For an
independent task, its subtasks may depend on other subtasks
after it is divided. Thus, we use the directed acyclic graph
(DAG) to represent the subtasks’ relationship [14], which not
only accurately represents the dependencies of each subtask,
but also figures out the execution order of these subtasks.

2) We formulate an integer programming problem with the
constraints of reliability and latency for the entire application.
Since it is difficult to find a solution at once to satisfy
the overall constraints, we decompose the problem into

three sub-problems, and the overall reliability and latency
requirements are also divided into multiple constraints for
each subtask.

3) We propose a fast heuristic algorithm by adopting a
greedy strategy to make the offloading decision of each sub-
task, which can achieve lower energy consumption and meet
its constraints. Compared with other algorithms, the proposed
algorithm can reduce more unnecessary energy consumption
with lower time complexity.

The rest of the paper is organized as follows. Section II
gives brief overviews of some related works. In Section III,
we introduce the system models. Section IV defines the
problem. Section V proposes the heuristic algorithm for the
optimization problem. In Section VI, we conduct some simu-
lations to compare the proposed algorithmwith a greedy algo-
rithm, the local execution, and random assignment. Finally,
we conclude this paper in Section VII.

II. RELATED WORKS
In recent years, various research works on computation
offloading in the MEC have been proposed. For example,
Rodrigues et al. [15] proposed a computation offloading
scheme to determine whether the latency-critical tasks should
be executed locally on the UE or remotely on the MEC
servers. Wang et al. [16] studied the dynamic service migra-
tion problem and used the Markov decision process to solve
this problem. Chen et al. [17] considered the energy and
the latency as the overhead and adopted a distributed game-
theoretic approach to reduce the overall network overhead.
Mu et al. [18] jointly considered the application partitioning
and collaborative computation offloading, so that UEs may
help each other on task execution to meet the completion
deadline of the applications while minimizing the overall
energy consumption.Meskar et al. [19] constructed a network
where users share the communication channel to offload
their computations as a competitive game, and obtained an
optimumoffloading decision forminimizing user energy con-
sumption while satisfying the deadline of the applications.
Ren et al. [20] investigated the joint communication and
resource allocation problem in a multiuser MEC system to
minimize latency. Chen and Hao [21] studied the ultra-dense
network’s task offloading problem, whose goal is to minimize
the delay while saving the energy cost of the UEs.

The above studies mainly investigated how to reduce
energy consumption and latency during the computation
offloading in MEC, while the reliability requirement of the
application, which is also an important factor to guarantee the
QoS, is necessary to be considered. Recent studies about the
reliability in MEC are shown below: Liu et al. [22] proposed
a novel partially-offloading scheme design to account for
the ultra-reliable low-latency requirements ofmission-critical
applications in MEC. The ultra-reliable low-latency commu-
nication is one of the pillars in 5G. They considered the statis-
tics of the extreme queue length as a reliability and latency
measure and proposed a Lyapunov optimization method
to solve the network-wide power minimization problem.

152 VOLUME 8, 2020



H. Liu et al.: Fast Algorithm for Energy-Saving Offloading With Reliability and Latency Requirements in MEC

Liu and Zhang [23] considered the tradeoff between the
latency and reliability in task offloading to MEC. They for-
mulated an optimization problem to jointly minimize the
latency and offloading failure probability and designed three
algorithms on heuristic search, reformulation linearization
technique and semi-definite relaxation to solve the prob-
lem. Han et al. [24] also considered the ultra-reliable and
ultra-low-latency MEC services in the 5G telecommunica-
tion network. They mainly focused on the mobile network
security for authentication and proposed a novel decentral-
ized authentication architecture that supports flexible and
low-cost local authentication with the awareness of context
information of network elements. Different from [22]–[24]
which are based on the ultra-reliable and ultra-low-latency
service in 5G and focus on the communication reliability, our
work pays more attention to the execution reliability of the
edge devices and the internal relationship of subtasks. The
execution reliability is rarely considered inMECbut is always
concerned in the field of embedded systems. For example,
Alsenani et al. [8] proposed a probabilistic system named as
SaRa to estimate the reliability of untrusted edge resources in
the volunteer cloud. Xie et al. [25] proposed three hardware
cost optimization algorithms for functional safety-critical
parallel applications on heterogeneous distributed embedded
systems during the design phase. Xie et al. [13] designed
enough replication for the redundancyminimization (ERRM)
algorithm to satisfy the application’s reliability requirement
with low time complexity.

Due to the latency and energy requirements, these preced-
ing algorithms for the execution reliability cannot directly
be used in the MEC scenario. But the scheduling of the
DAG-based tasks can be adopted to represent the distri-
bution process in the offloading scheme, and additionally,
the overall execution reliability of the application can be
achieved by guaranteeing the execution reliability of each dis-
tributed subtask. Based on that, we formulate an optimization
problem for minimizing the energy consumption of the UE
with the latency and reliability constraints by the sub-tasks’
scheduling.

III. SYSTEM MODELS
In this section, the system models will be described. We first
introduce the edge network model and task model, and then
specify the communication model and computation model in
detail.

A. NETWORK MODEL
To enable tractable analysis, like the studies on partial
offloading scheduling (e.g., [17], [26]), we consider a single-
user MEC system and concentrate on the offloading schedul-
ing of the DAG-based subtasks in a single UE.

In addition, we assume that there are some macro base
stations deployed in the network, and the MEC server is
directly embedded on the macro base station. So that the
communication time between the macro base station and its
own MEC server can be ignored. A series of processors on
MEC servers are described as S = {s1, s2, . . . , sm}. The UE

FIGURE 1. The illustration of the DAG-based task model.

is also a computing device for task execution in MEC, whose
processor is denoted as s0.
As the same as cloud computing, we consider that the

overall network will keep stable during the transmission and
computation process in a slot (e.g. within a few seconds)
[15]. In each slot, the UE has a computationally intensive and
latency sensitive application to be performed. Its reliability
and latency requirements are Rreq and Lreq, respectively. The
UE can perform the application on the MEC server, or per-
form it on itself, depending on the offloading decision to
satisfy the requirement of reliability and latency. Inspired by
[14] and [25], we split the entire task of the application into
some interdependence subtasks, and then change the single
task assignment problem into amulti-task offloading problem
to improve the system’s concurrency.

B. TASK MODEL
In each slot, the task of the application is split into n sub-
tasks whose relationship can be represented as a DAG G =
{T,E}. The subtasks in G can be denoted as a set of T =
{t1, t2, . . . , tn}, and each subtask has its computation param-
eter {ωi, µi}, ωi (in Megacycles) denotes the total number of
processor cycles required to finish the execution of task ti, and
µi (in KB) stands for the size of input data of task ti, contains
program codes and input parameters.E =

{
eik
(
sj, sl

)}
repre-

sents a series of connected edges in G. As shown in Figure 1,
each edge represents the connection between two subtasks,
and the direction indicates a constraint that the successor
subtasks should not start until the predecessor subtasks com-
pletely be finished [14]. For the sake of convenience, we use
pred(ti) and succ(ti) to represent a set of the immediate pre-
decessor subtasks and the immediate successor subtasks of
ti, respectively. eik

(
sj, sl

)
represents the communication cost

between subtask ti and subtask tk . Since the communication
cost is associated with the processors on the MEC server and
the UE itself, eik

(
sj, sl

)
is a function related to ti’s processor

sj and tk ’s processor sl . If ti and tk are not connected, then
for arbitrary sj and sl , eik

(
sj, sl

)
= 0.The subtask without

VOLUME 8, 2020 153



H. Liu et al.: Fast Algorithm for Energy-Saving Offloading With Reliability and Latency Requirements in MEC

the predecessor subtask is called the entry subtask tentry, and
the subtask without the successor subtask is called the exit
subtask texit .

C. COMMUNICATION MODEL
Each macro base station in the network is linked to an MEC
server, so the UE could offload its subtasks to the MEC
server via the connected macro base station. In addition,
the offloading data rate for a subtask ti offloaded to the MEC
server sj is assumed as vj, which can be expressed as

vj = W log2(1+
Pgj
σ 2 ) (1)

where W denotes the channel bandwidth. P indicates the
transmission power of UE. σ 2 denotes the noise power. gj
denotes the channel gain between the UE and server sj,which
can be defined as

gj = d−αj (2)

where dj is the distance between the UE and MEC server sj,
α is the path loss factor.
Then, we can get the transmission latency of subtask ti

offloaded to the server sj:

Lrij = µi/vj (3)

The energy consumed of the UE to offload subtask ti is

εrij = PLrij (4)

D. COMPUTATION MODEL
A subtask can be executed on the UE itself, or be offloaded
to the MEC server for execution. The process of executing a
subtask locally or remotely on the MEC server is discussed
below.

1) Local computing. For the local computing subtask,
we define F0 as the UE’s processor computational capability
whose most common unit of measure is processor cycles
per second. Therefore, the local computation latency for the
subtask ti can be expressed as

L li = ωi/F0 (5)

The energy consumed by ti’s local computing is given by

εli = ρL
l
i (6)

ρ indicates the energy consumed by the processor per unit
time.

2) Offloading computing. Due to the supply from the power
grid, the MEC server’s energy cost is ignored in our work.
Thus, in this part, we only consider the latency during the
offloading process. F = {F1,F2, . . . ,Fm} is defined as the
computational capability (processor cycles per second) of the
MEC server. The latency for finishing an offloaded subtask
contains the transmission latency and computation latency on
the server. Due to the high bandwidth of the downlink channel
and small size of the output data, the result’s return time of

TABLE 1. Reliability requirement for different exposures in IEC 61508.

the offloaded subtask is ignored. So the total latency of the
subtask ti executed on the server is

Loij = ωi/Fj + L
r
ij (7)

For the sake of simplicity, the latency of the subtask exe-
cuted on the UE or MEC server is uniformly represented by
Lij

Lij = ωi/Fj + Lrij (8)

where Lrij = 0 when j = 0.

E. RELIABILITY MODEL
Judging whether a scheduling for a series of tasks is
reliable is mainly based on two kinds of reliability: accumu-
lated communication reliability and accumulated execution
reliability [27]. Since the communication reliability has been
studied in [22]–[24], while the execution reliability is rarely
considered, we mainly investigate the execution reliability in
our work. The execution reliability is affected by two main
types of failures, namely the transient failure (i.e., random
hardware failures) and permanent failure. Since the execu-
tion reliability and the random hardware failure are more
closely related in some functional safety standards (e.g., IEC
61508 and ISO 26262 [9], [10], the transient failure is only
considered. In addition, IEC 61508 and ISO 26262 define
a concept of exposure for transient failure, which is the
probability that the hazardous events may happen in the sys-
tem. According to IEC 61508, the corresponding execution
reliability requirement can be found in Table 1 for a given
exposure level. As shown in Table 1, the exposure level and
the execution reliability requirement are negatively corre-
lated. When the exposure level is rising, the corresponding
reliability requirement is going down, which increases the
risk of failures in the system.

As noted in IEC 61508, the occurrence frequency of the
transient failure follows a Poisson distribution during the
hardware lifecycle [13]. Thus, let λj denotes the failure rate
(constant failure rate per unit time) of the processor sj. Then
the execution reliability of subtask ti executed on sj is defined
as

Rij = e−λjωi/Fj (9)

154 VOLUME 8, 2020



H. Liu et al.: Fast Algorithm for Energy-Saving Offloading With Reliability and Latency Requirements in MEC

Leverage the model from [27], the accumulated execution
reliability of the entire DAG-based task can be calculated as
the product of each subtask’s reliability:

R(G) =
∏
ti∈T

∑
sj∈S

xijRij (10)

where xij is the representation of the subtask’s allocation,
i.e.,

xij =

{
1, if task ti is assigned to processor sj
0, otherwise

(11)

IV. PROBLEM FORMULATION
In this section, we formulate an optimization problem to
minimize the UE’s energy consumption to execute the task G
with the constraints of reliability and latency requirements.

For brevity, the energy consumption of subtask ti in
local computing and offloading computing is uniformly
represented by εi, which is defined as follows

εi = xi0εli +
m∑
j=1

xijεrij (12)

Then, the problem is formulated as

min
n∑
i=1

εi

Subject to :

L(G) ≤ Lreq (13)

R(G) ≥ Rreq (14)
m∑
j=0

xij = 1 (15)

τ (ti) ≥ τ (tk )+
m∑
j=0

xkjLkj, ∀tk ∈ pred(ti) (16)

τ (ti)+
m∑
j=0

xijLij ≤ τ (tk ), ∀tk ∈ succ(ti) (17)

xij ∈ {0, 1} (18)

The objective function is to minimize the total subtasks’
energy cost, which contains the cost for execution on the UE
and the cost for transmission to the MEC servers.

The constraint (13) indicates that the overall completion
latency of the application G should be less than or equal
to the given latency constraint. Note that L(G) is not sim-
ply accumulated by the latency of each subtask because of
the parallel execution. In section V, how to calculate L(G)
is shown. Constraint (14) indicates that the total execution
reliability of the application should be greater than the given
execution reliability constraint. Constraint (15) indicates each
subtask can only be executed on one place, i.e., UE or one of
the MEC servers. Constraint (16) and constraint (17) indicate
that the successor subtasks must wait until their predecessor
subtasks have been finished, where τ (ti) is the start time of
subtask ti.

For this problem, it can be recognized as an extended bin
packing problem [28], which is well-known to be NP-hard.
Thus, we need a fast algorithm to solve this NP-hard problem
within polynomial time.

V. A HEURISTIC ALGORITHM
The problem is decomposed into three sub-problems:
prioritizing subtask, satisfying reliability and latency
requirements and minimizing UE’s energy consumption.

A. SUBTASK PRIORITIZING
As shown in Figure 1, there are pre- and post-dependencies
between sub-tasks. Successor subtasks must wait for their
predecessor subtasks to be completed before they can be
assigned, while subtasks without dependencies can be exe-
cuted in parallel on different processors. For example,
in Figure 1, subtask t2 needs to wait for subtask t1 to be
finished before it begins execution, while it can be executed
in parallel with subtask t3 to reduce the overall latency. Thus,
figuring out the execution order of the subtasks is beneficial
to improve the concurrency of the system, thereby reducing
the execution latency of the subtasks.

For that, we use the subtask’s upward rank value ranku [14]
to measure subtasks’ priority, which is defined as

ranku(ti) = L̄ + max
tk∈succ(ti),sj∈S,sl∈S

{eik (sj, sl)+ ranku(tk )}

(19)

where L̄ represents the average execution latency of subtasks
on different processors in graph G. It can be calculated as:

L̄ =

n∑
i=1

m∑
j=0

(ωi
/
Fj)

(m+ 1)n
(20)

As mentioned before, we neglect the latency for sending
back the offloaded subtasks’ results to the UE, thus, eik (sj, sl)
is the transmission latency from the UE to sl , which can be
computed as

eik (sj, sl) =

{
0, l = 0
Lrkl = µk/vl, l 6= 0

(21)

All subtasks are sorted in descending order by ranku before
the application performing. If two tasks ti and tk are to be
assigned and upward rank satisfy ranku(ti) > ranku(tk ) ,
it can be considered that ti may have a higher priority in the
assignment than tk . Note that if ti is going to be executed,
it needs to wait until all of its immediate predecessor subtasks
have been finished, so that the constraint (16) and (17) are
satisfied.

B. RELIABILITY AND LATENCY REQUIREMENT
SATISFYING
(1) Reliability requirement

In order to satisfy the reliability requirement of
the application G, our design strategy is as follows.

VOLUME 8, 2020 155



H. Liu et al.: Fast Algorithm for Energy-Saving Offloading With Reliability and Latency Requirements in MEC

Suppose T̂ is the assigning sequence of T, and the subtask
to be assigned is t̂i (t̂i ∈ T̂), {t̂1, t̂2, · · · , t̂i−1} is the set of
subtasks that have been executed, and {t̂i+1, t̂i+2, · · · , t̂n} is
the set of subtasks to be assigned. When assigning t̂i, assume
its reliability value is supposed as R(t̂i), then the current
reliability of G can be calculated as

R(t̂i,G) =
i−1∏
k=1

Ra(t̂k )× R(t̂i)×
n∏

k=i+1

Rua(t̂k ) (22)

where R(t̂i,G) denotes the reliability value ofGwhen assign-
ing t̂i. Ra(t̂k ) is the actual reliability value that the assigned
subtask t̂k obtains. Rua(t̂k ) denotes the reliability value that
unassigned subtask t̂k obtains.
Since the reliability value on an arbitrary processor is less

than or equal to 1, to subject to the constraint (14), the fol-
lowing requirement must be met for any subtask t̂i.

R(t̂i,G) ≥ Rreq (23)

Substituting Eq.(22) into (23), we have

R(t̂i) ≥ Rreq

/ i−1∏
k=1

Ra(t̂k )×
n∏

k=i+1

Rua(t̂k )


≥ Rreq

/ i−1∏
k=1

Ra(t̂k )×
n∏

k=i+1

Rub(t̂k )

 (24)

where

R(t̂i) =
∑
sj∈S

xijRij (25)

Rub(t̂k ) denotes the upper bound of reliability value that
subtask t̂k can obtain, namely

Rub(t̂k ) = max
sj∈S
{Rkj} (26)

Theorem 1: To arbitrary subtask t̂i, it can always find a pro-
cessor on the UE or MEC server to be assigned to satisfy Eq.
(24) if t̂i’s predecessor subtasks are assigned to the processor
that maximizes its reliability.

Proof: Firstly, we prove it on the entry subtask in T̂.
As we have known,

Rub(t̂1)×
n∏

k=2

Rub(t̂k ) ≥ Rreq (27)

Eq. (27) must be satisfied, otherwise, we cannot find a
solution to meet the Rreq. Thus, we can assign t̂1 on the
processor with the maximum reliability value, namely,

R(t̂1) = Rub(t̂1) ≥ Rreq

/ n∏
k=2

Rub(t̂k ) (28)

It satisfies Eq.(24). Then, we extend it to an arbitrary
subtask t̂i. Assume that t̂i−1 satisfies Eq.(24), namely,

R(t̂i−1) ≥ Rreq

/(
i−2∏
k=1

Ra(t̂k )×
n∏
k=i

Rua(t̂k )

)
(29)

For the i− th subtask t̂i, we can get
i−2∏
k=1

Ra(t̂k )× R(t̂i−1)× R(t̂i)×
n∏

k=i+1

Rua(t̂k )

≥

i−2∏
k=1

Ra(t̂k )

×Rreq

/(
i−2∏
k=1

Ra(t̂k )×
n∏
k=i

Rua(t̂k )

)

×R(t̂i)×
n∏

k=i+1

Rua(t̂k )

= Rreq × R(t̂i)
/
Rua(t̂i) (30)

If subtask t̂i is assigned to a processor where R(t̂i) =
Rub(t̂i), then, the Eq. (30) can be changed into

i−2∏
k=1

Ra(t̂k )× R(t̂i−1)× R(t̂i)×
n∏

k=i+1

Rua(t̂k )

=

i−2∏
k=1

Ra(t̂k )× R(t̂i−1)× Rub(t̂i)×
n∏

k=i+1

Rua(t̂k )

≥

i−2∏
k=1

Ra(t̂k )× R(t̂i−1)× Rua(t̂i)×
n∏

k=i+1

Rua(t̂k )

≥ Rreq (31)

Thus, t̂i also satisfies Eq. (24).
To arbitrary subtask, we can find a processor to assign and

meanwhile Theorem 1 is satisfied. �
In the proposed algorithm, we adopt a greedy strategy that

assuming each unassigned subtask is to be assigned to the
UE or MEC server with the maximum reliability value, and
then we find the available variable xij to satisfy Eq. (24) for
reducing the size of the solution space.

(2) Latency requirement
We adopt the concept of the earliest start time (EST) and

the latest finish time (LFT) to limit the subtask’s execution
time for satisfying the latency requirement of the application.

Firstly, the EST of the entry subtask tentry on each processor
sj is

EST (tentry, sj) = 0 (32)

Then, we can get other subtask ti’s EST on each processor
sj
EST (ti, sj)= max

tk∈pred(ti), sl∈S
{EST (tk , sl)+ωk/Fl+eki(sl, sj)}

(33)

The LFT of the exit subtask texit is
LFT (texit , sj) = Lreq (34)

Meanwhile, we can deduce the other subtask ti’s LFT on
each processor sj
LFT (ti, sj)= min

tk∈succ(ti), sl∈S
{LFT (tk , sl)−ωk/Fl−eik (sj, sl)}

(35)

156 VOLUME 8, 2020



H. Liu et al.: Fast Algorithm for Energy-Saving Offloading With Reliability and Latency Requirements in MEC

Algorithm 1 MUEECA
Input: T, S, E
Output: {xij}
1: Use the subtask’s upward rank value ranku to generate
the sequenced set T̂
2: for each t̂i ∈ T̂ do
3 Initialize {xij} ← 0
4 εmin

i ←∞

5 For each sj ∈ S do
6 Set xij = 1
7 Update Lcij← ωi

/
Fj,

Compute LFT (ti, sj), EST (ti, sj)
8 Update R(t̂i)←

∑m
j=0 xijRij

9 if Lcij satisfies Eq.(36) and R(t̂i) satisfies Eq.(24) then
10 Update εi← xi0εli +

∑m
j=1 xijε

r
ij

11 if εi < εmin
i then

12 Update εmin
i ← εi, Ra(t̂i)← R(t̂i)

13 Reset {xij} ← 0
14 Set xij = 1
15 end if
16 end if
17 end for
18 end for

Then, we can get each subtask ti’s limited execution latency
instead of the overall latency requirement of G.

m∑
j=0

xij
(
LFT (ti, sj)− EST (ti, sj)

)
≥ Lcij = ωi

/
Fj (36)

C. MINIMIZE THE UE’S ENERGY CONSUMPTION
In the following, an algorithm for minimizing the UE’s
energy consumption (MUEECA) is proposed, as shown in
Algorithm 1. The core idea of MUEECA is that the overall
requirements of reliability and latency are decomposed into
the constraints of each subtask, and then the variables which
satisfy the constraints are found with minimum energy con-
sumption. MUEECA contain following main steps.

1) Use the subtask’s upward rank value ranku to generate
the sequenced set T̂.
2) Use Eq.(24) and Eq.(36) to obtain the reliability and

latency constraint of each subtask on each processor in the
UE or MEC server.

3) When assigning a subtask t̂i, find a processor with
the minimum UE’s energy cost and meanwhile satisfied the
constraints as the assignment result of t̂i.

D. TIME COMPLEXITY ANALYSIS
The time complexity of MUEECA can be analyzed as fol-
lows.

SortingT costsO(n log n) time. Traversing all subtasks and
computing their energy cost on all processors take O(nm)
time. Calculating Eq.(24) and Eq.(36) require O(n) time in
worst case. Hence, the time complexity of the proposed algo-
rithm is O(n log n+ nm× n), which can be approximated as
O(n2m).

VI. SIMULATION EVALUATIONS
In this section, we evaluate the performance of MUEECA
through experimental simulation based on JAVA program-
ming language and a system with an Intel i5 processor,
3.2 GHz CPU, 16GB RAM. We mainly study the impact of
important parameters on the performance, including the num-
ber of subtasks, the number of MEC servers, the reliability
requirement and the latency requirement.

A. SIMULATION ENVIRONMENT
We consider an MEC network in a circular area with a radius
200 m. There are {5, 10, 15, 20, 25} MEC servers uniformly
deployed in the network. Consider a high-complexity appli-
cation like face recognition [29], which can be split into
{5, 10, 15, 20, 25} subtasks. The entire application’s data size
is a random number from 500KB to 600KB [26], and its
required total number of processor cycles is also a random
number between 1200-1500 Megacycles [30]. The computa-
tional capability F0 of the UE’s processor is 1GHz and Fj of
the MEC server’s processor is randomly set from 5 GHz to
10 GHz [31]. The energy cost within one time unit by the
UE’s processor, namely ρ, is 5 mW. The channel bandwidth
W is set to 5 MHz and the noise power σ 2 is -100 dBm [31].
The transmission power P ranges from 50 mW to 100 mW
randomly. The path loss factor is α = 4, and the failure rate
is a Gaussian random variable, namely λj ∼ N (0.005, 10−6),
to simulate differences on devices. The reliability require-
ment Rreq is set from 0.93 to 0.98 according to the references
[13], [25], and the latency requirement Lreq is set from 1.0s
to 1.5s [26].
For comparison, we evaluate the performance of the pro-

posed algorithm with the following algorithms.
1) Local execution: There is no offloading. All subtasks are

executed locally.
2) Random assignment: Subtasks are randomly assigned

on the UE orMEC server until all subtasks satisfy the require-
ments of reliability and latency.

3) Greedy algorithm: For each subtask, find the processor
with minimum energy on the UE or MEC server to execute
it. After all subtasks are assigned, compute the entire appli-
cation’s reliability and latency. If the requirements are not
satisfied, then roll back to the previous subtask, select the sub-
optimal processor and continue to compute the requirements.
Repeat the above steps until finding a solution that meets all
requirements.

All experiments have been repeated 100 times with
different network distribution to eliminate the effects of
randomness.

B. PERFORMANCE EVALUATION
1) IMPACT OF THE NUMBER OF MEC SERVERS
To investigate the scalability, the proposed algorithm’s per-
formance is evaluated with different network scales with
respect to the number of deployed MEC servers. Shown as
in Figure 2, the number of MEC servers varies from 5 to 25,

VOLUME 8, 2020 157



H. Liu et al.: Fast Algorithm for Energy-Saving Offloading With Reliability and Latency Requirements in MEC

FIGURE 2. Impact of m on the subtasks’ execution. (a) Energy
consumption of the UE. (b) Runtime overhead.

where the number of subtasks n = 15, Rreq = 0.95, and
Lreq = 1500ms. We can see that the energy consumption of
the UE decreases as the number ofMEC servers increases due
to the increase of the solution space, where there are more
options to optimize the UE’s energy consumption. Moreover,
the energy consumption resultant with MUEECA outper-
forms the local execution and the random assignment, but is
slightly inferior to the greedy algorithm. Even so, the runtime
overhead resultant with MUEECA is much better than the
greedy algorithm. Note that the y-axis of Figure. 2(b) is a log
scale. When the number of MEC servers is 25, the runtime
of the proposed algorithm is close to 1 millisecond and is
slightly inferior to the local executionwhich does not have the
offloading decision process. Meanwhile, the runtime of the
greedy algorithm is 73.8 ms. Note that the simulation is run-
ning on PC, if this offloading decision is running on a mobile
device, it will cost more time and computational energy on
the greedy algorithm. Thus, compared with the greedy algo-
rithm, MUEECA is more suitable for the practice. The rea-
son for this phenomenon is that MUEECA decomposes the
constraints of the entire application into the sub-constraints
of each subtask, and then when assigning a subtask, it can
quickly find a solution satisfying the constraints. In contrast,
in the greedy algorithm, it just judges whether a solution

FIGURE 3. Impact of n on the subtasks’ execution. (a) Energy
consumption of the UE. (b) Runtime overhead.

can meet the requirements in terms of reliability and latency
constraints before all the decision variables {xij} have been
obtained. If the solution is not feasible, it must roll backwhich
costs more time.

2) IMPACT OF THE NUMBER OF SUBTASKS
Figure 3 shows the impact of the number of subtasks. The
number of subtasks varies from 5 to 25, where m = 10,
Rreq = 0.95, and Lreq = 1500ms. We can see the energy
consumption does not decrease a lot as the number of sub-
tasks increases because the size of the entire application is
almost fixed. However, the runtime of the greedy algorithm
grows from 73.8ms when n = 5 to 91.6ms when n = 25,
meanwhile the random assignment has similar growth too.
As the number of decision variables increases, to satisfy the
constraints of reliability and latency, the number of back-
offs in the process of the greedy algorithm and the random
assignment increases to find a feasible solution. While as
shown in Figure 3(b), the runtime ofMUEECA is not affected
too much by the increasing number of the decision variables
due to the linear solution process without any back-offs.
This demonstrates the proposed algorithm is suitable for the
scenarios with large solution space and multiple decision
variables.

158 VOLUME 8, 2020



H. Liu et al.: Fast Algorithm for Energy-Saving Offloading With Reliability and Latency Requirements in MEC

FIGURE 4. Impact of Rreq on the subtasks’ execution. (a) Energy
consumption of the UE. (b) Runtime overhead.

3) IMPACT OF THE RELIABILITY REQUIREMENT
Figure 4 plots the impact of the reliability requirement where
the reliability requirement varies from 0.93 to 0.98, m =
10, n = 15, and Lreq = 1500ms. We can see the local
execution have only 4 point data because the overall reli-
ability of the local execution can only obtain 0.9637 at
most. Thus, the local execution can’t satisfy high reliability
requirement when the UE has a high transient failure rate.
However, with the amount ofMEC devices, the UE can obtain
higher reliability via the computation offloading. As shown in
Figure 4(a), the energy consumption has slightly growthwhen
the reliability requirement increasing for MUEECA and the
greedy algorithm due to the constraint from Eq. (14) become
stringent which makes this problem more difficult to find
optimal solutions. Because of the randomness, the random
assignment cannot obtain a stable result.

4) IMPACT OF THE LATENCY REQUIREMENT
Figure 5 compares the impact of the latency requirement.
The latency requirement varies from 1000ms to 1500ms,
where m = 10, n = 15, and Rreq = 0.95. This is the
case where the latency constraint becomes stringent, and an
effective subtask assignment is critical to meet this deadline.

FIGURE 5. Impact of Lreq on the subtasks’ execution. (a) Energy
consumption of the UE. (b) Runtime overhead.

Since the minimum latency of the local execution can only
achieve 1505ms, it has only one point data in Figure 5. As the
constraint of latency becomes loose, the energy consumption
of MUEECA and the greedy algorithm is decreasing, thereby
it yields a slope in Figure 5(a).When Lreq = 1000ms, the run-
time of the greedy algorithm is 168.7ms, while the runtime of
MUEECA is just 1.4ms, whose time cost is only 0.8% of that
of the greedy algorithm. This demonstrates that MUEECA
has a good performance on runtime to obtain a satisfactory
result on the objective of minimizing energy consumption.

VII. CONCLUSION
In this paper, we investigate a problem to minimize the
UE’s energy consumption while guaranteeing the applica-
tion’s reliability and latency requirements. The entire appli-
cation is divided into DAG-based subtasks to satisfy the
requirements via the computation offloading. We formu-
late an integer programming problem, and then propose a
fast heuristic algorithm with time complexity of O(n2m).
In the proposed algorithm, we split the overall reliability
and latency constraints into multiple constraints for each
subtask, and then find a minimum solution in each subtask’s
offloading decisions. Simulation results demonstrate the pro-
posed algorithm outperforms on energy consumption when

VOLUME 8, 2020 159



H. Liu et al.: Fast Algorithm for Energy-Saving Offloading With Reliability and Latency Requirements in MEC

comparing with the random assignment and the local execu-
tion, and is much better than the greedy algorithm on runtime
overhead.

REFERENCES
[1] Y. Liu, A. Liu, X. Liu, and M. Ma, ‘‘A trust-based active detection for

cyber-physical security in industrial environments,’’ IEEE Trans. Ind.
Informat., vol. 15, no. 12, pp. 6593–6603, Dec. 2019.

[2] X. Liu, M. Zhao, A. Liu, and K. K. L. Wong, ‘‘Adjusting forwarder nodes
and duty cycle using packet aggregation routing for body sensor networks,’’
Inf. Fusion, vol. 53, pp. 183–195, Jan. 2020.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
‘‘On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[4] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
‘‘Survey on multi-access edge computing for Internet of Things real-
ization,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2961–2991,
4th Quart., 2018.

[5] X. Liu, A. Liu, T. Wang, K. Ota, M. Dong, Y. Liu, and Z. Cai, ‘‘Adaptive
data and verified message disjoint security routing for gathering big data
in energy harvesting networks,’’ J. Parallel Distrib. Comput., vol. 135,
pp. 140–155, Jan. 2020.

[6] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. N. Chang, M. R. Lyu,
and R. Buyya, ‘‘Cloud service reliability enhancement via virtual machine
placement optimization,’’ IEEE Trans. Services Comput., vol. 10, no. 6,
pp. 902–913, Nov. 2017.

[7] Y. Sharma, B. Javadi, W. Si, and D. Sun, ‘‘Reliability and energy efficiency
in cloud computing systems: Survey and taxonomy,’’ J. Netw. Comput.
Appl., vol. 74, pp. 66–85, Oct. 2016.

[8] Y. Alsenani, G. Crosby, and T. Velasco, ‘‘SaRa: A stochastic model to
estimate reliability of edge resources in volunteer cloud,’’ in Proc. IEEE
Int. Conf. Edge Comput. (EDGE), San Francisco, CA, USA, Jul. 2018,
pp. 121–124.

[9] ISO 26262-Road Vehicles-Functional Safety International Organization
for Standardization, ISO Standard 26262, 2011.

[10] V. Vyatkin, ‘‘Software Engineering in Industrial Automation: State-of-the-
Art Review,’’ IEEE Trans Ind. Informat., vol. 9, no. 3, pp. 1234–1249,
Aug. 2013, doi: 10.1109/TII.2013.2258165.

[11] X. Liu, T. Wang, W. Jia, A. Liu, and K. Chi, ‘‘Quick convex hull-based
rendezvous planning for delay-harsh mobile data gathering in disjoint
sensor networks,’’ IEEE Trans. Syst., Man, Cybern., Syst., to be published.

[12] X. Liu and P. Zhang, ‘‘Data drainage: A novel load balancing strat-
egy for wireless sensor networks,’’ IEEE Commun. Lett., vol. 22, no. 1,
pp. 125–128, Jan. 2018.

[13] G. Xie, G. Zeng, Y. Chen, Y. Bai, Z. Zhou, R. Li, and K. Li, ‘‘Minimizing
redundancy to satisfy reliability requirement for a parallel application on
heterogeneous service-oriented systems,’’ IEEE Trans. Services Comput.,
to be published, doi: 10.1109/TSC.2017.2665552.

[14] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and low-
complexity task scheduling for heterogeneous computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002, doi: 10.
1109/71.993206.

[15] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, ‘‘Hybrid method for
minimizing service delay in edge cloud computing through VM migration
and transmission power control,’’ IEEE Trans. Comput., vol. 66, no. 5,
pp. 810–819, May 2017, doi: 10.1109/TC.2016.2620469.

[16] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
‘‘Dynamic service migration in mobile edge-clouds,’’ in Proc. IFIP Netw.
Conf. (IFIP), May 2015, pp. 1–9.

[17] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user com-
putation offloading for mobile-edge cloud computing,’’ IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016, doi: 10.1109
/TNET.2015.2487344.

[18] S. Mu, Z. Zhong, D. Zhao, and M. Ni, ‘‘Joint job partitioning and col-
laborative computation offloading for Internet of Things,’’ IEEE Inter-
net Things J., vol. 6, no. 1, pp. 1046–1059, Feb. 2019, doi: 10.1109
/JIOT.2018.2866945.

[19] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, ‘‘Energy aware
offloading for competing users on a shared communication channel,’’
IEEE Trans. Mobile Comput., vol. 16, no. 1, pp. 87–96, Jan. 2017,
doi: 10.1109/TMC.2016.2538227.

[20] J. Ren, G. Yu, Y. Cai, and Y. He, ‘‘Latency optimization for resource
allocation in mobile-edge computation offloading,’’ IEEE Trans. Wire-
less Commun., vol. 17, no. 8, pp. 5506–5519, Aug. 2018, doi: 10.
1109/TWC.2018.2845360.

[21] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing
in software defined ultra-dense network,’’ IEEE J. Sel. Areas Com-
mun., vol. 36, no. 3, pp. 587–597, Mar. 2018, doi: 10.1109/JSAC.2018.
2815360.

[22] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, ‘‘Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing,’’ IEEE Trans. Commun., vol. 67, no. 6, pp. 4132–4150,
Jun. 2019.

[23] J. Liu and Q. Zhang, ‘‘Offloading schemes in mobile edge computing
for ultra-reliable low latency communications,’’ IEEE Access, vol. 6,
pp. 12825–12837, 2018.

[24] B. Han, S. Wong, C. Mannweiler, M. R. Crippa, and H. D. Schotten,
‘‘Context-awareness enhances 5G multi-access edge computing reliabil-
ity,’’ IEEE Access, vol. 7, pp. 21290–21299, 2019.

[25] G. Xie, Y. Chen, R. Li, and K. Li, ‘‘Hardware cost design optimization
for functional safety-critical parallel applications on heterogeneous dis-
tributed embedded systems,’’ IEEE Trans. Ind. Informat., vol. 14, no. 6,
pp. 2418–2431, Jun. 2018, doi: 10.1109/TII.2017.2768075.

[26] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, ‘‘Energy-
efficient admission of delay-sensitive tasks for mobile edge comput-
ing,’’ IEEE Trans. Commun., vol. 66, no. 6, pp. 2603–2616, Jun. 2018,
doi: 10.1109/TCOMM.2018.2799937.

[27] L. Zhao, Y. Ren, and K. Sakurai, ‘‘Reliable workflow scheduling with
less resource redundancy,’’ Parallel Comput., vol. 39, no. 10, pp. 567–585,
Oct. 2013.

[28] V. V. Vazirani, Approximation Algorithms. New York, NY, USA: Springer,
2013.

[29] R. He, X. Wu, Z. Sun, and T. Tan, ‘‘Wasserstein CNN: Learning invariant
features for NIR-VIS face recognition,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 7, pp. 1761–1773, Jul. 2019.

[30] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, ‘‘Energy
efficient task caching and offloading for mobile edge computing,’’ IEEE
Access, vol. 6, pp. 11365–11373, 2018, doi: 10.1109/ACCESS.2018.
2805798.

[31] L. Yang, H. Zhang, M. Li, J. Guo, and H. Ji, ‘‘Mobile edge comput-
ing empowered energy efficient task offloading in 5G,’’ IEEE Trans.
Veh. Technol., vol. 67, no. 7, pp. 6398–6409, Jul. 2018, doi: 10.
1109/TVT.2018.2799620.

HAOLIN LIU received the B.Eng. and Ph.D.
degrees from SichuanUniversity, Chengdu, China,
in 2010 and 2015, respectively. He is currently
a Lecturer with the College of Information Engi-
neering, Xiangtan University, Xiangtan, China.
His research interests include mobile edge com-
puting, wireless sensor networks, and the Internet
of Things. He is a member of CCF.

LE CAO received the B.S. degree in computer
science and technology from the Hunan Uni-
versity of Arts and Sciences, Changde, China,
in 2017. He is currently pursuing the M.S. degree
in computer technology with Xiangtan University,
Xiangtan, China. His research interests include
mobile edge computing, network slicing, and con-
vex optimization.

160 VOLUME 8, 2020

http://dx.doi.org/10.1109/TII.2013.2258165
http://dx.doi.org/10.1109/TSC.2017.2665552
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/TC.2016.2620469
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/JIOT.2018.2866945
http://dx.doi.org/10.1109/JIOT.2018.2866945
http://dx.doi.org/10.1109/TMC.2016.2538227
http://dx.doi.org/10.1109/TWC.2018.2845360
http://dx.doi.org/10.1109/TWC.2018.2845360
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/TII.2017.2768075
http://dx.doi.org/10.1109/TCOMM.2018.2799937
http://dx.doi.org/10.1109/ACCESS.2018.2805798
http://dx.doi.org/10.1109/ACCESS.2018.2805798
http://dx.doi.org/10.1109/TVT.2018.2799620
http://dx.doi.org/10.1109/TVT.2018.2799620


H. Liu et al.: Fast Algorithm for Energy-Saving Offloading With Reliability and Latency Requirements in MEC

TINGRUI PEI received the B.Eng. and M.S.
degrees from Xiangtan University, Xiangtan,
China, in 1992 and 1998, respectively, and the
Ph.D. degree in signal and information processing
from the Beijing University of Posts and Telecom-
munications, in 2004. He is currently a Professor
and a Doctoral Supervisor with Xiangtan Univer-
sity. He currently focuses on the research of wire-
less sensor networks (WSN), compressed sens-
ing, ad hoc, mobile communication networks, and

social computing. He is a member of CCF.

QINGYONG DENG (M’18) received the mas-
ter’s degree in signal and information processing
from Xiangtan University, China, in 2009, and
the Ph.D. degree from the Beijing University of
Posts and Telecommunications (BUPT), China,
in 2019. He is currently a Lecturer with the Col-
lege of Information Engineering, Xiangtan Uni-
versity, China. He has published more than ten
referred journal articles. His current research inter-
ests include the Internet of Things, compressed

sensing, wireless networks, and 5G. He is a member of CCF.

JIANG ZHU received the M.S. and Ph.D. degrees
in control science and engineering from Hunan
University, Changsha, China, in 2005 and 2011,
respectively. He is currently an Associate Pro-
fessor with the College of Information Engineer-
ing, Xiangtan University, Xiangtan. His current
research interests include intelligent information
processing, mobile communication networks, and
parallel distributed systems.

VOLUME 8, 2020 161


	INTRODUCTION
	RELATED WORKS
	SYSTEM MODELS
	NETWORK MODEL
	TASK MODEL
	COMMUNICATION MODEL
	COMPUTATION MODEL
	RELIABILITY MODEL

	PROBLEM FORMULATION
	A HEURISTIC ALGORITHM
	SUBTASK PRIORITIZING
	RELIABILITY AND LATENCY REQUIREMENT SATISFYING
	MINIMIZE THE UE'S ENERGY CONSUMPTION
	TIME COMPLEXITY ANALYSIS

	SIMULATION EVALUATIONS
	SIMULATION ENVIRONMENT
	PERFORMANCE EVALUATION
	IMPACT OF THE NUMBER OF MEC SERVERS
	IMPACT OF THE NUMBER OF SUBTASKS
	IMPACT OF THE RELIABILITY REQUIREMENT
	IMPACT OF THE LATENCY REQUIREMENT


	CONCLUSION
	REFERENCES
	Biographies
	HAOLIN LIU
	LE CAO
	TINGRUI PEI
	QINGYONG DENG
	JIANG ZHU


