IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 13,2019, accepted December 9, 2019, date of publication December 23, 2019, date of current version January 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2961568

Compiler-Directed Parallelism Scaling

Framework for Performance

Constrained Energy Optimization

YUNG-CHENG MA™, (Member, IEEE)

Department of Computer Science and Information Engineering, Chang-Gung University, Taoyuan 333, Taiwan

e-mail: yema@mail.cgu.edu.tw

This work was supported in part by the Ministry of Science and Technology of Taiwan under Grant 105-2221-E-182-037.

ABSTRACT Evolution of semiconductor manufacturing technology leads to the rising trend of leakage
current and the end of Dennard scaling. At the dark silicon era, aggressive power gating scheme with
quantitative management on power-gated hardware resources is required. This paper proposes a novel
approach —parallelism scaling — to control static energy on power-gated parallel hardware. This work
presents performance-constrained optimization method to power off the greatest possible amount of hard-
ware. As a first trial, this paper examines the idea on VLIW-style architecture exploiting instruction-level
parallelism. This paper establishes a theoretical foundation to realize parallelism scaling. The mathematical
programming theory includes (1) topological model to control the granularity of program partitioning,
(2) optimal partitioning on well-structured control flow graph in polynomial time, and (3) decision support
for parallelism through item packing model guided by energy density. Evaluation conducted on EEMBC
Denbench benchmark suite shows at least 15% to 53% saving on static energy compared to non-power-
gated architecture. Compared to the state-of-art resource management scheme, our approach saves about
20% to 30% energy to meet the same performance demand. The evaluation reveals noteworthy opportunity
to save static energy for future dark-silicon architecture design.

INDEX TERMS Power gating, instruction-level parallelism, energy efficiency, VLIW, static energy, leakage

power, dark silicon.

I. INTRODUCTION
Architects have been facing dark silicon challenge in recent
years. Moore’s law, together with Dennard scaling [1],
pushed the performance growth of computer systems for sev-
eral decades: chip designers utilized fast feature-size shrink-
ing to design processors with lower supply voltage and
faster clock frequencies while maintaining the same power
densities. However, the trend of Dennard scaling stopped
at around 2005 due to the rapid growth of leakage current
in deep-submicron manufacturing process [2]. Researchers
forecast the coming of dark silicon era: with 7nm process
node, over 50% of the chip area must be powered off [3]. As
a consequence, architects turn to power gating technologies
and the design of heterogeneous accelerators.

Power-gating [4], [5] is a circuit technology to control
the dissipation of static energy resulted primarily from the

The associate editor coordinating the review of this manuscript and

approving it for publication was Michele Magno

VOLUME 8, 2020

growth of leakage current. With power gating, the chip area
is divided into power domains and special transistors are
deployed to serve as current switches to cut off the leakage
current flowing through temporarily unused power domains.
Several circuit technologies have been proposed for power
gating [4], [5], such as MTCMOS (multi-threshold voltage
CMOS) and adaptive body bias. However, the following over-
heads induce challenges to power gating design [4]: (1) the
chip area overhead on power rail routing and isolation cells,
and (2) the state-transition overhead on time and energy to
activate and deactive power-gated hardware. Compiler algo-
rithms were also proposed to control the current switches (see
Section II). Researchers [4], [6] indicates that the energy to
activate and deactive a hardware component once is equiv-
alent to the static energy of keeping the hardware power-on
for hundreds of cycles. The compiler has to trade-off between
computational energy (the energy for normal computation)
and the state-transition overhead.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 1733

https://orcid.org/0000-0002-8430-3871
https://orcid.org/0000-0003-0368-8923

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

There are various styles of accelerators, such as VLIW
(very long instruction word) processors, vector units,
graphics processing units (GPUs), and tensor processing
units (TPUs) [7]. A common feature of the accelerators
is that they use a pool of parallel hardware to accelerate
the applications. In many applications (such as autonomous
driving [8]), the accelerators are deployed to meet certain
(explicit or implicit) real-time performance demand. To meet
performance demands from various applications, the system
is usually over designed with provision of sufficient amount
of hardware which may result in energy waste. To reduce the
energy waste, we seek for the methods to depower part of the
parallel hardware that exceeds performance demand.

Various accelerators in system-on-chips (SoCs) are in very-
long-instruction-word (VLIW) architecture. A VLIW pro-
cessor speeds up the program execution through exploiting
instruction-level parallelism (ILP): multiple instructions (or
operations) are packed into a single instruction bundle to be
executed in a single cycle. The compiler is responsible for
finding out parallel instructions and ensuring the correctness
of the execution at off-line. At 2000s, various digital signal
processors are VLIW architecture [9]-[13]. In recent years,
various deep-learning accelerators are based on VLIW archi-
tectures enhanced with vector and SIMD instructions, such as
Qualcomm Hexagan [14], CEVA XM6 [15], Tensilica visual
DSP [16]. There are also computer vision applications accel-
erated by multiple VLIW cores [7], [17], such as Google’s
pixel visual core [7]. Key features of VLIW-like architec-
tures are (1) simple hardware for execution control, and (2)
exposing all hardware for software control. The features make
VLIW architectures attractive for applications requiring good
energy efficiency.

This paper studies the control over power-gated paral-
lel hardware with real-time performance demand. A novel
compiler algorithm, parallelism scaling, is proposed. As a
first trial, we experiment the algorithm on a VLIW-style
architecture. The compiler algorithm, consists of pro-
gram partitioning and parallelism decision, is designed for
performance-constrained energy optimization (PCEO): min-
imize the energy cost subject to a given deadline on pro-
gram execution time. Consequently, the execution parallelism
changes with time and the parallelism decision determines
the power dissipation of the processor. As a result, a gen-
eral mathematical programming theory is established and the
framework has the potential to be applied to other styles of
parallel hardware. Recall that high ratio of the chip area has to
be powered off [3]. Through the mathematical programming
model, we study how much energy can be saved through the
best possible algorithm.

PCEO raises challenges to parallelism control. The pre-
vious work [18] proposes parallelism adaption algorithm to
reduce energy consumption at peak-performance mode: each
program region is simply assigned its speedup-saturation
parallelism. For PCEO, a new algorithm is required to
choose parallelism from a set of possible decisions. Nev-
ertheless, the parallelism assignment interferes the program

1734

partitioning stage on the effect of controlling state-transition
energy. To resolve the chicken-egg problem, we propose the
multi-pass SRE-ED algorithm (see Section IV) that makes
decision by examining solutions resulted from various pro-
gram partitioning granularity. Addressing these issues, this
paper makes the following contributions:

(1) A novel granularity control scheme for program
partitioning, called SRE-criteria, to control the
state-transition energy through a topological model,

(2) A new program partitioning algorithm, PGR compo-
sition, that finds an optimal solution for the N-way
multi-cut problem in polynomial time when the control
flow graph is derived from a well-structured high-level
language program, and

(3) The GPED (greedy packing by energy density) algo-
rithm to assign parallelism for PCEO.

This paper is organized as follows. Section II gives the
background and related work. Section III gives an overview
and the problem modeling of the proposed approach.
Section IV describes our strategy to devise the algorithm for
PCEO. The compiler algorithm on the theoretical aspects is
established at Section V and Section VI deals with the prac-
tical realization issues. Section VII presents the evaluation
results and the conclusion is given at Section VIII.

Il. BACKGROUND AND RELATED WORK

Here we present fundamental concepts on power gating
and surveys related work on compiler-directed power-gating
control.

A. FUNDAMENTALS: POWER GATING FOR DARK SILICON
The evolution of semiconductor manufacturing process
brings the dark silicon challenge. Power dissipation of a
chip can be divided into two parts: (1) the dynamic power,
or switching power, resulted from voltage swings on the
gates and wires, and (2) the static power, or leakage power,
comes from the leakage current flowing through transistors
even when the circuit has no switching activities. According
to the report of Industry Technology Roadmap for Semi-
conductors (ITRS) [19], static power becomes the dominant
part of the total power dissipation in today’s deep-submicron
manufacturing process. The raise of leakage current causes
the failure of Dennard scaling [1] and leads to the era of
dark silicon [2]. It is reported that, with 7nm manufacturing
process, over 50% of the chip area must be powered off [3].
The major design trends in the dark silicon era are (1) widely
deployment of power-gating circuitry to control the leakage
current, and (2) the use of heterogeneous accelerators in
domain-specific architectures to meet performance demand
with good energy efficiency [7], [20], [21].

Power gating is the technology to cut-off leakage current
flowing through temporarily unused hardware components.
The concept is illustrated in Figure 1. Circuits for normal
operations are divided into power domains and special tran-
sistors (different from the transistors used for normal opera-

VOLUME 8, 2020

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

IEEE Access

current switch

isolation
cell

isolation
cell

(circuits for normal operations) (circuits for normal operations)

FIGURE 1. Concepts of power-gating circuit technology.

tions) are deployed to serve as current switches. Each power
domain PD; has its own set of current switches. When PD; is
idle, the sleep signal SLEEP; is asserted to make the current
switches cut-off leakage current flowing through PD;. Several
circuit technologies have been proposed for power gating [4],
[5], such as MTCMOS (multi-threshold voltage CMOS) and
adaptive body bias. This paper focuses on the architecture
design and software control over the power-gating circuitry.

Major architectural design concerns come from the follow-
ing overheads of power gating:

1) Timing overhead. To prevent the circuit been burned
out by the rush current, a gradual wake-up scheme is
deployed to activate a sleeping power domain [4]-[6].
This introduces the overhead of state-transition time
on a power-gated architecture. We adopt the design
proposed by [6], which requires one additional clock
cycle to execute a power-gating instruction.

2) Chip area overhead. Aside from the area occupied
by current switches and power rails, isolation cells
also contribute to the chip area overhead [4], [5]. To
prevent the circuit being destroyed during activation,
an isolation cell is inserted for each net that crosses
different power domains. The chip area overhead raises
the granularity issue on power domain partitioning.

3) Energy overhead. Additional energy, called state-
transition energy, is required to activate and deacti-
vate a power domain. To gain energy saving, the time
interval between two power-gating instructions has to
exceed certain threshold Ty,. Previous researchers [4],
[6] reported that the state-transition energy is approx-
imately equal to the static energy of keeping a power
domain active for 100 cycles and hence Ty, =
100 cycles. The overhead of state-transition energy is
one of the major concerns in devising our compiler
algorithm.

Besides power-gating control, another challenge in dark
silicon era is the programmability over a pool of hetero-
geneous accelerators. Fully automatic compilation from a
general-purpose programming language usually does not
generate satisfactory program-to-hardware mapping. As a
result, researchers proposed approaches such as code instru-
mentation [22] and domain-specific languages [23] which
have explicit statements to direct the program-to-hardware
mapping. Extensive profiling is used to guide the program-
to-hardware mapping [22], [24] for embedded applications.

VOLUME 8, 2020

Programming a power-gated hardware also encounters simi-
lar programmability issue. While the programmability issue
and language design are outside the scope of this research,
we assume that our compiler algorithm will be deployed in
a programming environment with directives for program-to-
hardware mapping guided by profiling. We also hope that
the proposed theory will affect the programming environment
design for accelerators in the future.

B. RELATED WORK: COMPILER-DIRECTED LEAKAGE
POWER CONTROL

Various compiler algorithms to control power gating are pro-
posed. The focus is to find out and enlarge the idle period
through global instruction scheduling to shut down hard-
ware [25]-[28]. The research trend moves towards practical
processors in recent years. Abdel-Majeed et al. enlarges the
idle period of functional units in a GPU through dynamic
instruction issue policies [29]. Kumar et al. proposed algo-
rithms to power off parts of vector lanes in an SIMD acceler-
ator [30]. Aghilinasab et al. proposed algorithms to power off
vector functional units in a GPU [31]. Considering the high
threshold value of Ty, Roy et al. [6] proposed loop-based
control for power gating. Cherupalli et al. proposed binary
code annotation for power gating control with clustering on
logic gates to establish power domains and a power domain
may spread across design modules [32]. Power gating may
also be applied to routers in network-on-chip (NoC), such as
in [33].

The research trend further moves toward quantitative
management on power-gated hardware: determining the
amount of activated hardware throughout the execution.
Power gating on register files and storage elements received
attention [34], [35]. Tabkhi and Schirner [36] proposed
function-based scheme to control the amount of acti-
vated registers. Various researchers proposed some means
of parallelism control to manage power-gated hardware.
Girlado et al. [37], [38] proposed designs that dynamically
change the instruction-level parallelism (ILP) to execute a
program on a VLIW processor. Researchers have also pro-
posed designs that dynamically vary the amount of vector
lanes and cores in a GPU [39], [40].

We also studied parallelism control on VLIW-style archi-
tectures. Considering that over 60% of the energy dissipated
in a VLIW processor spent on register files [41], [42], we
proposed the PGRF-VLIW architecture [43] featuring dis-
tributed and power-gated register files. Besides the shared
register file (SRF) connected to all execution slots, each
execution slot is associated with a local register file (LRF).
Due to the reduced amount of access ports, a LRF con-
sumes less energy compared to the SRF. Both the LRFs and
SRF are partitioned into banks for power gating. A power
domain may be (1) a bank in a LRF, (2) a bank in the
SREF, or (3) functional units of an execution slot. Parallelism
decision affects the energy dissipated on both functional units
and register files. The local instruction scheduling algorithm
(the DCCS algorithm in [43]) performs operation clustering

1735

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

deadline constraint

the major optimization phases

profiling post-scheduling

program
partitioning

parallelism

3 resource allocation
assignment

pre-scheduling

(a)

parallelism
(related to power)

execute with

execute with

generation

parallelism scaling

fixed parallelism
code j

time

(b)

FIGURE 2. Conceptual idea of parallelism scaling. (a) The compilation flow. (b) The execution profile.

to reduce the amount of operand transfers through the SRF.
As a result, the amount of cross-slot operand transfers (and
hence the energy dissipated on register files) also scales
with ILP. Based on the PGRF-VLIW architecture, we fur-
ther proposed global parallelism adaption heuristic [18] to
save energy at peak-performance mode, where each program
region is executed with its speedup-saturation parallelism. In
this paper, we advance the previous works by taking real-time
performance demand to depower more hardware for energy
saving.

Ill. SCENARIO AND MODELING OF PARALLELISM
SCALING

The compiler algorithm is to improve energy efficiency of
power-gated parallel hardware, aimed at reducing the energy
dissipation to satisfy a given performance requirement.
Figure 2(a) shows the compilation flow. Assume that the exe-
cution parallelism of the hardware can be configured through
power gating; Higher execution parallelism gets speedup at
the cost of higher power dissipation. The compiler parti-
tions the program into several power-gating regions (PGRs);
A PGR is a program region to be executed with a fixed
power-gating configuration. Each PGR is then assigned the
parallelism to execute the program region. The program is
then re-scheduled (with resource allocation) according to
parallelism decisions on PGRs to determine power gating
configurations and the code generation inserts power gat-
ing instructions. Consequently, as shown in Figure 2(b), the
execution parallelism (and hence power dissipation) changes
with time as the execution progress. The optimization prob-
lem is to minimize the energy cost subject to the given
deadline on the program execution time. Both the computa-
tional energy (the energy spent for normal computation) and
the state-transition energy (the energy to activate/deactivate
power domains) are considered. Later in this section, we for-
malize the optimization problem.

Figure 3 gives an example of the application scenario. In a
multi-media application, the video codec is to be offloaded
onto an accelerator with power-gated parallel hardware to
achieve the frame rate of 30 frames per second. The compiler
takes the deadline constraint, 1/30 seconds to execute the loop
body per iteration, from directives. The parallelism scaling
compiler inserts power-gating instructions into the loop body
to reduce the energy to achieve the frame rate. The compiler

1736

Y224
/// Directive: set performance requirement of 30 frames/sec
V224
for (frame_id=0; frame_id<Max_FrameID; frame_id++) {
F = Get_Frame (frame_id);
if (Type(F)==I_Frame) {

Set_PowerGateConfig (X_0); //compiler generated power-gating

//instruction
Decode_IFrame (F);
}
else |

Set_PowerGateConfig (X_1); //compiler generated power-gating

//instruction
Decode_PFrame (F) ;
}
}

FIGURE 3. Example of the application scenario.

tries to depower hardware that exceeds performance demand.
The compiler optimization relies on profiling information.
Such a profiling-based optimization is suitable for applica-
tions in embedded systems with stable behavior that can be
observed at offline [22], [24].

As the first trial, we experiment the compiler algorithm
on the PGRF-VLIW architecture [43], which scales the ILP.
In the architecture, power-gating is deployed on execution
slots as well as the distributed register files. The execution
ILP affects the energy dissipated on both functional units
and register files. Note that parallelism scaling can also
be applied to traditional VLIW architectures with power
gating on functional units only. However, the register file
contributes over 60% of the total energy [41], [42] and
the energy saving effect is limited without re-designing the
architecture.

We now formalize the compiler optimization problem,
starting from modeling a power-gated architecture.

A. MODELING A POWER-GATED ARCHITECTURE

A power-gated architecture is modeled as follows. Table 1
lists the notations for the architecture modeling. Assume that
the hardware architecture is partitioned into N power domains
{PDy, PD1, PD>, ..., PDy_1}. A power-gating configura-
tion (PG-config) to execute a program region is a 0-1 vec-
tor X = (xg,X1,X2,...,xy—1), where x; = 1 indicates
that the power domain PD; is ON and x; = 0 indicates
that PD; is OFF. A power domain PD; has the following
attributes:

(1) ey (PD;): the static power, in units of energy per cycle,
of the power domain PD;,

(2) eqct(PD;): the activation energy to power on the power
domain PD;,

VOLUME 8, 2020

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

IEEE Access

TABLE 1. Notations on modeling a power-gated architecture.

Notation | Description
Basic attributes of a power domain
PD; a power domain
est(PD;) static power (energy per cycle) of PD;
eact(PD;) energy to activate PD;
edact(PD;) | energy to deactivate PD;
Vector modeling of power domains
Est the vector of static power (energy per cycle) for all power domains:
Est = (est(PDo),est(PD1),est(PD2),...,est(PDN_1))
FEact the vector of activation energy for all power domains:
Eqct = (eact(PD0)7 eact(—PDl)y €act (PD2)7 (3] eact(PDN—l))
FEgact the vector of deactivation energy for all power domains:
Edact = (edact(PDO)v edact(PDl)z €dact (PD2)7 ey edact(PDNfl))
XY, Z 0-1 vectors of a power-gating configuration (PG-config)
Power domain attributes by resource type
€st,t the power (static energy per cycle) of a type ¢ hardware component
€act,t the energy to activate a type ¢ hardware component
€dact,t the energy to deactivate a type ¢ hardware component
R(X) amount of activated type ¢ hardware in the PG-config X
Energy attributes
Pyt (X) the power (static energy per cycle) to execute with PG-config X
AE(X,Y) the activation energy to switch the PG-config from X to Y
DE(X,Y) the deactivation energy to switch the PG-config from X to Y
FEqtr(X,Y) the state-transition energy to switch PG-config from X to Y

(3) egact(PD;): the deactivation energy to power off the
power domain PD;.

These energy attributes can be obtained from hardware syn-
thesis. Energy attributes of the whole architecture can also
be represented as vectors Eg, Eqcr, Eqqcr as stated in Table 1.
Refer to [6] for the hardware implementation of the power-
gating instruction that controls through such a 0-1 vector X.

The computational energy is estimated as follows. Let X be
the PG-config to execute a program region. The static power,
in terms of energy per cycle, to execute the program with the
PG-config X is the dot-product of Eg; and X:

Py(X)=Eq X =) eq(PD) *xi,
PD;

which is the sum of the static power of all power-on domains.
The computational (static) energy will be Py (X) * T if the
processor executes with the PG-config X for T cycles. Mul-
tiple power domains may be of the same type of hardware
components. An alternative way is to estimate the compu-
tational energy from resource requirements to each type of
hardware components. Let R;(X) be the amount of activated
type ¢ hardware in PG-config X and ey ; is the static energy
per cycle for a type t hardware. The computational energy per
cycle for the PG-config X can also be estimated as follows:

Py(X) = Zest,t * Ry (X).

t

VOLUME 8, 2020

The state-transition energy is estimated as follows. Con-
sider the case of switching the PG-config from X to Y. We

introduce the notation ||Y — X|| = (z0,21,22,-..,2N=1)
where
yi—x ifyi—x>0
Zi =
‘o ifyi —x; < 0.
X = (x0,x1,...,xy—1) and ¥ = (yo,y1,...,yv-1).) The

activation energy of switching the PG-config from X to Y is
thus
AE(X,Y) = Eg o |IY = X|| =) eaes(PD)) % 2.
PD;
Similarly, the deactivation energy of switching the PG-config
from X to Y can also be calculated from the dot product:
DE(X,Y) = Edact ® ||X — Y|

And the state-transition energy of switching from X to Y is
the sum of activation and deactivation energy:

Eg(X,Y) =AEX,Y)+ DEX,Y).

B. MODELING THE COMPILER OPTIMIZATION

Figure 4 illustrates the modeling of the compiler optimiza-
tion and Table 2 lists the notations for the modeling. The
input is the deadline Tp; on execution time and a con-
trol flow graph (CFG) annotated with profiling and pre-
scheduling information to model an application program.

1737

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

Set_PowerGatingCon fig(Xo)

hedule with parallelism p;

_—schedule with parallelism ps

FIGURE 4. Compiler modeling as CFG partitioning and parallelism
assignment.

The outcome is a parallelism scaling solution (PS-solution)
S = (RP, PA), which consists of a region partition-
ing solution (RP-solution) RP and a parallelism assign-
ment solution (PA-solution) PA. The RP-solution RP =
{Ro,R1,R>,...,Ry_1} is a partitioning on the CFG where
each PGR R; is a connected subgraph of the CFG. The
PA-solution PA = {po, p1,p2, ..., pN—1} assigns the execu-
tion parallelism p; to each PGR R;. Through resource alloca-
tion, the assigned parallelism p; determines the power-gating
configuration X; to execute R;. Power-gating instructions are
inserted on transition edges across PGRs. The solution § =
(RP, PA) also determines the time WT (RP, RA) and energy
cost WE(RP, PA) to execute the program. The optimization
problem is to minimize the energy cost WE(RP, PA) subject
to the deadline constraint WT'(RP, PA) < Tpy on execution
time.

An application program is modeled as a CFG annotated
with profiling and pre-scheduling information. (Later in
Section VI, the graph-theoretical modeling will be imple-
mented as a cross-procedural optimization.) Profiling anno-
tates the CFG with (1) the execution count Cgy(B;) on each
basic block B;, and (2) the transition count Cy-(B;, Bj) on
each edge (B;, Bj). (Please refer to [37], [44] for how the
compiler profiles an application program to obtain the exe-
cution counts.) Local instruction scheduling is performed
multiple times on each basic block B; to obtain the exe-
cution cycles per entrance ETPE(B;, p) for each possible
parallelism p.

1738

The time and energy for normal computation determined
by a solution S = (RP, PA) are estimated as follows. Assign-
ing parallelism p; to a PGR R; determines the cost for normal
computation on R;. The total computational time spent on R;
is estimated from profiling and pre-scheduling information:

WTep(Ri, pi) =) Crx(Bj) * ETPE(B;, py),
Bj€eR;

which is the total cycles to execute all basic blocks B; €
R;. Note that the program execution may go into R; mul-
tiple times and WT,(R;, p;) counts the total cycles for all
entrances. Assigning parallelism p; to execute a PGR R; also
determines the power-gating configuration X (R;, p;), which
is a 0-1 vector, to execute R;. By performing instruction
scheduling with resource allocation, the parallelism assign-
ment determines the required amount of hardware compo-
nents R;(R;, p;) for each hardware type ¢. (For example, for
the PGRF-VLIW architecture [43], performing instruction
scheduling and register allocation over R; with the assigned
parallelism p; determines the amount of of register banks
in local and shared register files as well as the amount of
functional units to execute R;.) According to Section III-A,
the static power (energy per cycle) to execute R; is estimated
from the resource requirements:

Py(R;, pi) = Zesz‘,t * Ri(R;, pi).
t

And the total computational energy contributed by R; can be
estimated from the execution time:

WEC[J(Riv pi) = P (R, pi) * WTcp(Ri’ pi)-

The total computational cost of a solution S = (RP, PA) is
the total cost over all PGRs:

WTop(RP, PA) =)~ WToy(Ri, i),
R;
and
WE(RP, PA) =) WEey(Ri. py),
R;
where WT,,(RP, PA) and WE.,(RP, PA) is the total com-
putational time and energy, respectively, determined by the
solution S = (RP, PA).
During the compiler optimization, the computational costs

per entrance to a PGR are also required. The number of times
the execution goes into a PGR R; is

Ce®R)= Y Y.

Rj#R; (Bi,B1)ER; xR;

Cir (B, By),

which is the total transition count for all edges go into R;.
The computational time and energy per entrance to R; are
estimated as follows.

WTcp(Riapi)

ETPER;, p;) = — 2070
P Crx(R))

WEcp(Ri» Pi)

EEPE(R;, p;) = —2 070
P Crx(Ri)

VOLUME 8, 2020

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

IEEE Access

TABLE 2. Notations for modeling the compiler optimization problem.

Notation | Description
CFG model with annotations
CFG the control flow graph
B, Bj, ... a basic block
e = (B;, Bj) an edge from B; to B; in the CFG
Cir(Bi, Bj) number of transitions from B; to B
Cg.(B;) execution count of B;
ETPE(B;,p) execution time (cycle) per entrance of B; if scheduled with parallelism p
Parallelism scaling solution and basic attributes
S = (RP,PA) a parallelism scaling solution (PS-solution)
PGR power-gating region
RP = {Ro, R1, R2,...} | aregion partitioning solution (RP-solution), where R; is a PGR in CFG
PA={p;} a parallelism assignment solution (PA-solution), where p; is the assigned parallelism to
execute R;
Cir(Ri, Rj) number of times the execution transit from PGR R; to R;
Cgz(R;) number of times the PGR R; is executed
On computational cost
X(Ri,pi) the PG-config (0-1 vector) to execute R; if R; is assigned parallelism p;
Ri(R;,pi) required amount of type ¢ hardware components if R; is assigned parallelism p;
Pst(Ri,pi) the static power (energy per cycle) to execute R; with parallelism p;

WTcp (Rz 5 pi)

the total computational time spent on R; if R; is assigned parallelism p;

W Ecp(Rsi,pi)

the total computational (static) energy spent on R; if R; is assigned parallelism p;

the execution time per entrance to R; if R; is executed with parallelism p;

ETPE(R;,p;)
EEPE(R;,pi)
Di

the execution (computational) energy per entrance to R; if R; is executed with parallelism

WTep(RP, PA)

the total computational time of a solution S = (RP, PA)

W Eep,(RD, PA)

the total computational energy of a solution S = (RP, PA)

On state-transition cost

Tstr the time (cycles) to execute a power-gating instruction

WTstr(RP)

the total state-transition time of the partitioning R P

WEsir(RP,PA)

the total state-transition energy for the solution S = (RP, PA)

On total cost of a PS-solution

Tpr, the deadline constraint on the execution time

WT(RP, PA)

the total execution time of a solution S = (RP, PA)

WE(RP, PA)

the total energy cost of a solution S = (RP, PA)

The state-transition overhead of a solution § = (RP, PA) is
as follows. For two adjacent PGRs R; and R;, the amount of
execution transition from R; to R; is estimated from the total
transition count for all edges going from R; to R;:

CrRiR)= Y

(Br,B))ER; xR;

Cir(Bk, By).

We assume that executing the power-gating instruction once
spends a constant amount of cycles T,. The time spent for
state transition is

WTar(RP) =) Cur(Ri, R)) % Ty
Ri#R;

Note that the state-transition time depends on the par-
titioning RP only and is independent of the parallelism
assignment PA. The solution § = (RP, PA) determines
the PG-config X(R;, p;) and X(R;, p;) for the two PGRs
R; and R;. Section III-A gives the state-transition energy
Egr(X(R;, pi), X(Rj, pj)) for each time the execution goes
from R; to R;. Hence we have the total state-transition
energy: WEq,(RP, PA) = Y- g, Cir(Ri, R)*Egr (X (R, py),
X(R;. py). |

We summarize the optimization problem as follows. As
the input, the application program is modeled as a CFG

VOLUME 8, 2020

with profiling and pre-scheduling information annotated.
The compiler algorithm determines a PS-solution S =
(RP, PA), which consists of the CFG partitioning RP and
parallelism assignment PA. The solution determines the total
time (WT (RP, PA)) and energy (WE(RP, PA)) to execute the
program, which consists of costs from normal computation
and state-transition.

WT (RP, PA) = WT,(RP, PA) + WTy,(RP)
WE(RP, PA) = WE_,(RP, PA) + WE,(RP, PA)

Considering both the computational cost and state-transition
overhead, the optimization problem is to minimize the
energy cost WE(RP, PA) subject to the deadline constraint
WT(RP, PA) < Tpy.

IV. OPTIMIZATION STRATEGY

We now start to devise the parallelism scaling algorithm
for performance-constrained energy optimization. Taking the
deadline constraint, the algorithm seeks for opportunities
to depower hardware exceeding performance demand. The
motivation toward PCEO will be shown in Section IV-A:
program regions differ in the energy efficiency on raising
parallelism to earn speedup and tuning parallelism over
program regions gains energy saving to meet the given

1739

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

PGR R,

=
S -

1
1
1
1
1
1
1
1
RB, |
1
1
1
1
1
1
1

FIGURE 5. Concepts of loop-based program partitioning.

performance demand. However, adapting parallelism for
PCEO encounters new difficulties. The compiler has to con-
sider both computational energy and state transition energy.
But the two concerns conflict one another: while it is easier to
improve resource utilization to save computational energy for
small PGRs, a solution with large PGRs saves state-transition
energy. Moreover, dealing with the two concerns induces an
chicken-egg problem on arranging algorithmic stages. As a
result, we propose multi-pass SRE-ED algorithm for PCEO,
in which the optimization is directed by the two key quantities
state-returning energy (SRE) and energy density (ED). Here
we devise the strategy through introducing the chicken-egg
problem.

We begin from the loop-based program partitioning strat-
egy to address the difficulties for PCEO. Figure 5 illustrates
the two-stage approach for the program partitioning phase:

o Stage 1: PGR-core identification. This stage identi-
fies loops with sufficiently long execution time per
entrance (ETPE) {RBy, RB1, RB>, ...} as PGR cores.

o Stage 2: PGR establishment. This stage expands PGR
cores to form PGRs. In the CFG model (the right-hand
side of Figure 5), an identified PGR core RB; is merged
as an R-node, and ordinary basic blocks in the CFG
are called B-nodes. A PGR R; is a connected subgraph
having exactly one R-node. The optimization problem in
this stage is to minimize the total edge transition count

1740

PGR R,

across PGRs subject to the R-node and connectivity
constraint.

The reason to adopt the loop-based partitioning strategy
comes from the threshold 77, on the time interval between two
power-gating instructions. It is reported that, to gain energy
saving, Ty, =~ 100 in previous works [4], [6]. The most likely
program structures to have ETPE>100 cycles are loops. We
make each PGR having a loop with ETPE > Ty, within
it.

PCEO induces the chicken-egg problem between the
program partitioning and parallelism assignment phase.
A straight forward approach is to have a parallelism assign-
ment phase following the program partitioning phase (as the
third stage). The task of the program partitioning phase is
to control the state-transition overhead (WTy; and WE,) by
having each PGR has sufficiently long ETPE. But the ETPE
of a PGR is determined by the assigned parallelism at a later
stage. The parallelism assignment phase is aimed at control-
ling the computational energy and time (WE,, and WT,,). To
limit the complexity, parallelism assignment is made through
a series of parallelism tuning watching at computational
energy only. However, tuning the parallelism of a PGR R; not
only affects the computational energy of R; but also affects
the state-transition energy to PGRs neighboring to R;. The
parallelism tuning interferes the control of state-transition
energy at the program partitioning phase.

VOLUME 8, 2020

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

IEEE Access

T T
speedup —+—
power

IS
T

A

woow s u e a
T T T T

specduy
power energy 12

! : —
1 L o | 1
— X //
\ 1
\ 1
I Il

5

I I | I I
6 7 8 1 2 3 4
— parallelism

(a) Parallelism scaling behavior on Ry

FIGURE 6. Examples of parallelism tuning strategy.

Facing the chicken-egg problem, we propose the
multi-pass SRE-ED algorithm for PCEO. Each pass of
the algorithm goes through both the program partition-
ing and the parallelism assignment phase to generate a
candidate solution. To balance between computational and
state-transition energy, the final outcome is selected from
multiple candidate solutions differ in granularity of PGRs.
Key issues to realize the idea are (1) parallelism tuning
strategy, (2) devise a quantitative measure to control the
granularity of PGRs, and (3) control the complexity (amount
of passes) of the multi-pass algorithm. To resolve these issues,
we start from examining the parallelism tuning phase at
Section IV-A and then go back to the program partitioning
phase at Section IV-B. The framework of the compiler algo-
rithm for PCEO is given in Section I'V-C.

A. PARALLELISM TUNING BY ENERGY DENSITY
We examine the parallelism assignment phase first. Suppose
a region partitioning RP = {Ro,Ry,...,Ry_1} is given
and fixed. Parallelism assignment over RP is made through
a series of parallelism tuning watching at computational
energy only. Starting from an initial assignment, the algo-
rithm iteratively tunes up or down the parallelism of some
PGR R; to improve energy efficiency. We use part of the
experiment data from MPEG4 encoding as an example to
illustrate the motivation. (Refer to Section VII for the experi-
ment method.) Figure 6(a) and (b) show how the static power
and speedup scales with ILP for two loops (R75 and R71) with
ETPE>100 cycles at the peak-performance mode. (The static
power is normalized with respect to the power dissipation at
ILP = 1.) Both loops have speedup saturated at ILP = § but
differ on the energy efficiency for high-ILP execution. The
loop R75 has poor energy efficiency: the slope of speedup
gradually reduces for ILP>3 and the power scales up faster
than speedup. By contrast, the loop R7; has good energy
efficiency: the speedup scales linearly with constant slope
and grows faster than power. Suppose we have an initial
solution that satisfies the performance constraint by setting
ILP =5 for both loops. In this example, we reduce the ILP
of R75 to 3 to save energy and raise the ILP on R7; to 8 to
compensate for the lost performance. The tuning achieves the
same performance requirement with lower energy cost.

The parallelism tuning works on speed levels. The set of
speed levels of a PGR R; is the set of candidate parallelism

VOLUME 8, 2020

(b) Parallelism scaling behavior of Ry

T T T T T po—
1 gl
1 " 14 '
1 1
1 //// 1 08 P
e 4 -
1 | 061 - ? ?] i
[4] E
1 up 1 04t 0
1 1 ?
: L L :* o2 a speed level
5 6 7 8 ot L L L L L L L
~ parallelism ! 2 3 4 5 ° 7 8
— parallelism
() Speed levels of a PGR
parallelism
s - e
1.61 1.99 \ 0.83
T - - I 000 [-
117 145 ! ln 127
6 ——- --- B - —_———— pA
0.78 099 ! _T
5 = -----'—-0_11—-———-- = =|= === -P4y

0.11

PGRs

Ras Rz Rys Ry Rys Ros

FIGURE 7. Parallelism tuning on item-stack model.

to be decided for R;. Figure 6(c) gives an example. Observing
how the computational energy changes with ILP, speed levels
of a PGR are chosen such that energy cost monotonically
increases with the candidate ILP. In this example, the possi-
bilities to assign ILP = 4 and 5 are excluded since assigning
ILP = 6 is better on both execution time and energy. Speed
levels are built by iteratively selecting the next parallelism
with minimum energy cost, and the speed-level [= 0 is the
parallelism of the minimum energy mode.

The parallelism tuning works on the item-stack model as
illustrated in Figure 7. Each PGR R; has a stack of items
where an item stands for a speed-level of R;. The key attribute
of a speed-level [> 1 is energy density A ED;(l):

Energy(R;, |) — Energy(R;, | — 1)
ExeTime(R;,] — 1) — ExeTime(R;, 1)’

AEDi) =

which is the average energy cost to reduce one unit of exe-
cution time by raising the speed-level of R; from (I — 1)
to l. (Energy(R;, I) and ExeTime(R;, I) are the computational
energy and execution time, respectively, to execute R; with
speed level /.) In Figure 7, we mark the energy density on
each item. A PA-solution PA; is a skyline which cuts through
the stack of R; at the height of the assigned parallelism. Paral-
lelism tuning is to adjust the position where PA; cuts through
a stack. The guideline is to raise parallelism through items
with low energy density and down the parallelism through
items with high energy density. Furthermore, the selection
has to match speed levels and exclude parallelism higher
than speedup-saturation points. In Figure 7, PA; is a solution
obtained by tuning from PAq following the guidelines.

1741

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

™ execution trace

WE,,(RP, PAg) = ¥, D(XUD, X0)

. <)
Y X© Aoy X C— .
.4/_»\ o I b ; . 1SRE(X®,Y)
N /‘ N // ‘o N ,/'
Y 7 *.\:./'o/\:'/»
‘ y o y@

Y y®

D(X.2) < D(X,Y) + D(Y, 2) WE.W(RP, PA,) = X5, DY), Y0)

(a) Triangle inequality (b) Distance viewed in execution traces

FIGURE 8. Geometric view on state-transition energy.

The chicken-egg problem is that the parallelism tuning
may interfere the program partitioning phase on the control
of state-transition energy. The parallelism tuning watches at
computational energy only and may increase state-transition
energy. In the example of Figure 7, the difference on exe-
cution ILP between Rgs and R7; is increased after the tun-
ing. This may increase the state-transition energy if the two
PGRs are adjacent. We derive a scheme to control the gran-
ularity over PGRs to ensure energy saving from parallelism
tuning.

B. PROGRAM PARTITIONING BY STATE-RETURNING
ENERGY

We now go back to the program partitioning phase and focus
on the PGR-core identification stage, which is to control
the granularity of PGRs by detecting loops with sufficiently
long ETPE as PGR cores. Recall that the parallelism tuning
watches at computational energy only and results in estima-
tion error on state-transition energy. To control the granularity
of PGRs, the key issue is to assert an upper-bound over the
error of state-transition energy resulted from the parallelism
tuning. The error upper-bound has to be depending on the
candidate PGR (loop) only. The PGR-core identification cri-
teria is then derived from the error upper-bound to ensure
that the parallelism tuning will not introduce too much state-
transition overhead. We give a short derivation here and
readers can refer to Appendix A for detailed mathematical
proof behind the derivation.

We devise the error upper-bound through the following
topological model over the set of all power-gating configu-
rations. A power-gating configuration X (a 0-1 vector) is a
point in the space and the distance from a point X to another
point Y, denoted D(X, Y), is defined to be the state-transition
energy Eg-(X, Y) to switch the PG-config from X to Y. For
any three points X, Y, Z, the following inequality holds:

DX,Z)<DX,Y)+ DY, Z). (1)

(Refer to Appendix A for the proof.) Figure 8(a) shows the
geometric interpretation of the triangle inequality. A key
quantity is the state-returning energy (SRE) defined as
follows:

SRE(X,Y)=DX,Y)+ D(, X),

which is the energy to switch the PG-config from X to Y and
back to X.

1742

An error upper-bound on state-transition energy resulted
from parallelism tuning is as follows. Figure 8(b) shows the
geometric interpretation. Suppose we have a region parti-
tioning RP which results in the execution trace of PGRs
{R(O), RD R . .}. We have two PA-solutions PAg and
PA1 on the partitioning RP. (One may think that PA; is an
improved solution tuned from PAg.) Solutions PAg and PA;
result in execution traces of PG-configs {X O x» x@ .}
and {Y(O), Yy, Y(z), ...}, respectively. XD and Y9 are two
PG-configs applied to the same PGR RY). The total distance
of an execution trace is the total state-transition energy of the
underlying solution.

WEq(RP, PAp) =) D(XU™D, X%)
J

WEq (RP, PA)) =) DY~V v®)
J

Eq. (1) implies the upper-bound over the difference in state-
transition energy between the two solutions:

|WEy(RP, PAg) — WEg(RP, PA})| <) " SRE(X?, Y1),
J

(@)

Please refer to Appendix A for the detailed proof of Eq. (2).

Eq. (2) leads to the guideline for PGR granularity control:
ensuring that the SRE for each speed level of the PGRs
is small compared to the computational energy. (Refer to
Appendix A for the rationale from the view point of equation
derivations.) The PGR-core identification criteria checks the
state-returning energy for each speed level of a candidate
loop. A loop is marked as a PGR core if the SRE for each
speed level is small compared to its own computational
energy. In later sections, we formalize the concepts to devise
the algorithm to identify loops as PGR cores.

C. MULTI-PASS ALGORITHM FRAMEWORK FOR PCEO

Algorithm 1 shows the framework of the multi-pass SRE-ED
algorithm for performance-constrained energy optimization.
Each pass generates a candidate solution (RP,, PA¢) (cf. Line
2 to 7) and the candidate solution with minimum energy
cost is selected as the final outcome (cf. Line 8). Each pass
goes through three stages. The first stage (Line 3) identifies
a set of PGR cores {RBg, RB1, ..., RBy—_1} as the seed of
the candidate solution (RP., PA¢). This stage controls the
granularity of PGRs with the control variable ¢ € (0, 1),
which is an upper bound on the error ratio of state-transition
energy related to the computational energy. And the error of
state-transition energy is calculated from the state-returning
energy as devised in Section IV-B. Following the model
in Figure 5, the second stage (Line 4) expands PGR cores
to form PGRs covering the whole program. The third stage
(Line 5) assigns parallelism p; to each PGR R;. The par-
allelism assignment works on the item-stack (speed level)
model of Section IV-A. Watching at computational energy

VOLUME 8, 2020

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

IEEE Access

Algorithm 1 Framework of the Multi-Pass SRE-ED Algo-
rithm for Parallelism Scaling
Input: (CFG, Tpr, Ti)
Output: S = (RP, PA)
1: initiate candidate solution set Cs = J;
2: for each possible € do
: identify a set of PGR-cores {RBy, RB1, RB>, ...} with
control parameters (error ratio) (Ty,, €);
4: establish PGRs RP., = {Ry, R, R, ...} from PGR-
cores {RBy, RB1,RB>, .. .};
5: assign parallelism PAc = {p;} over RP to satisfy
deadline Tpy ;
6: Cs < Cs |J{(RP¢, PAc)};
end for
8: select the outcome S = (RP, PA):

>

(RP, PA) = argmin{WE(RP., PA.)|(RP¢, PA¢) € Cs}

only, this stage performs parallelism tuning guided by energy
densities.

The theory of state-returning energy in Section IV-B
enables the control of the PGR granularity and the algo-
rithm complexity. Estimating the SREs of a candidate region
R; asserts the upper bound on the error of state-transition
energy resulted from parallelism tuning. By relating the error
upper-bound to R;’s own computational energy, the PGR
granularity can be indicated by the error ratio €. And € should
be controlled within a limited range (0, 1). Our experiment
shows that only a limited amount of ¢ values have to be
examined to obtain a solution with good energy efficiency.
The concept will be formalized in Section V-A.

We elaborate the framework of Algorithm 1 as follows.
Section V devise the algorithm on theoretical aspects: assum-
ing the whole program is modeled as a (huge) CFG. Besides
realization of SRE-ED strategy, we also make improve-
ments to the PGR establishment stage. The PGR estab-
lishment is a N-way multi-cut problem which is proved to
be NP-complete [45]. Nevertheless, a CFG resulted from a
high-level language program can usually be classified into a
limited set of structure types. We propose a polynomial-time
algorithm to obtain an optimal partitioning when some
well-structuring assumption holds on the CFG. Section VI
deals with practical issues to realize the algorithm, where
a program contains multiple functions. A cross-procedural
optimization algorithm for parallelism scaling is developed.
Back-off heuristics are also proposed to deal with situations
when the idealized assumptions do not hold.

V. THE SRE-ED ALGORITHM: THEORETICAL ASPECTS
Here we devise the SRE-ED algorithm theoretically with
idealized assumptions. Section V-A to V-C elaborate the
3-stage algorithm to establish a solution (RP., PA¢) for a pass.
Section V-D summarizes the development as a multi-pass
algorithm.

VOLUME 8, 2020

A. IDENTIFYING PGR CORES WITH GRANULARITY
CONTROL

We propose two criteria, the item-SRE and region-SRE crite-
ria, to check whether a candidate loop R; is eligible to be a
PGR core or not. Quantities involved in the checking are as
follows:

1) Tep(Ri, Pmax): the ETPE of R; when executed with max-
imum parallelism,

2) AEi(l): the increased computational energy per
entrance when we switch the speed-level from (I — 1)
to [for some [> 1,

3) Eo(R;): the computational energy per entrance of R; at
speed-level O,

4) SRE;(I): the state-returning energy to switch PG-configs
between speed level (I — 1) and [on R;.

Criteria I (Item-SRE Criteria): R; is eligible to form a

PGR if (1) Tep(Ri, Pmax) = T, and (2) % < € for each
speed level [> 1. l o

Criteria 2 (Region-SRE Criteria): R; is eligible to form a
PGR if (1) Tep(Ri, pmax) = Tin, and (2) 3K < € for each
speed level [> 1 o

Granularity control is fully parameterized through two
parameters Ty, and €. Each criteria has two rules. Rule (1)
asserts a lower-bound on ETPE such that the energy saved
by powering off a hardware does not exceed the additional
energy on activation and deactivation. We set Ty, to be
the ratio of activation and deactivation energy to the static
energy per cycle. (Note that we can also enlarge Ty, to
tolerate the state-transition time.) Rule (2) asserts the SRE
to be within a small portion of the computational energy
affected by parallelism tuning. The ratio is controlled by the
parameter € € (0, 1). Our experiments examine the effect
of € € {0.1,0.2,0.3,...,0.9} and select the solution with
minimum energy cost. The criteria are to check whether a
loop has a sufficiently large iteration count such that the
SRE is small compared to the computational energy. The
quantity SRE;(l) is independent of the iteration count. The
quantities Tep(R;, Pmax)s A Ei(D), and Ey(R;) are proportional
to the iteration count. The criteria will be eventually satisfied
if the iteration count exceeds a certain threshold.

Algorithm 2 identifies PGR cores over the loop hierarchy
tree (LHT) built for a CFG, where a node L represents a loop
(a strong component in the CFG) and a child of L represents
an inner loop of L. Algorithm 2 is recursive and examines
each loop from the bottom-up of LHT. At Line 11, one may
decide to apply Criteria 1 or Criteria 2 to check a loop L if no
inner loops of L are marked as PGR cores.

B. PGR COMPOSITION FOR OPTIMAL PARTITIONING

The next stage is to establish PGRs by expanding from
the identified PGR cores. Recall Section IV that we are to
partition a CFG with R-nodes and B-nodes and trying to
find a minimum cut. The N-way minimum cut problem is
NP-complete for an arbitrary graph [45]. Nevertheless, a CFG
resulted from a high-level language program is “‘usually

1743

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

TABLE 3. Definitions of structural components.

Type Definiti Program Construct
N-structure A single-entry region SG is a single-node structure, or N-structure, if SG contains only one B-node a basic block
R-structure A single-entry region SG is a R-node structure, or R-structure, if SG contains only one R-node a loop marked as PGR core

S-structure

A single-entry region SG is a sequential structure, or S-structure, if SG can be decomposed into subgraphs {SGo, SG1, SG2,...SGn_1} such that

(1) Each SG; is a single-entry region and well-structured having the single entry node (head node) H B;,
(2) For each sub-component SG; where 0 < i < N — 2, all out-going edges of SG; goes to HB; 1, and

a compound statement

(3) Each out-going edge of SG n_1 goes out SG.

L-structure
(1) H B is the unique entry and exit node of SG,

(3) The unique entry edge into SGy is (HB, HBy), and
(4) All out-going edges of SGg go to HB.

A single-entry region SG is a loop structure, or L-structure, if SG can be decomposed into head block H B and a subgraph SG such that

(2) The subgraph SG, called the loop body, is a well-structured single-entry region with entry node H By,

a for or while loop

B-structure
{SGo,SG1,SGa, ..., SGn_1} such that
(1) The head node H B is the unique entry node of SG,

A single-entry region SG is a branch structure, or B-structure, if SG can be decomposed into head node HB and a set of subgraphs

(2) Each sub-component SG, called a branch, is a single-entry region which is well-structured and has a unique entry node H B;,
(3) For each sub-component SG/, the unique incoming edge is (H B, H B;) and all out-going edges go out of SG.

an if-then-else or switch-case statement

DW-structure
(1) The tail node T'B is the unique exit node of SG,

(3) The unique entry node H By of SGy is also the unique entry node H B of SG,
(4) All out-going edges of SGq go to TB, and
(5) There is an edge (T B, HBy).

A single-entry region SG is a do-while structure, or DW-structure, if SG can be decomposed into tail node 7'B and a subgraph SG such that

(2) The sub-component SGo, called the loop body, is a well-structured single-entry region,

a do-while statement

Algorithm 2 RMark_CoreLoop

Input: a node L in the LHT
Return: amount of PGR cores identified in the subtree of L

{Recursion into each sub-loop}
Cnt <0
for each sub-loop L; of L do
Cnt < Cnt + RMark_CoreLoop(L;);
end for

{terminate if there are sub-loops marked as PGR-core}
if Cnt > 0 then return Cnt;

h A A o

—
e

{check loop L with the criteria}

. if L satisfies the PGR core criteria then

mark the program region of L as a PGR core;
return 1;

. else

return 0;

. end if

— = = =
AN AW N =

well-structured”. Here we propose a polynomial-time algo-
rithm to obtain the optimal RP-solution for such a
well-structured CFG. Brief description of the PGR com-
position algorithm is given here and the details are at
Appendix B.

A CFG is well structured in the sense that the CFG
can be re-organized as a hierarchy of structural components.
A compiler can partition the CFG into a hierarchy of single-
entry regions, where each region is a subgraph of the CFG
with one entrance block [46]. We further observed that single-
entry regions resulted from a high-level language program
usually fall into a limited set of structure types. A structural
component is a single-entry region that matches one of the
structure-type classification rules in Table 3. Figure 9 shows
the graphical patterns for each structure type. The bottom
levels are structures having only one node: a N-structure

1744

DW-strueture

FIGURE 9. Patterns of structural components.

for a B-node and an R-structure for an R-node (a loop
marked as a PGR core). In an intermediate level, a structural
component SG has a head node HB, the unique entry node,
and a set of sub-components {SGy, SG1, SGa, ...}, where
each SG; is also a single-entry region. The structures are
formed from typical program constructs such as a for loop,
a while loop, a switch-case or an if-then-else statement. The
hierarchy is represented as a structural component tree
(SCT), in which a node is a structural component SG and
a child of SG is one of its sub-components. Figure 10 gives
an example: the program at left-hand side is transformed to
the hierarchy of single-entry regions (by LLVM v2.9 [44]) at
the right-hand side. The for loop forms the L-structure SG1,
which has a head node and a loop body SG3 as a S-structure.
In the loop body SGj3, the if-then-else statement forms the
B-structure SGy.

VOLUME 8, 2020

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

IEEE Access

int main ()

o+

int s, i, A, B;
0;

1000;

2000;

w > n
[]

0; 1i<1000; i++) {

for (1
S S+i;

if (i<800) {

A = A+ (i-1)*i;
}
else {

B =B - i*(i+l);
}

}

return 0;

}

FIGURE 10. Sample code to show structuring hierarchy.

1) BASIC CONCEPTS OF PGR COMPOSITION
Our algorithm builds RP-solutions bottom-up with a SCT.
Consider a structural component SG having sub-components
{SGo, SG1, SGa, .. .}. A solution RP over SG is “composed
from” a set of partial solutions {RPy, RP{, RP», ...}, where
each RP; is a RP-solution over the sub-component SG;. In
the composed solution RP, a PGR R; is either a PGR in
some RP; or built by merging PGRs from multiple partial
solutions. In the latter case, such R; spreads across multiple
sub-components.

An RP-solution RP over a structural component SG is a
partitioning over nodes in SG with two additional pseudo

VOLUME 8, 2020

Region Graph for *main’ function

nodes: PNj; at the start side and PN, at the end side. Each
of PNs and PN, can be assigned to be either R-type or B-
type. Let Rs be the PGR containing PN, and R, be the one
containing PN,. RP is extend-out style (EQ-style) at the start
side if PN; is B-type, which means that R, (rooted at some
R-node in SG) is to be extended out and merge with other
PGR outside SG. RP is extend-in style (EI-style) at the start
side if PN, is R-type and R, has nodes other than PN;. In
this case, a PGR outside SG (rooted at an R-node also outside
SG) is to be extended into SG and merge with nodes in R;.
RP is closed style (C-style) at the start side if PNy is the
unique nodes in R;. Similarly, the end side of RP can also be

1745

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

_ .- B-type pseudo node
at the start side

‘I, - - R-type pseudo node
at the end side

(a) A S-structure SG'

a composed region
across SGy and SGy

R!'=R, \
T __ B-type pseudo node

at start side

~ -~ Betype pseudo node
,7 acendsside

(c) A partial solution RP; on 5G,

(d) A composed RP-solution on SG

FIGURE 11. Example: PGR composition on S-structure.

classified into one of EO/EI/C-style depending on the type of
PN, and R,.

Figure 11 illustrates how PGR composition works. Imag-
ine that a PGR is “grown” from an R-node as the root and
gradually includes B-nodes into the PGR. Figure 11(a) is a
S-structure SG having two sub-components SGp and SGj.
Figure 11(b) shows a partial solution RPy on SGyp, which
is El-type at the end side. Figure 11(c) is a partial solution
RPq over §G1, and is of EO-type on the start side. RPy and
RP are eligible to compose a new solution since the EO/EI
type matches on the contacting side. Figure 11(d) shows the
solution RP over SG, which is composed from RPy and RP;.
The solution RP contains PGRs in RPy and RP;. The two
distinguished PGRs R, and R/ are merged to form a PGR R,
spread across SGo and SG1. R; is connected and has exactly
one R-node RB;.

2) RULE-BASED PGR COMPOSITION ALGORITHM
RP-solutions over a structural component are classified into
12 classes. For a solution RP with Ry # R,, the type code
X — Y denotes that RP is X-style at the start side and Y-
style at its end side, where X and Y are one of the direction
code EO, EI, C. For the example in Figure 11, the partial
solution RPy is EO-EI type and the composed solution RP
is EO-EO type. For RP-solutions that places the two pseudo
nodes in the same PGR R;, = Ry = R,, we make the three
distinct types: (1) DSEO type: RP is double-sided extend-
out if R, contains B-type pseudo nodes on both sides. (2)
FET type: RP is forward extend through type if R,, has
a R-type pseudo node at the start side and a B-type pseudo
node at the end side. (3) BET type: RP is backward extend
through type if Ry, has a B-type pseudo node at the start side
and a R-type pseudo node at the end side.

1746

the PGR to extend out

the PGR to extend in

(b) A partial solution RF, on the loop body SGo

4
the PGR R 4 extended out
S from the loop body G

(¢) The composed solution RP on SG

FIGURE 12. Example: compose a DSEO solution on L-structure.

RP-solutions are built from case-by-case composition
rules. For each structure type and target solution type, a com-
position rule is established to specify how such a RP-solution
is composed from partial solutions. A rule has two parts:
(1) specitying all available type combinations to select partial
solutions from sub-components, and (2) rules to compose
PGRs by merging and keeping PGRs in partial solutions.
There are 4*12 = 48 rules, and the complete rule table is in
Appendix B. Table 4 lists part of the rule table to illustrate
how the composition rules work.

Examples of PGR composition using the rule table are as
follows. Figure 11 is an example of the first case in Table 4:
composing an EO-EO solution on a S-structure with two sub-
components. The example selects partial solutions in the type
combination (EO-EI, EO-EO) listed in the table. Figure 12
shows an example of the second case in Table 4: composing a
DSEO solution on a L-structure SG. A partial solution on the
loop body is eligible to build the target type if it has exactly
one PGR in {R;, R, } for extending out. The type selection rule
enumerates all type combinations satisfying the constraint. In
Figure 12(b), we select a partial solution in EO-EI type. The
DSEO region Ry, is built as follows: Ry, is initially rooted at
R, on the start side of the loop body, extended out to cover
{Bs, PNy, PN,} of the loop, and then extended back into SGy
to cover R.,. This results in the solution in Figure 12(c). PGRs
may be fused after composition. This affects cost estimation
for optimality and distinguished types are made for the case
that R, = R,.

Algorithm 3 shows the framework to compose
RP-solutions. The algorithm is recursive and RP-solutions are
built bottom-up from the SCT. For a structural component SG,
at most 12 RP-solutions are built for SG: one representative

VOLUME 8, 2020

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

IEEE Access

TABLE 4. Example of PGR composition rules.

Case | Structure type

Target solution type

Rule to select partial solutions

Rule to compose the target solution

1 S-structure

EO-EO

Available combination of partial
solutions (RPy, RP1) from sub-
components (SGo, SG1) are
« (EO-EI EO-EO)
(EO-EI, DSEO)
(BET, EO-EO)
(EO-EO, EI-EO)
(EO-EO, FET)
(DSEO, EI-EO)
(EO-C, C-EO)

Build PGRs in RP as follows:
(1) merge R, of RPy with R of RPy
(2) keep remaining PGRs in RPy and RP;

2 L-structure

DSEO

Select partial solution RPy of the

Build PGRs in RP as follows:

following classes:
« DSEO
EO-EI
EO-C
EI-EO
C-EO

loop body SGy from one of the

(1) set Rs = Re = R,|JR. U{HB, BSs,BSc}
(2) keep remaining PGRs in RPy

Algorithm 3 Recursive Algorithm to Compose Representa-
tive RP-Solutions
Input: SG
Output: {RP7(SG)}

1: if SG is a R-structure or a N-structure then

2: compose all representative solutions for SG as

shown in Figure 13;
3: return;

4: else
5: for each sub-component SG; of SG do
6: perform Algorithm 3 to build representative

solutions {RP7(SG;)} for SGj;
7. end for
8: end if
9:
10: for each solution type T do
11: initiate the candidate set Crp < ¥;

12: for each type combination (Ty, 71, ..., T,—1) on
partial solutions for type 7" do
13: if the set of partial solutions {RP7,(SG;)}
exists then
14 compose type-7 solution RP. of SG from
{RPT,(SG)};
15: Crp < CrpU{RP.};
16: end if

17 end for
18: pick the representative solution

RP7(SG) = argmin{Cy; (RP:)|IRP. € Cgp};

19: end for

solution RP7(SG) for each solution type 7. For the bottom
level of SCT, Figure 13 enumerates all solutions on a N- and
R-structure. In an intermediate level, the solution RP7(SG)
is built by composing representative solutions from its sub-
components. The algorithm examines each possible type
combination (Tg, T1, T3, ..., T,—1) of partial solutions for

VOLUME 8, 2020

FET solution EI-C solution

(a) All RP-solutions for a N-structure

DSEO solution

EO-C solution C-EO solution C-C solution

(b) All RP-solutions for a R-structure

FIGURE 13. Representative solutions for single-node structures.

the target type T. The solution RP7,(SG;) is selected if type-
T; partial solution from SG; is needed. A candidate solution
RP, is built if all partial solutions in the set {RP7,(SG;)} are
available. The candidate solution with minimum transition
cost (Cg-(RP,)) is picked as RP7(SG) for the target type. We
prove that the algorithm generates RPr(SG) when the set of
type-T solutions on SG is not empty. Moreover, we prove
that RP7(SG) has minimum transition cost over all type-T
solutions on SG. At the root of this SCT, the representative
C-C solution is selected as the outcome. Appendix B gives
the detailed proof.

C. PARALLELISM ASSIGNMENT

The last stage is to find a PA-solution PA = {p;}. The objec-
tive is to minimize the computational energy WE,(RP, PA)
subject to the deadline constraint WT,(RP, PA) < TbL on
computation time, where TI/)L is calculated from the deadline
Tpr with state-transition time excluded. The time needed
for state-transition is determined by RP and is independent
of the parallelism assignment. Algorithm 4 is the proposed

1747

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

Algorithm 4 GPED Algorithm
Input: (RP = {R;}, T},;)
Output: PA = {p;}
1: {Initialize}
2: Ipg < W and Iypqqy < 0
: (WT,,, WE,) < the total computation time and energy
of assigning all PGRs with speed-level O;
4: for each PGR R; do
5: if I; 1 exists then
6: Iready < Iready U{Ii,l};
7.
8
9

(98]

end if
. end for

10: {Iterative packing to establish Ip4 }

11: while WT, > T}, and Ireqay # ¥ do

12: remove /; ; with minimum N ED(;) from Lpeaqy;
13 Ipa < Ipa Ul j)s

14: WTcp < WTcp — A WT(IZ"]');

15: WEq < WEq, + A\ WE(; j);

16: if Iij+1 exists then

17: Iready <~ Iready U{Ii,j—H};
18: end if

19: end while

20:

21: return solution PA built from Ip4;

heuristic, named greedy packing by energy density (GPED).
Parallelism assignment is treated as an item packing problem
and an item /; j stands for the speed-level j of a PGR R;. Fig-
ure 14 illustrates how the algorithm works on the item-stack
model using the same example on Figure 7. The parallelism
tuning starts from an initial solution PAg, which assigns all
PGRs with speed-level 0. The tuning iteratively packs items
into a set Ip4, which is the set of items below the skyline of
a solution PA. Packing I; j into Ip4 is to raise the parallelism
of R; from speed-level (j — 1) to j. The effect is to reduce
the computation time by A WT'(I;, ;) at the cost of additional
energy /\ WE(I; j). The policy is to select the ready item I; ;
with minimum energy density: A\ ED(I; ;) = ﬁg’;gﬁ’; (An
item [;; is ready if I;j_; is already in Ips.) The procedure
terminates when the performance constraint is satisfied.

D. SUMMARY: THE SRE-ED ALGORITHM

Algorithm 5 finds the parallelism scaling solution, which
is elaborated from the framework at Algorithm 1. Two
approaches, the item-SRE and region-SRE approach, share
the same framework depending on which criteria at
Section V-A is used at Line 3. This is a multi-pass algorithm
and a pass builds a candidate solution S, = (RP., PA¢) from
PGR-cores identified with control parameter (73, €). The
parameter Ty, is fixed to the overhead ratio: Ty, =(activation
plus deactivation energy)/(static energy per cycle). In our
experiments, we set € € {0.10,0.20, 0.30, ..., 0.90}. The
candidate solution with minimum energy is selected as the
outcome.

1748

parallelism

8 ——-- e : -
161 1.99 X \ 0.83
7+ S 009 R e
117 145 Stepy(4 b Vo127
6 ——- e = = EN —— PA
0.78 0.99) . 1
5 4 e e S(e]ir(ﬂ 0.11 [L N
1.45 171 B | 1| 007 | e 2)
4 - - i A
0.29 038 " !
3 -] 216 hi -L
N m oo Step (1)
2 Latloo I 1 - — P4,
) Iy Iy
1 . W
PGRs
RTG R'r’b’ ROG R]’l RUS RU(S

FIGURE 14. Running example of GPED algorithm.

Algorithm 5§ Algorithm to Find a Parallelism Scaling Solu-
tion for PCEO
Input: (CFG, Tpy, Tt,)
Output: S = (RP, PA)
1: initiate candidate solution set Cs = J;
2: for each possible € do
3: perform Algorithm 2 to identify a set of PGR-cores
{RBy, RB1, RB3, ...} with control parameters (T, €);
4: perform Algorithm 3 to establish PGRs
RP, = {Ro,R1, R, ...} from PGR-cores
{RBo, RB1,RB>, ...};
5: perform Algorithm 4 to decide parallelism PA. = {p;}
over RP for deadline Tpy ;
6 Cs < Cs U{(RPc, PAO);
7: end for
8: select the outcome S = (RP, PA):

(RP, PA) = argmin{WE(RP., PA.)|(RP., PA,) € Cs}

VI. PRACTICAL REALIZATION OF SRE-ED ALGORITHM
Two issues must be dealt with to realize Algorithm 5 for
practical use: (1) a back-off heuristic for program parti-
tioning in case that the CFG is not well structured, and
(2) cross-procedural partitioning such that a PGR may spread
across multiple functions. We briefly describe the policies
here and the details are in Appendix C.

A. BACK-OFF HEURISTIC FOR ARBITRARY CFG
STRUCTURES

The back-off heuristic for PGR composition is as follows.
A single-entry region not fitting to any type in Table 3
is marked as an irregular structure (I-structure). The
PGR composition still builds representative RP-solutions
bottom-up with the SCT. RP-solutions over an I-structure is
built by greedy expansion through the edge with maximum
state-transition count.

B. PARALLELISM SCALING AS CROSS-PROCEDURAL
OPTIMIZATION

The second issue is to build cross-procedural program par-
titioning. Modeling the whole program as a CFG is sound

VOLUME 8, 2020

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

IEEE Access

energy region-SRE —+— 11 T T
fem-SRE —— energy region-SRE ——
* L a 4 item-SRE —*—
s Tabkhi 4
09 - 1
09 - q
08 1
08 q
07 F 1
071 q
06 q
06 q
05 q
—x 05
041 q
04 1 e E
03
02 03 04 05 06 07 08 09 1 L1 03 L
03 0.4 05 0.6 07 08 09 1 L1
— execution time —= execution time
(a) bO1-mp4encode (b) b02-mp4decode
o L T T SV B T T
energy region-SRE —+— energy region-SRE ——
item—SRE —*— item—SRE —*—
1+ Tabkhi g s Tabkhi 4
09 F B 09 1
08 B 08 ﬁ 1
07 F B 07 |\ 1
A
06 \ g 06 F A ,
\, 1N
05 - ’\ B 05 N\ 4
AN
04 F ——x B 04 e« i
—
03 I I I I I I I 03 I I I I I I I
03 04 05 0.6 07 08 0.9 1 B 03 0.4 05 0.6 0.7 0.8 0.9 1 11
= execution time — execution time
(¢) b03-mp2encode (d) b04-mp2decode
ener; 1 T T energy 1.1 T T
gy region-SRE —— region-SRE ——
item—SRE —*— item—SRE —*—
1 Tabkhi 4 1k Tabkhi 4
09 4 09 F 4
08 [T B 08 4
07 F 4 07k 4
I
06 \ * 06 g
\
05 \ B 05 L 4
04 \(g 04l _]
——
03 I I I I I I I 03 | I I I I I I
0.3 0.4 05 0.6 0.7 0.8 0.9 1 L1 03 04 05 0.6 07 0.8 09 1 L1
— execution time —* execution time
(e) b05-mp3player () b06-cjpeg
energy 1.1
8y region-SRE —+—
. item—SRE —*—
09 - 1
08 - 1
07 F 1
0.6 1
05 1
04 1 3\&\» B
—
03 I I I I I I I I
02 03 04 05 06 07 08 09 1 L1

— execution time

(2) b07-djpeg

FIGURE 15. Evaluation results with OVR = 100 on the E-T space.

in theory but not realistic in practice. Usually an application
program has multiple functions, and a CFG generated by
the compiler platform (such as LLVM [44]) covers only a
single function. Expanding all functions to build a (huge)
CFG is not realistic. Moreover, there may be small func-
tions with very low ETPE that are not eligible to form
any PGRs, and a PGR may need to spread across multiple
functions.

Cross-procedural program partitioning is realized as fol-
lows. Algorithms 2 and 3 are implemented to work on a

VOLUME 8, 2020

patched CFG covering a single function. The CFG is patched
with function structures (F-structures) to link information
to callees. PS-solutions are obtained by Algorithm 5 with
Lines 3 and 4 work on the call graph. Both the PGR-core iden-
tification and PGR-composition stage examines the call graph
(with strong components merged as a single node) in reverse
topological order. Upon examining a function, Algorithms 2
and 3 work on a CFG with F-structures and the resulting
PGR may spread across multiple functions. The details are
in Appendix C.

1749

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

Exccution-time Ratio from Parallelism Tuning

%%

g

(@ bOl-mpdencode

[——
i 12 Tk =

— base-ILP

(d) b04-

p2decode

T2 3 4 s 6 1% T2 3 4 s 6 1%

(f) b06-cjpeg

— base-ILP

(2) b07-djpeg

FIGURE 16. Ratio of execution time resulted from parallelism tuning.

VIl. EVALUATION

The evaluation on energy efficiency is conducted using the
Denbench benchmark suite [47]. The proposed algorithm
is implemented on the LLVM compiler platform (version
2.9) [44] to obtain PS-solutions. An energy model is estab-
lished through logic synthesis with SAED 28/32 nm [48] cell
library to obtain the static energy over functional units and
register files of the PGRF-VLIW architecture [43]. Here we
present analysis data to draw the major conclusions. More
data for insight analysis can be found in Appendix D.

The evaluation is on an 8-issue PGRF-VLIW architecture,
which contains a shared register file (SRF) connected to all
execution slots; each execution slot has its own local register
file (LRF). The SRF has 16 read ports, 8 write ports, and
8 banks of registers with 4 registers per bank for power gating.
A LRF has 2 read ports, 1 write port, and 4 banks of registers
with 4 registers per bank. (The feasibility in terms of imple-
mentation overhead was justified in [43].) The VLIW archi-
tecture has 8 homogeneous integer execution slots, and 2 of
the execution slots can execute load/store operations. Each
execution slot is an individual power domain. We take an
LLVM-IR operation as a machine operation, which matches
standard RISC instruction set.

Static power is obtained by synthesizing functional units
and register files with the design constraint of 1 GHz clock
frequency. All shared and local register files are implemented
in Verilog for synthesis. We synthesize the ALU, multiplier,

1750

Energy Ratio from Paralelism Tuning. Energy Ratio from Parallelism Tuning

io repion-SRE m== o region—SRE mm=—
ratio et = EY S Hem-SRE = -

T2 3 4 s 6 1%

(b) b02-mpddecode

1 2 3 4 s 6 1 %

(¢) b03-mp2encode (d) b04-mp2decode

Energy Rato from Parallelism Tuning Eovegy Ratio from Puralelism Taning

(e) bOS-mp3player (D) b06-cjpeg

2 3 4+ s 6 1 %

(2) bO7-dipeg

FIGURE 17. Ratio of energy resulted from parallelism tuning.

and divisor from RISC-V Rocket core [49] to obtain parame-
ters of an execution slot. We adopt the design proposed in [6],
in which executing a power-gating instruction costs only
one cycle. We introduce the parameter OVR to indicate the
overhead ratio: the activation and deactivation energy are cal-
culated as the static energy per cycle times OVR. According
to previous works [4], [6], we analyze the energy efficiency
assuming OVR = 100. Various physical design factors may
affect OVR [4] and there are other researchers report OVR
around 10 to 20 [39]. We also evaluate our approach for OVR
ranging from 10 to 1000.
We compare our approaches to two baseline approaches:

o Baseline 1: the traditional VLIW architecture without
power gating, which has a shared register file connected
to all execution slots. Application programs are sched-
uled with fixed ILP = 8.

o Baseline 2: the Tabkhi’s approach to manage power-
gated hardware [36]. A function forms a PGR and a
uniform parallelism is assigned to all PGRs. To the
best of our knowledge, the Tabkhi’s work is the most
relevant state-of-art work on quantitative management
over power-gated hardware resources.

A. ENERGY EFFICIENCY OF SCALING PARALLELISM
Evaluation results are presented as solution series projected
onto the energy-time space (E-T space). Figure 15 shows the

VOLUME 8, 2020

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

IEEE Access

energy 1.1

T T

region-SRE —+—
ftlem=SRE ——

s Tabkhi 1

09 b
08 b
0.7 b
06
05

04 b

03 L L L L L L L L

0.8 0.9 1 1.1

— execution time
(a) bO1-mp4encode

T T
region-SRE —+—
item-SRE —=—
Tabkhi

energy |

s

08

06 [= 4

04 B

02 b

04 05 0.6
— execution time

(c) b03-mp2encode

T T
region-SRE —+—

energy
14 llem-—SRE —*—
Tabkhi

t

08

0.6 [~

02 b

03 0.4

—* execution time
(e) b05-mp3player

energy region-SRE ——
item—SRE —<—
251 Tabkhi b
2 i
15 B
s i
osr M)
.
02 03 04 05 06 07 08 09 1 11
— execution time
(b) b02-mp4decode
energy [r‘eglul‘kSR]‘E —
14 item—SRE —*—
Tabkhi
121 Bl
s 4
08k X B
\
06 R i
T~
04 —— 4
02 q
| I I I I I I
03 0.4 0.5 0.6 0.7 0.8 0.9 1 L1
— execution time
(d) b04-mp2decode
energy fegion-SRE —+—

item-SRE —*— |

0.6 [~ b

04 B

02 b

L L L L L L L
0.4 08 0.9 1

03

— execution time
(f) b06-cjpeg

energy
T 12
s

0.8 -

0.6 -

04 -

02

T T
region-SRE —+—
fiem—SRE —<— |

03

—* execution time

(2) b07-djpeg

FIGURE 18. Solution series on E-T space for OVR = 1000.

results for OVR = 100. A PS-solution § is projected to the
point (WT'(S), WE(S)). Time and energy are normalized:

o | unit of the time is the time to execute the application
with one execution slot without power-gating,

« 1 unit of energy is the total energy to execute the appli-
cation on traditional VLIW architecture without power
gating (Baseline 1).

A solution series is represented by a curve on the E-T
space. The baseline curve “Tabkhi” is the solution series
{81,857, ...,88} where each Sj is resulted from the Base-
line 2 and scheduled with the uniform parallelism k. We
take execution time from the baseline series as a set of

VOLUME 8, 2020

deadline constraints to generate improved solutions from our
algorithms. The curve “‘region-SRE” is the solution series
{81,585, ..., 83} generated by the region-SRE approach,
where the solution S; is generated by setting deadline con-
straint Tp;, = WT(Sx). We call S,’< the solution obtained by
parallelism tuning from the base-ILP k. Similarly, the “item-
SRE” curve is generated by the item-SRE approach with
TprL WT (Sx) for each base-ILP k. Sweeping from
right to left, the curve of a solution series shows how
the energy cost scales up as performance demand rises.
The bottom-right corner stands for the minimum energy
mode and the peak-performance mode is at the top-left
corner.

1751

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

Each of the power-gating approaches has significant
energy saving in peak-performance mode: each curve lies
under the horizontal line of energy = 1, the energy cost
of the non-power-gated approach. Compared to Baseline 1,
our approaches (both region-SRE and item-SRE) save 15%
to 53% of the static energy in the peak-performance mode.
Compared to Baseline 2, our approaches reduce 23% to 32%
of the energy cost in peak-performance mode except for
“b04-mp2encode” and ’b06-cjpeg”. On “b04-mp2encode’
and ”’b06-cjpeg”’, our approaches save 5% and 8% of baseline
energy, respectively.

Overall, our approaches reduce the energy required to meet
performance demand in PCEO mode compared to Baseline 2.
The curves of region-SRE and item-SRE are lower than
“Tabkhi”, except for the two programs ‘“b03-mp2encode’
and “b04-mp2decode”. Figure 16 and 17 shows an alterr}a-
tive view to the results: the ratio of execution time (%)
and energy (gggi;) obtained from parallelism tuning for each
base-ILP k. Our parallelism tuning satisfies the performance
demand for each tuning case: the execution-time ratio is under
1.00 in Figure 16. Figure 17 shows that the energy sav-
ing effect becomes obvious when we raise the performance
demand. For high performance demand with base-ILP>5,
our approaches save 20% to 30% of the energy required
to meet the same performance demand. For most of the
tuning cases, the region-SRE and item-SRE approach have
comparable efficiency. However, “b03-mp2encode” and
“b05-mp3player” shows that the region-SRE approach has
a more stable optimization effect compared to the item-SRE
approach. When performance demand is reduced (for base-
ILP<4), the advantage of our approaches is to reduce the
execution time without increasing energy cost. Observed
from Figure 16, the execution time is significantly lower than
demand when base-ILP is 1 or 2.

The energy saving comes from exploiting the program
behavior on the distribution of workload and energy densities.
Refer to Appendix D for the analysis. The analysis shows
that (1) core loops with sufficiently long ETPE occupies
most of the workload, and (2) such loops have high variance
on speedup-saturation parallelism/power and energy densi-
ties. For applications with such program behaviors, we can
expect energy saving from parallelism scaling if the state-
transition overhead is zero. The SRE-criteria serves as a filter
to filter out core loops by the error ratio €, which relates
the state-transition overhead to the saving on computational
energy. We apply multiple filters (¢ values) to find a bal-
ance point between computational energy and state-transition
overhead. The reduction on total energy indicates that such
balance points do exist.

The evaluation reveals the room to save static energy by
PCEO. Raising the demand from minimum-energy mode
to peak-performance mode produces speedup values rang-
ing from 1.49x to 2.04x. Moreover, 47% to 73% of the
energy cost of peak-performance mode is reduced if we
lower the demand to minimum-energy mode. Executing in

1752

— base-ILP.

" ﬂ ﬂ !‘H VJ_‘ /J_‘]
0 =

7 s

—> base-ILP

FIGURE 19. State-transition energy of region-SRE approach.

peak-performance mode is relatively energy inefficient. In
Figure 15, the curves of the solution series look like the letter
“L”. This means that, when pushing the performance demand
near peak-performance, an exorbitant energy cost is paid just
to gain minuscule saving in execution time. This encourages
the application developer to do solution space exploration for
PCEQO rather than executing in peak-performance mode as in
our previous work [18]. Considering all the evaluation results,
we recommend the developer to do performance-constrained
energy optimization using the region-SRE approach.

B. ADAPTION FOR POWER GATING OVERHEAD

We evaluated the energy efficiency for OVR € {10, 50, 100,
500, 1000} to show that our approach is suitable for vari-
ous circuit technologies that varies on power gating over-
head. High OVR results in difficulty gaining energy savings
through power gating. A search of the literature revealed no
articles that reported OVR greater than 1000 [4], [6], [39],
[40]. Here we present the results for OVR = 1000. The
complete results are in Appendix D.

Figure 18 shows the solution series when OVR =
1000. The region-SRE and item-SRE curves are still
below the “Tabkhi” curve except for the benchmark pro-
gram b03-mp2encode. For several benchmark programs,
the Tabhki approach fails to save energy and has energy cost
greater than 1.00. Curves of our approaches are still below the
horizontal line of energy = 1.00 for most of the benchmark
programs. Figure 19 shows the growth of the state-transition
energy of the region-SRE approach when OVR increased

VOLUME 8, 2020

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

IEEE Access

from 100 to 1000. (The item-SRE results are in Appendix D.)
Our PGR-core identification criteria is still effective to adapt
the PGR granularity for the state-transition overhead except
for the program b03-mp2encode. For b03-mp2encode, our
approach fails to find a balance point between computational
energy and state-transition overhead. The success of paral-
lelism scaling relies on the PGR granularity control to balance
between computational energy and state-transition overhead.

VIIl. CONCLUSION AND FUTURE WORK

This paper proposes the parallelism scaling approach to
improve energy efficiency through power gating. The com-
piler algorithm attempts to depower hardware exceeding per-
formance requirements and improve the efficiency to trade
speedup with energy cost. The development establishes the
mathematical programming theory as a general framework
for parallelism control:

1) We developed a fully parameterized PGR granu-
larity control scheme such that the program par-
titioning can adapt for power gating overhead.
With the PGR-granularity control scheme, the
multi-pass algorithm finds a balance between com-
putational energy and state-transition overhead for
performance-constrained energy optimization.

2) We proposed the PGR composition algorithm to obtain
the optimal program partitioning in polynomial time.
The N-way multi-cut problem is NP-complete for arbi-
trary graphs but partitioning the CFG of a high-level
language program is not so hard. The optimal partition-
ing can be obtained from rule-based composition since
there are only limited set of structure types.

3) We proposed a model and a heuristic to decide
execution parallelism for performance-constrained
energy optimization. Success of the parallelism tun-
ing relies on the PGR granularity control to limit the
state-transition overhead.

Evaluation over a VLIW-style architecture shows 20%
to 30% energy saving to meet performance demand com-
pared to the state-of-art approach [36]. Our approach also
has significant energy saving at the peak-performance mode.
Compared to the previous parallelism control scheme [18] at
peak-performance mode, the evaluation reveals a significant
room to save energy through parallelism control with per-
formance demand. We recommend developers to do solution
space exploration to find a sweet spot between performance
and energy cost.

The proposed parallelism scaling algorithm may be
improved from several aspects. The multi-pass algorithm to
find a parallelism scaling solution is of high complexity.
A future research direction is to seek for low-complexity
algorithm that gets satisfactory energy efficiency. On the
other aspects, how parallel instructions are exploited may
also affect the efficiency of parallelism scaling. Experiment-
ing the parallelism scaling framework with more instruction
scheduling approaches, such as software pipelining on loops,
is another future work.

VOLUME 8, 2020

The major future work is to experiment the theory with
other styles of accelerators having parallel hardware. Unlike
programming a general purpose CPU, programming an accel-
erator needs extensive works on profiling and instrumentation
to direct how a program is offloaded and realized [22]. The
parallelism scaling is a general framework to do solution
space space exploration for accelerator programming. The
theory can be applied to other styles of power-gated parallel
hardware as long as the execution parallelism determines the
speed and power consumption. We recommend to redesign
the microarchitecture (as in the case of [43]) such that most
of the processor’s power is affected by parallelism control.
Recently, several VLIW processors are enhanced with vector
or SIMD instructions to support data-level parallelism (DLP)
[7], [14]-[17]. The VLIW architecture with DLP support has
more parallel hardware and is our next target to experiment
the parallelism scaling theory. There are also other architec-
tures having parallel hardware, such as GPUs or multi-core
processors. These parallel architectures are also potential
applications of the parallelism scaling theory.

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and
A.R. LeBlanc, “Design of ion-implanted MOSFET’s with very small
physical dimensions,” IEEE J. Solid-State Circuits, vol. SSC-9, no. 5,
pp. 256-268, Oct. 1974.

[2] M. T. Bohr and I. A. Young, “CMOS scaling trends and beyond,” IEEE
Micro, vol. 37, no. 6, pp. 20-29, Nov. 2017.

[3] H.Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,

“Power limitations and dark silicon challenge the future of multicore,”

ACM Trans. Comput. Syst., vol. 30, no. 3, Aug. 2012, Art. no. 11.

Y. Shin, J. Seomun, K.-M. Choi, and T. Sakurai, “Power gating: Cir-

cuits, design methodologies, and best practice for standard-cell VLSI

designs,” ACM Trans. Des. Autom. Electron. Syst., vol. 15, no. 4, pp. 1-37,

Sep. 2010.

M. Keating, Low Power Methodology Manual for System-on-Chip Design.

New York, NY, USA: Springer, 2007.

[6] S.Roy, N. Ranganathan, and S. Katkoori, “A framework for power—gating
functional units in embedded microprocessors,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 17, no. 11, pp. 1640-1649, Nov. 2009.

[7] J.L.Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 6th ed. San Mateo, CA, USA: Morgan Kaufmann, 2018.

[8] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and

J. Mars, “The architectural implications of autonomous driving: Con-

straints and acceleration,” in Proc. 23rd Int. Conf. Architectural Support

Program. Lang. Operating Syst. (ASPLOS). ACM: New York, NY, USA,

2018, pp. 751-766.

Freescale Semiconductor, Tuning C Code for StarCore-Based Digital Sig-

nal Processors, document AN3357, 2008.

[10] Getting Started With Blackfin Processors, Analog Devices, Norwood, MA,
USA, 2010.

[11] Tms320c6455 Fixed-Point Digital Signal Processor, Texas Instruments,
Dallas, TX, USA, 2005.

[12] Highly Integrated Programmable System-On-Chip, Philips, Amsterdam,
The Netherlands, 2011.

[13] St Nomadik, “St Nomadik multimedia processor,” STMicroelectronics,
Geneva, Switzerland, Tech. Rep., 2011.

[14] AnandTech, “The qualcomm snapdragon 855 pre-dive: Going into detail
on 2019’s flagship Android SoC,” Future Plc, London, U.K., Tech. Rep.,
2018.

[15] CEVA-XM6, CEVA, Baar, Switzerland, 2018.

[16] The Cadence Tensilica Vision DSP, Cadence Des. Syst., San Jose, CA,
USA, 2019.

[17] B. Barry, C. Brick, F. Connor, D. Donohoe, D. Moloney, R. Richmond,
M. O’riordan, and V. Toma, ‘“Always-on vision processing unit
for mobile applications,” [EEE Micro, vol. 35, no. 2, pp. 56-66,
Mar. 2015.

[4

=

[5

—

9

—

1753

IEEE Access

Y.-C. Ma: Compiler-Directed Parallelism Scaling Framework for PCEO

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

1754

Y. Tong, W. Zhang, Y.-C. Ma, Y. Liu, Y. Liang, T. Zhang, and H. Luo,
“Compiler—guided parallelism adaption based on application partition for
power—gated ILP processor,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 25, no. 4, pp. 1329-1341, Apr. 2017.

International Technology Roadmap for Semiconductors, “Industry tech-
nology roadmap for semiconductors,” Tech. Rep., 2010.

M. B. Taylor, “A landscape of the new dark silicon design regime,” IEEE
Micro, vol. 33, no. 5, pp. 8-19, Sep. 2013.

N. S. Kim, D. Chen, J. Xiong, and W.-M.-W. Hwu, “Heterogeneous
computing meets near—-memory acceleration and high—level synthesis in
the post-Moore era,” IEEE Micro, vol. 37, no. 4, pp. 10-18, Aug. 2017.
J. M. P. Cardoso, J. G. FE. Coutinho, and P. C. Diniz, Embedded Com-
puting for High Performance: Efficient Mapping of Computations Using
Customization, Code Transformations, and Compilation. San Mateo, CA,
USA: Morgan Kaufmann, 2017.

J. Ragan-Kelley, A. Adams, D. Sharlet, C. Barnes, S. Paris, M. Levoy,
S. Amarasinghe, and F. Durand, “Halide: Decoupling algorithms from
schedules for high-performance image processing,” Commun. ACM,
vol. 61, no. 1, pp. 106-115, Dec. 2017.

J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A
VLIW Approach to Architecture, Compilers, and Tools. Amsterdam,
The Netherlands: Elsevier, 2005.

H. S. Kim, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “Adapting
instruction level parallelism for optimizing leakage in VLIW architec-
tures,” in Proc. ACM SIGPLAN Conf. Lang., Compiler, Tool Embedded
Syst. New York, NY, USA: ACM, 2003, pp. 275-283.

Y.-P. You, C. Lee, and J. K. Lee, “Compilers for leakage power reduction,”
ACM Trans. Des. Autom. Electron. Syst., vol. 11, no. 1, pp. 147-164,
Jan. 2006.

Y.-P. You, C.-W. Huang, and J. K. Lee, “Compilation for compact power-
gating controls,” ACM Trans. Des. Autom. Electron. Syst., vol. 12, no. 4,
Sep. 2007, Art. no. 51.

M. Wang, Y. Wang, D. Liu, Z. Qin, and Z. Shao, “Compiler-assisted
leakage-aware loop scheduling for embedded VLIW DSP processors,”
J. Syst. Softw., vol. 83, no. 5, pp. 772-785, May 2010.

M. Abdel-Majeed, D. Wong, and M. Annavaram, ‘“Warped gates: Gat-
ing aware scheduling and power gating for GPGPUs,” in Proc. 46th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2013,
pp. 111-122.

R. Kumar, A. Martinez, and A. Gonzilez, “Efficient power gating of SIMD
accelerators through dynamic selective devectorization in an HW/SW
codesigned environment,” ACM Trans. Archit. Code Optim., vol. 11,
Oct. 2014, Art. no. 25.

H. Aghilinasab, M. Sadrosadati, M. H. Samavatian, and H. Sarbazi-Azad,
“Reducing power consumption of GPGPUs through instruction reorder-
ing,” in Proc. Int. Symp. Low Power Electron. Design (ISLPED) New York,
NY, USA: ACM, 2016, pp. 356-361.

H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori, ‘“Enabling
effective module—oblivious power gating for embedded processors,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,
pp. 157-168.

L. Chen and T. M. Pinkston, “NoRD: Node—router decoupling for effective
power-gating of on—chip routers,” in Proc. 45th Annu. IEEE/ACM Int.
Symp. Microarchitecture, Dec. 2012, pp. 270-281.

D. Atienza, P. Raghavan, J. L. Ayala, G. D. Micheli, F. Catthoor, D. Verkest,
and M. Lépez-Vallejo, “Joint hardware—software leakage minimization
approach for the register file of VLIW embedded architectures,” Integra-
tion, vol. 41, no. 1, pp. 38-48, 2008.

S. Roy, N. Ranganathan, and S. Katkoori, “State-retentive power gating
of register files in multicore processors featuring multithreaded in—order
cores,” IEEE Trans. Comput., vol. 60, no. 11, pp. 1547-1560, Nov. 2011.
H. Tabkhi and G. Schirner, “Application—guided power gating reducing
register file static power,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 22, no. 12, pp. 2513-2526, Dec. 2014.

(37]

(38]

(391

[40]

(41]

[42]

[43]

(44]

(45]

[46]

[47]
(48]

[49]

J. S. P. Giraldo, A. L. Sartor, L. Carro, S. Wong, and A. C. S. Beck,
“Evaluation of energy savings on a VLIW processor through dynamic
issue-width adaptation,” in Proc. Int. Symp. Rapid Syst. Prototyping (RSP),
Oct. 2015, pp. 11-17.

J. S. P. Giraldo, L. Carro, S. Wong, and A. C. S. Beck, “Leveraging
compiler support on VLIW processors for efficient power gating,” in Proc.
IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2016, pp. 502-507.
M. Abdel-Majeed, D. Wong, J. Kuang, and M. Annavaram, “Origami:
Folding warps for energy efficient GPUS,” in Proc. Int. Conf. Supercom-
put. (ICS) New York, NY, USA: ACM, 2016, Art. no. 41.

K. Deyv, S. Reda, I. Paul, W. Huang, and W. Burleson, ‘“Workload—aware
power gating design and run—time management for massively parallel
GPGPUSs,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2016, pp. 242-247.

H. Wang, L.-S. Peh, and S. Malik, “A technology-aware and energy-
oriented topology exploration for on-chip networks,” in Proc. Conf.
Design, Autom. Test Eur. (DATE). Washington, DC, USA: IEEE Computer
Society, Apr. 2005, pp. 1238-1243.

N. Magen, A. Kolodny, U. Weiser, and N. Shamir, ‘“‘Interconnect-power
dissipation in a microprocessor,” in Proc. Int. Workshop Syst. Level Inter-
connect Predict. (SLIP) New York, NY, USA: ACM, 2004, pp. 7-13.

Z. Liang, W. Zhang, and Y.-C. Ma, “Deadline—constrained clustered
scheduling for VLIW architectures using power—gated register files,” ACM
Trans. Archit. Code Optim., vol. 11, no. 2, pp. 1-26, Jul. 2014.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp. Code Gener.
Optim., Feedback-Directed Runtime Optim. (CGO). Washington, DC,
USA: IEEE Computer Society, 2004, p. 75.

D. P. Williamson and D. B. Shmosys, The Design Approximation Algo-
rithms. Cambridge, U.K.: Cambridge Univ. Press, 2011.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, 2/e. Reading, MA, USA: Addison-Wesley, 2007.
Denbench: An EEMBC Benchmark, EEMBC, Hillsboro, OR, USA, 2018.
Teaching Resources for IC Design, Synopsys, Mountain View, CA, USA,
2019.

RISC-V Cores, RISC-V Found., 2019.

YUNG-CHENG MA received the B.S. and Ph.D.
degrees in computer science and information engi-
neering from National Chiao-Tung University,
Hsinchu, Taiwan, in 1994 and 2002, respectively.
He was a Hardware Engineer with the Computers
and Communication Laboratory, Industry Tech-
nology Research Institute, Hsinchu, where he led
a group to develop embedded VLIW DSP pro-
cessors. In 2008, he joined Chang-Gung Univer-
sity, Taoyuan, Taiwan, where he is currently an

Assistant Professor with the Department of Computer Science and Informa-
tion Engineering. His current research interests include computer architec-

ture,

parallel and distributed systems, energy efficient systems design, and

domain-specific architectures.

VOLUME 8, 2020

