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ABSTRACT The accurate kernel estimation is key to the blind motion deblurring. Many previous methods
depend on the image regularization to recover strong edges in the observed image for kernel estimation.
However, the estimated kernel will be degraded when recovered strong edges are less accurate, especially
in images full of small-scale edges. Different from previous methods, we focus on the kernel regularization.
Inspired by the fact that the blur kernel is highly related to the continuous cameramotion trajectory during the
image capturing, we propose to encourage the continuity of the kernel through a kernel prior. The proposed
prior measures the continuity of each element in the kernel and generates a continuity map. By encouraging
the sparsity of the map using L0 norm, discontinuous kernel elements are suppressed. Since the model with
the proposed prior is non-convex and non-linear, an approximation method is proposed to minimize the
cost function efficiently. Numerous experimental results show that our method outperforms state-of-the-art
methods on both the normal and challenging cases. Moreover, the proposed prior is able to further improve
the performance of existing MAP-based methods.

INDEX TERMS Image deblurring, robust blur Kernel estimation, small-scale edges, Kernel continuity.

I. INTRODUCTION
Motion blur is an image degradation caused by the motion
between the camera and the scene during the exposure. Blind
deblurring aims to recover the latent image and the blur kernel
based on the observed blurred image, which is ill-posed.
Consequently, extra information is required to alleviate this
ill-posed problem. The maximum a posterior (MAP) frame-
work [1]–[5] is commonly used in conventional deblurring
methods. This framework introduces extra information by the
way of priors:

min
x,k
‖y− k ∗ x‖22 + λφ(x)+ ρ(k) (1)

where y, x and k denote the blurred image, the latent sharp
image and the blur kernel, respectively. ‖y − k ∗ x‖22 is
the likelihood term that enforces the similarity between the
blurred image y and the latent image degradation k ∗ x. φ(x)
is the image prior and ρ(k) is the blur kernel prior.
Previousmethods seek help from image statistics for image

priors φ(x), such as the mixture of Gaussian [6], the nor-
malized sparsity [7], the L0 sparse representation [2] and the
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Hyper-Laplacian [8]. Their success relies on the recovery of
strong edges during optimization [9], [10], since strong edges
provide most of the accurate blur information. In addition
to image priors, heuristical image filters are also effectively
used for recovering strong edges [11]–[13]. Meanwhile,
Xu et al. [1] figure out strong edges are not always good
for kernel estimation because some strong but small-scale
edges may introduce ambiguities. Moreover, the image prior
φ(x) can only affect the kernel accuracy indirectly by the
likelihood term.

On the other hand, the accurate description of the kernel
prior is more direct and important [5], [21], [22]. In the view
of that the motion blur kernel is generated by the continu-
ous camera shake trajectory during the exposure, the kernel
highly resembles the connected and continuous trajectory.
Therefore, the continuity is a very important property of
the kernel. To encourage the continuity, the most popular
kernel priors focus on the kernel gradient domain ∇k, such
as ‖∇k‖22 [15], ‖∇k‖0.5 [17] and the new spatial term [16].
The model is easily optimized with the gradient term, but
it emphasizes more on the local smoothness rather than the
connectivity of the support area which is the key property of
the continuity. Other methods use the post-processing step to
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TABLE 1. Different methods to constrain the kernel estimation.

enforce the kernel continuity, i.e.the adaptive threshold [1]
and the noise pruning [3], [4]. But these two-step methods
lack of a unified cost function, leading to the difficulties
on the convergency and the global optimization. Therefore,
a unified model with a proper continuity preservation is
required in the kernel estimation problem.

Inspired by this, we propose a new continuity mea-
surement for the kernel prior in a unified model. First,
we define the continuity on each element within a win-
dow to form a map. Second, by enforcing the map to
be sparse using the L0 norm, less connected elements,
e.g.isolated noise, are penalized. Thus the problem of
the encouraging the kernel continuity becomes the prob-
lem of encouraging the map sparsity. Finally a unified
model with the kernel continuity prior is proposed. As the
kernel prior is non-linear and non-convex, an approxi-
mate solver is proposed to optimize the unified model
efficiently.

The contributions of the paper are summarized as follows:
• We are the first to propose a kernel prior that measures
the continuity of each element in a window and pre-
serves the kernel continuity by encouraging the sparsity
in a unified model.

• An approximate solver is proposed to minimize the
non-convex and non-linear cost function and achieves
fast convergence.

• Solid experimental results on large datasets and chal-
lenging cases show our method outperforms previous
methods in both accuracy and efficiency. Moreover,
the proposed prior can further improve the performance
of the state-of-the-art method.

The rest of the paper is organized as follows: Section II
reviews the related work. Section III describes the proposed
continuity kernel prior. In section IV, the unified model and
the optimization are presented. Section V analyzes the effec-
tiveness of the proposed kernel prior. Section VI shows the
experimental results. In sectionVII, we draw the conclusion
of our method.

II. RELATED WORK
Recent years have witnessed the fast development of the
kernel estimation in the blind image deblurring. We review
the related work in three aspects: the image priors, the kernel
priors and the post-processing methods.

A. IMAGE PRIORS
Most previous methods focus on the image priors [1]–[5],
[7], [8], [11], [16], [23]–[29]. The success of these methods
relies on the recovery of strong edges for the kernel estima-
tion. However, strong edges do not always benefit the kernel
estimation, for example, strong but small-scale edges even
introduce ambiguities [1]. Here small-scale edges indicate the
closely adjacent strong edges whose gap is smaller than the
kernel size. Under the blur degradation, the high frequency
details are easily confused. Xu et al. [1] point out that the gra-
dient magnitude of the small-scale edge in the blurred image
is much lower than the original sharp one, making it hard to
recover the original sharp edges. They propose a criterion to
select larger-scale edges in the image for kernel estimation to
avoid the negative effect of small-scale edges. The criterion
is effective and also used by method [16]. However, these
edge selection methods are based on the assumption that
large-scale edges are available in the blurred image, which
may be violated in some cases. Moreover, the image prior can
only affect the kernel accuracy indirectly by the likelihood
term.

B. KERNEL PRIORS
Other methods study the characteristics of the blur ker-
nel and constrain the estimated kernel using priors,
as shown in Table 1. Among them, L2 norm [2]–[4], [20],
L0 norm [14], [15], L1 norm [7], [18], L0.5 norm [19] and
L0.9 norm [17] are widely used as blur kernel priors p(k).
However, most of them do not take the kernel continuity into
consideration. To encourage the continuity, some researchers
propose priors with kernel gradients. Reference [17] proposes
a prior that combines the kernel intensity and gradient:
‖k‖0.9 + ‖∇k‖0.5. Similarly, [15] proposes another combi-
nation: ‖k‖0 + ‖∇k‖22. Reference [16] borrows the idea of
L0 image smoothing method [30] to constrain the continuity
in kernel gradient domain. The idea of restricting the kernel
gradient has a weakness that it emphasize more on the local
smoothness rather than the kernel continuity.

C. KERNEL POST-PROCESSING METHODS
In addition to the kernel prior, post-processing methods [3],
[4], [31], [32] are also widely used to refine the estimated
kernel, as shown in Table 1. A threshold is the simplest way to
denoise the kernel after the kernel estimation. However, it is
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not efficient to remove noise that has higher intensity than
the main trajectory. Some methods also remove noise using
space consistency [31] or spareness evaluation [32], but these
methods are for certain cases. [3], [4] use the noise pruning
method to preserve and remove small non-zero regions after
the kernel estimation. However, when those regions are con-
nected to the main trajectory of the kernel, they can not be
identified and removed by the noise pruning method. In a
word, the post-process method can only refine the kernel,
but the accuracy of the kernel mainly depends on the kernel
estimation performance. Moreover, these two-step methods
lack of a unified cost function, leading to the difficulties on
the convergence and the global optimization.

In this paper, we propose a new kernel prior to preserve
the kernel continuity. Different from the previous priors
that preserve the kernel continuity in the gradient domain,
we define the continuity of each element within a window
and form a continuity map. By encouraging the map to be
sparse, in a unified model, the unconnected kernel elements
are suppressed.

III. THE KERNEL CONTINUITY PRIOR
In this section, we give details of the kernel continuity prior.
A blur kernel k ∈ Rf×f describes the motion trajectory of
a camera during the exposure time, in which non-zero ele-
ments denote positions that the camera goes through. Usually,
the kernel element with higher intensity denotes a longer
integration at the corresponding position. In a continuous
period of exposure time, the camera trajectory is continuous.
Consequently, non-zero elements of the kernel should be con-
nected, which form the main structure related to the camera
trajectory, as shown in Figure 1 (a). Therefore, we get two
requirements of a possible kernel trajectory element:
• The element intensity should be relatively high, indicat-
ing the photon integration during the exposure.

• The element should have connected neighbors with sim-
ilar or higher intensities.

FIGURE 1. The kernel continuity map generation steps. (a): a ground truth
kernel in Levin dataset [33]. (b): the kernel with noise. (c): measuring the
continuity of each kernel element by counting elements that meet the
two requirements presented in Section III. (d): the final continuity map in
pseudo color, in which the more red color denotes the higher value.

Considering the above requirements, we measure the pos-
sibility of each kernel element and form a kernel continuity
map.

First, we judgewhether the intensity of each kernel element
is high enough using a global threshold Tg. We set Tg =
a · kmax , where 0 < a < 1 and kmax is the highest intensity
of the kernel k. If the intensity of the current element is

Algorithm 1 The Kernel Continuity Map Generation

1: Input: the blur kernel k ∈ Rf×f , the global threshold Tg,
the local threshold Tl , the window size r

2: Output: continuity mapM (k)
3: Initialize: the mapM
4: for h = 1:f do
5: for v = 1:f do
6: if k(h, v)>Tg then
7: select the r × r patch centering at (h, v).
8: counting the number n of elements that are
9: larger than Tl in the patch.
10: M (h, v) = n
11: end if
12: end for
13: end for

higher than Tg, the element meets the first requirement. Here,
a lower Tg is necessary for involving all the possible trajectory
elements for evaluation. As a result, we set a = 0.05 which
is used as an empirical threshold for removing smaller values
in an estimated kernel in previous methods [3]–[5].

Second, we use a sliding window whose size is r × r to
extract connected neighbors of each kernel element. A thresh-
old Tl = b · kc is used to evaluate all the neighbors in the
window, where 0 < b < 1 and kc is the intensity of the
center element in the window. Only neighbors with higher
intensities than Tl will be counted. The value of Tl directly
affects the continuity measurement of the kernel element,
a relatively higher Tl is necessary to leave out noise elements.
So we set b = 0.1. The window size is set as r = 3 to ensure
all the elements in the window are next to the center element.
We denote the number n of satisfying elements within the
window of each kernel element as the continuity metric.
Larger nmeans themore connected neighbours and the higher
possibility of the element belonging to the trajectory. In this
way, we judge whether each kernel element meets the second
requirement.

After all the elements of the kernel is measured, a map
M (k) ∈ Rf×f will be formed. The steps of themap generation
are shown in Figure 1 (c)-(d) and the detailed implementa-
tion is shown in Algorithm 1. Figure 1 (b) shows a kernel
with noise. Noise is inevitable during the optimization and
it degrades the continuity of the kernel. In the proposed
continuity map in (d), kernel noise is imposed with lower
values, even though the noise has higher intensity. It is the
main difference from threshold-based methods.

Figure 2 shows comparisons between the intensity maps
and the continuity maps of kernels with and without noise.
Obviously, all noise elements with higher or lower intensities
are imposed with lower values in the continuity map. Thus,
using the continuity map, we can easily distinguish noise.

To encourage the kernel continuity during the optimiza-
tion, we encourage the continuity map to be sparse using
L0 norm. The proposed kernel prior is ‖M (k)‖0. However,
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FIGURE 2. Comparison between kernel continuity map and intensity map.
First row: real kernels and corresponding kernels with manually added
noise. Second row: corresponding intensity maps in pseudo color. Third
row: corresponding continuity maps in pseudo color. This figure shows
the main trajectories are more separable from noise in the continuity
maps than that in the intensity maps.

the non-convex and non-linear of the prior makes it hard to
optimize a cost function with the prior. Next section will give
detailed solver of it.

IV. FRAMEWORK AND OPTIMIZATION
In this section, the details of the kernel estimation framework
is presented and we also give the approximate solver of the
non-convex and non-linear cost function.

As mentioned in Section III, we use the L0 norm to encour-
age the sparsity of the continuitymapM (k). The cost function
with the proposed prior is:

min
x,k
‖y− k ∗ x‖22 + λφ(x)+ γ ‖k‖2 + α‖M (k)‖0 (2)

where λ, γ and α are the weights to balance the terms.
To minimize (2), we alternatively update the blur kernel k
while fixing x:

min
k
‖y− k ∗ x‖22 + γ ‖k‖2 + α‖M (k)‖0 (3)

and the image x while fixing k:

min
x
‖y− k ∗ x‖22 + λφ(x) (4)

During the alternative optimization, the updated x and the
updated k in each iteration are denoted as intermediate image
and intermediate kernel, respectively. The flowchart of our
framework is presented in Figure 3. After the output kernel
is estimated, the final deblurred image is obtained by the
deconvolution of the input image with the output kernel.

A. ESTIMATING THE INTERMEDIATE BLUR KERNEL
Estimating k using (3) is not easy due to the combination
of the non-linear function M (·) and the non-convex function
L0. We use the half quadratic splitting [1] to solve the L0

Algorithm 2 Kernel Estimation
1: Input:blurred image y, latent image x
2: Initilize: initial kernel kprev
3: Output: estimated kernel k
4: MTu = kprev
5: for j = 1:nk do
6: solve for k by Equation (9)
7: solve for u by Equation (8)
8: β = β × 2
9: end for

regularized term by introducing an auxiliary variables u with
respect toM (k). We rewrite the cost function as:

min
k
‖y− k ∗ x‖22 + γ ‖k‖2 + β‖M (k)− u‖2 + α‖u‖0 (5)

where β is the penalty parameter. According to [1], when
β is close to infinity, the solution of (5) is close to the
solution of (3). Similar to [1]–[3], we update the value of β
by β = β × 2 in each iteration as shown in Algorithm 2.
We minimize (5) by alternatively solving the following two
sub-problems: estimating k while fixing u

min
k
‖y− k ∗ x‖22 + γ ‖k‖2 + β‖M (k)− u‖2 (6)

and estimating u while fixing k

min
u
β‖M (k)− u‖2 + α‖u‖0 (7)

The details of the intermediate kernel estimation sub-model is
shown in Algorithm 2. Solving (7) is relatively easy, because
when k is fixed we can directly computeM (k), and then esti-
mating u becomes an element-wise minimization problem [1]
that can be solved as:

u =

{
M (k), |M (k)|2 ≥ α

β

0, otherwise
(8)

The detailed implementation is shown in Figure 4. First,
we transfer a noisy kernel to a continuity map u using M (·).
Second, we use (8) to update u, consequently, noise is iden-
tified in the map u. Third, we transfer u back to a blur kernel
k = MT(u) by setting noise to be zero in k.

Equation (6) is a standard quadratic function that can be
solved using FFT method [3]:

k = F−1
(
F̄(x) · F(y)+ βF(MTu)

F̄(x) · F(x)+ α + β

)
(9)

where F̄(x) is the conjugate of F(x).

B. ESTIMATING THE INTERMEDIATE IMAGE
Given k, we estimate x by minimizing (4). The chosen of
the image prior φ(x) heavily affects the performance of
the intermediate image estimation. Previous methods have
used the image gradient prior by representing the image
gradient distribution using L0 norm [2], L0.8 norm [5], L1
norm, L1/L2 norm [7] and also image intensity prior with L0
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FIGURE 3. Our framework. Estimating a blur kernel includes two parts: the intermediate image estimation and the intermediate kernel
estimation. The two parts are implemented alternatively. The output deblurred image is the deconvolution of the output kernel and the
input image.

FIGURE 4. Steps to encourage the sparsity of the continuity map u. Step
1: transfer the kernel to the continuity map. Step 2: update u in
Equation 8. Step 3: transfer the continuity map back to the kernel.

norm [3]. With rapid progress of the deep neural networks,
some methods [24], [34] replace the above handcrafted priors
with data-driven priors that are learnt from collected training
datasets using neural networks. Data-driven priors do not
make assumptions of the distribution of the latent image as
what handcrafted priors do. But training dataset may intro-
duce bias to the data-driven prior.

For simplicity and efficiency, we choose φ(x) =

‖∇x‖0 [2], [3], [4] for our framework. The cost function of
the intermediate image is:

min
x
‖y− k ∗ x‖22 + λ‖∇x‖0 (10)

Here, we use half quadratic splitting (HQS) [1] to solve (10).

C. ESTIMATING THE FINAL LATENT IMAGE
After estimating the blur kernel using Algorithm 2,
we recover the final latent image using non-blind decon-
volution method. Different from the intermediate image in
Section IV-B that is used for kernel estimation, the latent

Algorithm 3 Framework of the Multi-Scale Implementation
1: Input:blurred image y, kernel size f , iteration number m
2: Initialize: kernel k0 in the coarsest scale
3: Output: kernel k
4: Compute the scale number s according to [11]
5: k = k0
6: for i = 1:s do
7: downsample y to the current image pyramid to get yi
8: for g = 1:m do
9: solve for x by Equation (10)
10: solve for k by Equation (5)
11: end for
12: upsample k to fit the next scale
13: end for

image is the final deblurred image with fine textures. As this
paper focuses on kernel estimation, we use existing non-blind
deconvolution method in [4] to recover our deblurred image.

D. MULTI-SCALE STRATEGY
In order to ensure the fast convergence, many previous meth-
ods use the multi-scale strategy [3], [4], [11], [16]. Because
the blur could be reduced when the image is downsampled
to coarse scales, moreover, the reduced blur makes it easier
to estimate an accurate kernel. We also adopt the multi-scale
strategy [11] to estimate the blur kernel by a coarse-to-fine
pyramid of image resolutions. To get the blurred image yi
in each scale of the pyramid, we downsample y using a
factor

√
2
2 , which is similar to [16]. The implementation of

the multi-scale strategy in our framework is shown in the
Algorithm 3.

V. ANALYSIS OF THE PROPOSED KERNEL PRIOR
In this section, we analyze the effectiveness of the proposed
kernel prior. First, we show the potential of an intermediate
kernel to recover accurate strong edges in the intermediate
image, which is key to conventional blind deblurring meth-
ods [2], [16], [20]. Second, the effect of the proposed kernel
prior in improving the accuracy of the intermediate kernel
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FIGURE 5. The potential of the accurate kernel. (a) The ambiguity of the
blurred small-scale edge presented in [1]. According to [1], the magnitude
of the latent small-scale signal (green dashed line) is lowered after being
blurred (blue line). The red dashed line is more likely to be the latent
sharp signal rather than the green one. (b) Our experimental result. The
recovered sharp signal of small-scale can be recovered precisely if an
accurate kernel is given.

is presented. Third, we compare the proposed prior with other
methods preserving the kernel continuity. Last but not the
least, we evaluate the convergence property of our method.

A. THE POTENTIAL OF AN INTERMEDIATE KERNEL IN
RECOVERING STRONG EDGES
We revisit some previous edge selection methods [1], [16]
and show that an accurate intermediate kernel is crucial for
the strong edges recovery.

Similar to [1], we use an 1D signal with strong edges
for illustration. Figure 5 (a) is presented in [1] to show the
ambiguity of the recovered strong edges in the intermediate
image. It has a small-scale edge on the left and a large-scale
edge on the right. The blue curve denotes the blurred signal
and the green curve denotes the ground truth signal. The
magnitude of blurred small-scale edge is much lower than
the ground truth. As a result, without other information it
tends to recover the signal to the red line instead of the ground
truth green one. Edge selection methods [1], [16] will exclude
the small-scale edge in the kernel estimation. However, if the
blurred image does not has large-scale edges, these methods
will fail.

In this case, an accurate intermediate kernel can provide
information to recover the ground truth edge. If the interme-
diate kernel is as accurate as the ground truth kernel kGT ,
we can recover a sharp signal x̂ by (10). Figure 5 (b) shows
the potential of the accurate kernel. The recovered signal (red
dashed curve) has much higher magnitude than the blurred
one (blue curve) and is much close to the ground truth one,
which means the ambiguity of the edge magnitude is well
suppressed.

Even though the intermediate kernel may not be as accurate
as the ground truth in practice, by improving the kernel accu-
racy in each iteration, small-scale edges can be accurately
recovered in the intermediate image. Figure 6 (e) gives an
example that our method can recover the small-scale edge
better than the other methods (b)-(d) as shown in the red box.

B. ABLATION STUDY
We verify the effectiveness of the proposed kernel prior by
experiments in this section.

In our framework, we set λ = 0.004, γ = 0.1, α = 16,
β = 1, nk = 50, m = 5, a = 0.05, b = 0.1, r = 3 and n
is computed using the multi-scale strategy in Section IV-D.
We use the same non-blind deconvolution method [4] to
recover the final sharp image with estimated kernels.

To compare the deblur performance with and without the
proposed prior, we set α = 16 and α = 0 in our frame-
work, respectively. Figure 6 gives an example: an image full
of small-scale edges, in which the sizes of most edges are
smaller than the blur size. Figure 6 shows the final deblurred
images, intermediate images and intermediate kernels in dif-
ferent iterations. To ensure each algorithm achieve their best
results, we use different iteration numbers in the finest scale.
(d) and (e) show the deblurred images and the intermediate
images with and without the proposed prior, respectively.
In (d), obvious ringing artifacts spread over the whole image,
while (e) recovers faithful image edges. It is because without
the proposed prior, noise of the kernel is not suppressed in
each iteration (as shown in (h)) and the final estimated kernel
contains severe noise beyond the main trajectory of the blur
kernel (i = 1,g = 5). Moreover, the main trajectory is
less accurate than the estimated kernel using the proposed
prior as shown in the last image of (i). Using the proposed
prior, noise of the kernel is progressively suppressed during
iterations in (i). Consequently, the quality of the deblurred
image improves a lot in (e). The comparison indicates that,
the proposed prior is able to assist to estimate an accurate blur
kernel in the challenging case that image is full of small-scale
edges.

We also conduct a quantitative evaluation with the com-
monly used dataset [33]. The reason for choosing this dataset
is that all the blur kernels in it are from real camera shake,
which is more convincing. Table 2 shows the average PSNR
and SSIM of the deblurred image using various methods.
Apparently, our method with the proposed prior outperforms
the method without the proposed prior in both PSNR and
SSIM, which means more accurate blur kernels are estimated
with the proposed prior.

C. COMPARISONS WITH OTHER CONTINUITY
PRESERVATION METHODS
As shown in Table 1, previous methods that preserve the
continuity of the blur kernel can be divided in two cate-
gories: 1) proposing a kernel prior. 2) removing noise as
a post-process method. From each category, we choose a
typical method for comparison. The first method is a similar
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FIGURE 6. Comparisons among different continuity preservation methods. (a) a blurred image full of small-scale edges. (b)-(e) the deblurred
images (up) and the intermediate images (down) of the noise pruning [4], the smooth prior [16], ours without and with the proposed prior,
respectively. All the intermediate images shown are from the last iteration of the finest scale. The intermediate image in (e) successfully recovers
the small-scale edge in the red box while others do not. And the deblurred image in (e) outperforms other results. (f), (g), (h) and (i) show the
intermediate kernels of each method in different iterations. i , g, nk indicate the i th, gth and nkth iteration in Algorithm 3 and Algorithm 2.
Apparently, the proposed prior suppresses noise in each iteration and recovers the main trajectory of the kernel in (i) successfully.
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TABLE 2. Quantitative evaluations on levin dataset [33].

L0 gradient kernel prior [16] that preserves the smoothness
of the kernel to encourage the continuity. We denote it as the
smooth prior in our paper. The second one is the noise pruning
method [3], [4] that remove noise elements after the kernel
estimation. Here our framework without the proposed prior
act as the baseline model. For the L0 gradient kernel prior,
we replace the kernel regularization term in our framework
with the L0 gradient kernel prior for comparison method. For
the noise pruning method, we use it as the post-process step
after kernel estimation in the baseline model.

Figure 6 (b) and (c) show the deblurred images and the
intermediate images of the two methods. (f) and (g) show the
iterations of kernel estimates of the two methods. Obviously,
the noise pruning method removes the isolated noise in the
kernel background (shown in the last image of (f)), but it does
not remove the noise connected to the main trajectory in each
iteration. As a result, the deblurred image in (b) degrades.
The smooth prior does not remove noise in the kernel (shown
in the last image of (e)) and the main trajectory is thinner than
others due to its smoothing effect. So the deblurred edges are
still blur in (c).

For the qualitative evaluation in Table 2, the noise prun-
ing method [4] outperforms the baseline by improving the
average PSNR value from 26.41 to 26.49, but its value are
still lower than the proposed prior (26.96). The result of
the smooth prior is even lower than the baseline model. We
also combine both the proposed prior and the noise pruning
method in our framework, but the result are worse than the
one without using the noise pruning method. It indicates
the noise pruning method has a negative effect when used
together with the proposed prior.

To further evaluate the quality of the estimated kernel,
we use the error ratio [33]:

e =
‖x̂− xGT ‖22
‖x̂t − xGT ‖22

(11)

where xGT is the ground truth sharp image and x̂t is the
estimated image using the ground truth kernel. The error
ratio describes the similarity of the deblurred image using the
estimated kernel and the deblurred image using the ground
truth kernel. The smaller the value is, the higher similar-
ity is. Figure 7 plots success rates of different error ratios
in the same way as [33]. For the non-blind deconvolution
method, we use a simple yet effective non-blind deconvolu-
tion method [33] to recover the final deblurred image. Each
number in the y-axis shows the percentage of test images
whose error ratio are below a certain threshold and x-axis lists

FIGURE 7. Success rates of different error ratios on Levin Dataset [33].

FIGURE 8. The convergence property of our method evaluated on the
Levin Dataset [33]. Visual examples of intermediate kernels are shown.
The ground truth kernel is shown in Figure 13 (f). A smaller kernel size
needs fewer scales in the multi-scale strategy [11], leading to fewer
iterations. Using the appropriate kernel size, our method converges to the
good estimation. The larger kernel size leads to a biased solution, while
the smaller kernel size does not converge. The convergence of our method
using another two kernel initialization methods are also evaluated.

all the thresholds. It indicates that our method provides more
reliable results than other methods.

D. CONVERGENCE PROPERTY
As our energy function is non-linear and non-convex,
we quantitatively evaluate convergence properties of our
method on the Levin dataset [33]. We evaluate the similar-
ity [35] between the intermediate kernel of each iteration and
the ground truth kernel in Figure 8. As our method is imple-
mented in the multi-scale manner (details in Section IV-D),
we unroll iterations in all the scales and list them in sequence.
Our method converges in iterations of each scale, which
results in the periodic increase in curves. The convergence
of different kernel sizes (appropriate, larger and smaller) are
evaluated. A smaller kernel size needs fewer scales in the
multi-scale strategy [11], leading to fewer iterations. The
visualized examples show that a larger kernel size may con-
verges to a biased solution, because it increases the degree of
freedom of kernel estimation [20]. But a smaller size makes
the method difficult to converge, as shown in the blue line of
Figure 8. Consequently, choosing an appropriate kernel size is
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TABLE 3. Comparison among three kernel initialization methods on Levin
Dataset [33].

essential and there are several attempts to automatically find
it [20], [36], [37].

The effect of the first estimation on the convergence prop-
erty is also evaluated. Our framework initialize the kernel
by [7]. We also evaluate another two initialization methods:
random and uniform. Different initialization methods lead to
different first estimation of both images and kernels accord-
ing to (4) and (3). Our model converges using any of the
three initializations as shown in Figure 8. Table 3 shows
average PSNR and SSIM on the Levin Dataset [33] of the
three initializations. It indicates that using [7] leads to the best
deblur performance.

Besides the kernel size and the first estimation, the image
type also has an effect on the convergence. For example,
as recovering strong edges in each iteration is key to the suc-
cess of MAP-based methods, image types lacking of strong
edges make the method difficult to converge. Some failure
cases are shown in Section VI-D.

VI. EXPERIMENTAL RESULTS
We compare the proposed method with state-of-the-art meth-
ods [2], [4], [7], [16], [38]. Recent years has witnessed
the rapid progress of deep learning methods in the field
of low-level image processing, especially in image deblur-
ring [38], [40], [41]. However, most of them directly map
the blurred image to the deblurred one without estimating a
kernel, which is one of the big differences between conven-
tional optimization-based methods and deep learning meth-
ods. We choose the recent deep learning method SRN [38]
for comparison.

We test the proposed prior on some challenging cases for
visual comparison. The parameter settings of our framework
are the same as Section V-B. Moreover, the large deblurring
dataset [27] with 640 images is used for evaluating how the
proposed prior improves the previous method [4]. We also
evaluate the efficiency of our method by comparing average
runtime and PSNR on Köhler Dataset [42].

A. SOME CHALLENGING CASES
We conduct the experiment on three challenging cases:
images full of small-scales, the noisy-blurred image and the
large blur image.

1) SMALL-SCALE EDGE IMAGE
We evaluate our method on two small-scale edge images.
Figure 9 shows a synthetic blurred image with small-scale
grasses. Our estimated kernel in (f) is the most similar one
to the ground truth kernel in (a), while other kernels are not
as thin as the ground truth one. As a result, their deblurred

FIGURE 9. Deblurring results comparison on an image with small-scale
textures. The ground truth kernel is shown in (a). (b) the blur kernel is
less accurate and the deblurred image contains obvious ringing artifacts.
The kernel of (c) contains isolated noise around the main trajectory,
so the results contains ringing artifacts too. The kernel in (d) is not as thin
as the ground truth one. The deep learning method SRN [38] does not
remove blur thoroughly.

image are degraded. The deblurred image of Xu et al. [2] in
(b) contains obvious ringing artifacts around the boundary.
The zoomed-in flower region of [16] in (c) is still blurred
compared with ours in (f). Using the dark channel method [4]
in (d), the deblurred image is over smooth as shown in the
zoomed-in grass region and also there are black dots spread-
ing over the flower region. The result of SRN [38] does not
remove the blur. Unfortunately, the deep learning method
does not show its priority in recovering small-scale edge
image. Without the guidance of the blur kernel, SRN [38]
can not accurately find the original position of image edges,
which leads to the blurred result. Our method not only
removes the blur accurately but also recovers natural sharp
image with fine textures.

Figure 10 shows a real blurred image of building. Different
from the grass in Figure 9, the edges of Figure 10 are stronger.
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FIGURE 10. Deblurring results comparison on an image full of small-scale edges. The first row shows deblurred images and the second row shows the
corresponding estimated kernels. The iteration numbers of all the three MAP-based methods are shown. For convenience, we use the same notation i
and g as our framework, because the three methods share the same optimization framework. In (b) and (d), kernels are less accurate and deblurred
images contains obvious ringing artifacts. The kernel of (c) contains isolated noise around the main trajectory, so the results contains ringing artifacts
too. Ours achieves the best performance in both the kernel estimation and the deblurred image.

FIGURE 11. Deblurring results comparison on a blurred image with some noise. The first row shows deblurred images and the second row shows the
corresponding estimated kernels of all the methods. The iteration numbers of each methods are shown as in Figure 10. Only (b) and (f) recover the main
trajectory of the kernel successfully. As a result, both (b) and (f) deblur images with the least ringing artifacts and recover the cloud in the blue box.

For better comparison, we show the iteration numbers of
Dark Channel [4] and Salient Structure [16]. We refer the
iteration numbers in their published codes. We do not show
iteration numbers of other conventional methods due to the
lack of published codes. As most MAP-based methods share
the same optimization framework, we use the same notation
i and g to denote their iteration numbers. Coincidentally, all
the competitors use the same iteration numbers. Kernel noise
are obvious in (b), (c) and (d). Moreover, (b) and (d) fails
to estimate the main trajectory of the kernel, which leads to
ambiguous edges of the building.Without estimating a kernel,
SRN [38] does not remove the blur accurately. Our method

can estimate both the clear kernel trajectory and the natural
sharp image.

2) NOISY-BLURRED IMAGEZ
Noisy-blurred image is another challenge for most deblur-
ring method. It is because noise in the image can be
easily regarded as strong edges, which leads to errors in
the kernel estimation. Figure 11 shows deblurred results
of an noisy-blurred image, in which Zhong et al. [39] is
a kernel estimation method with the noise handling strat-
egy. We also show the iteration numbers of each methods
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FIGURE 12. Deblurring results comparison on an image with large blur.
Deblurred results in (b), (c) and (f) contain obvious ringing artifacts. Both
(d) and (g) achieve good performance, but our method in (f) recovers
more details than (d).

as Figure 10. For the estimated kernels in the second row,
neither Zhong et al. [39] nor Dark Channel Prior method [4]
estimate the main trajectory of the kernel, as a branch of the
trajectory is lost in their red boxes. Consequently, the blur is
not well removed in (c) as shown in the zoomed-in red box
and the cloud in the blue box is absent in (d). Both our method
and the salient structure [16] estimate accurate kernels and
outperform other methods. However, different from [16] that
involves both the kernel continuity preservation and the edge
selection strategy, our method only use the kernel continuity
preservation to estimate the kernel. The performance shows
that even though our method is not designed for noisy-blurred
image, the continuity preservation makes the kernel estima-
tion more robust to image noise.

3) LARGE BLUR IMAGE
The large blur is difficult to remove due to the large kernel
size involving more unknown elements to be estimated. The
image in Figure 12 is a real captured photo from [16]. The blur
size is around 64 pixels, which is larger than those of Levin

dataset [33] whose blur sizes are all under 30 pixels. (b) shows
the deblurred result of Xu et al. [2], in which the blur is not
well removed as in the red box and there are obvious ringing
artifacts in the blue box. The result in (c) also shows obvious
ringing artifacts in both the two zoomed-in regions. In (d),
the zoomed-in region of the red box is over-smooth and most
fine textures are lost. The result of SRN [38] are still blur.
Our result outperform others by recovering a sharp image
with fine textures. We also evaluate our method on Köhler
Dataset [42] in Section VI-C, in whichmore large blur images
are quantitatively evaluated.

B. PERFORMANCE IMPROVEMENT WITH OUR PRIOR
The proposed kernel prior can also be used separately in any
previous methods that use the same MAP-based framework.
By replacing their kernel estimation sub-model with ours
in Section IV-A, the proposed kernel prior can improve the
performance of kernel estimation of previous methods. In this
experiment, we choose the Dark Channel Prior method [4] as
the baseline as it has the published code and achieves best
performance in conventional optimization-based methods.
The method uses the noise pruning as post-process method
to remove noise in the estimated kernel. By using our kernel
prior, we disable the noise pruning method in [4] for fair
comparison.We test its performance on SunDataset [27] with
640 blurred images. All the 640 images can be divided into
8 groups, in which images in each group share the same blur
kernel. The 8 blur kernels are shown in Figure 13. All the
images in Sun Dataset [27] are nature images with forests,
lakes or buildings.

We show the average PSNR values of each group
in Table 4. The PSNR of Krishnan et al. [7] is reported in
benchmark [27]. We evaluate Pan et al. [4] and Tao et al. [38]
on the dataset using their published code. We replace the ker-
nel estimation sub-model of Pan et al. [4] with ours and eval-
uate the performance on the same dataset. Using our prior,
the average PSNR values are all higher than Pan et al. [4],
especially for the larger kernels: k4, k6, k7 and k8. Using
the proposed kernel prior, the average PSNR values improve
in all the 8 kernels, especially in kernels with larger size:
k4, k6, k7 and k8. It indicates that for images not belonging
to challenging cases, our proposed prior can still benefit the
kernel estimation and improve the performance of previous
method.

C. EFFICIENCY
The proposed prior can be implemented more efficiently than
other conventional methods. Our experimental environments
are MATLAB2016b, Intel Core i7 and CPU @ 4.2GHZ*8.
The complexity of the intermediate kernel estimation model
is O(N ). Our model converges after less than 50 iterations,
which only takes 3.2 seconds for kernel size 51 × 51. The
intermediate kernel estimation takes more time as the kernel
size increases, for example, 2.3 seconds (7× 7), 2.4 seconds
(11× 11), 2.5 seconds (19× 19), 2.7 seconds (27× 27) and
2.9 seconds (37× 37).
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FIGURE 13. Blur kernels in Sun Dataset [27].

TABLE 4. Average PSNR of each 80 images for 8 blur kernels in Sun Dataset [27].

FIGURE 14. The PSNR vs. runtime of recent conventional deblurring
methods [4], [5], [7], [16] and the proposed prior on the Kohler Dataset
[42]. Even though the average PSNR of ours is a little lower than the Dark
Channel method [4] (28.05 vs. 28.44), the proposed prior is almost
3 times faster (370s vs. 990s).

To further evaluate the efficiency of the proposed prior,
we compare the average runtime and PSNR of the kernel
estimation model of several conventional methods [4], [5],
[7], [16] on the same environment. For fair comparison,
we use the same non-blind deconvolution method [4] to
deblur images with their estimated kernels. We run the pub-
lished code of each competitor on the Köhler Dataset [42].
The dataset contains 48 images whose sizes are 800 × 800
and their kernel sizes are from 31 to 145. We compute the
average PSNR values and average runtime of each method as
shown in Figure 14. The average PSNR value of our method
is a little lower than the first rank, but ours is almost 3 times
faster than it.

D. FAILURE CASES
As mentioned in Section V-A, the proposed kernel prior
assists to recover strong and small-scale edges in the inter-
mediate image, which improves the accuracy of the estimated
kernel. Thus, the proposed prior will fail if the blurred image

FIGURE 15. Two failure cases. Without strong edges in the input image,
the proposed method fails to estimate accurate blur kernel. As a result,
the deblurred images contain obvious artifacts.

only contains fine textures without strong edges, because
the fine textures are removed during the intermediate image
estimation and few information can be used to estimate the
kernel. Figure 15 shows two failure cases. As the two input
images only contain weak and fine textures, the proposed
method fails to estimate the blur kernel, which leads to
degraded deblurred results.

VII. CONCLUSION
In the view of the significance of the kernel continuity
description and preservation, we propose a kernel prior to
preserve kernel continuity. The prior forms a continuity map
of the kernel and encourages the sparsity of the map to pre-
serve the kernel continuity. To deal with the non-convex and
non-linear prior, we also propose an approximation to solve
the cost function, which makes our method more efficient
than many other conventional methods. Solid experimental
results show that the proposed prior is able to help esti-
mate a more accurate kernel even in some challenging cases:
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small-scale blurred images, noisy-blurred images and large
blur images. Also, the proposed prior can further improve
the performance of previous method by leveraging our kernel
continuity prior.
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