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ABSTRACT Smart Grid Monitoring System(SGMS) is an important means to protect the security of smart
grid. The high volumes of alerts generated by SGMS often confuse managers. Automatically handling alerts
and extracting attack events is a critical issue for smart grid. Most of the existing security event analysis
methods are designed for Internet, which will not be directly applicable to the power grid for high reliability
and low attack tolerance requirements. In this paper, a multi-step attack detection model based on alerts
of SGMS is proposed. In this model, an alert graph is constructed by IP correlation, and then transformed
into candidate attack chains after being aggregated. Consequently, the candidate preliminary attack chains
are pruned and denoised by negative causal correlation and non-cascading events. Finally, attack chains and
visual attack graphs are formed. Our proposal model needs a little of priori knowledge while automatically
extracting multi-step attack events and demonstrating the trajectories among IPs. The experimental results
show the model performs well on China Grid data and DARPA 2000 data set.

INDEX TERMS Smart grid security, alert correlation, multi-step attack, attack graph.

I. INTRODUCTION
Whis the construction of smart grid and the wide applica-
tion of big data, cloud computing and Internet of Things
technologies, the power grid is facing the vulnerabilities and
risks of the Internet [1]–[3], which brings challenges to the
original security protection system of power. To approach
this challenge, security protection and management systems,
such as firewalls, intrusion detection systems(IDS), vertical
encryption authentication systems and anti-virus systems,
have been studied and applied in power grids [4]–[7]. These
systems generate a large number of independent alerts, and
the real threat information can easily be flooded with a large
number of useless alerts [8]. Therefore, how to handle the
alerts and detect major security incidents more accurately has
become a major problem in smart grid [9], [10].

With the development of security protection technol-
ogy, multi-step attacks have become the main form of
attack [11], [12]. Multi-step attack detection technology,
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which is oriented to large-scale network environment, plays
an important role in network security monitoring system.
It acquires, understands, displays the security factors and
future trends in network situation.

In the Smart Grid control center, once an attack occurs,
unpredictable serious consequences for the entire grid infras-
tructure may happen. On December 23, 2015, the Ukrainian
power sector was attacked bymalicious codes.More than half
of the area and part of the Ivano-Frankovsk area were cut off
for several hours. Therefore, high reliability attack detection
and quick location of attack paths strategies are required for
such production environments.

For the smart grid alert logs with the above character-
istics, the existing analysis methods face some challenges.
Common methods of alert log analysis include similarity-
based correlation analysis [13]–[15], attack sequence-based
approach [16], [17], and attack sample-based machine
learning [8], [18]–[20].

The similarity-based correlation analysis mainly uses the
similar characteristics of same kinds of alerts. However, since
the logs of the SGMS have been aggregated, the similarity
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FIGURE 1. Segments of a class of alerts obtained by similarity-based
correlation analysis.

is weakend and the method produce little effect in smart
grid alert logs. Fig.1 shows some segments of a class of
alerts obtained by similarity-based correlation analysis in
reference [15]. These alerts do not belong to the same attack.
In addition, aggregation methods cannot describe the attack
paths. It just bring the alerts of the same event together.

Attack sequence-based approach associates alert bymatch-
ing attack rules [21]. It is difficult to cover all attacks [14].
In addition, the SGMS has different and more strict attack
detection strategies, which generates different alerts from
the internet, like illegal protocol detection and usb insertion
detection. It is hard to draw lessons from mature experience.

Attack sample-based machine learning first needs to
acquire alert logs or network traffic which are labeled with
attack types for learning [22]. Labeling work requires directly
obtaining attack logs by constructing virtual scene of sim-
ulating attacks or manual verification of attacks. However,
because the alert logs in SGMS are already aggregated [4],
and manual verification has large workload and difficult to
implement in smart grid, the alert logs cannot be simulated.
Contributions: To solve the above problems, this paper

proposes a multi-step attack detection model based on the
alerts of Smart Grid Monitoring System with only a small
amount of expert knowledge. The contributions of this paper
are as followings:

1) We extract attack chains according to IP hops, as well
as propose a child node aggregation method based on
smart grid network alert graph. The attack chains are
sequences of suspicious behavior. Because the attack
chains are extracted according to IP hops, they also
retain the host information of the attack chains. The
child node aggregation is carried out before the for-
mation of attack chains, which effectively reduces the
redundancy by aggregating child nodes in the alert
graph that belong to the same attack.

2) A negative causal correlation method is proposed to
eliminate the non-causal alerts. The alerts of SGMS
have a variety of granularity and types, and it is difficult
to formulate attack rules. However, the method we
propose can prune attack chains while minimizing the
dependence on expert knowledge.

3) An attack chains denoise method based on non-
cascading event is proposed. This method can reduce
the redundancy of attack chains by removing the events
that are obviously not caused by previous ones.

II. MULTI-STEP ATTACK DETECTION
MODEL FRAMEWORK
At first, there are two basic definitions that need to be
explained.
Definition 1 (Multi-Step Attack): A well-predefined intru-

sion process with more than one attack action is called a
multi-step attack. The intrusion should include a clear pur-
pose of attack.

FIGURE 2. Key steps of a DDoS attack using Mirai malware.

Fig.2 is an example of multi-step attack. It shows the
key steps of a DDoS attack using Mirai malware [23]. The
intrusion process includes

1) default credential discovering through a brute-force
attack,

2) shell gaining and forwarding various device character-
istics to the report server,

3) new prospective target victims checking,
4) infection command sending to the loader,
5) downloading and executing the corresponding binary

version of the malware,
6) instructing all bot instances to commence an attack

against a target server.

The purpose of the intruder is using bot instances launching
a DDoS attack to the target server. In order to achieve this
purpose, the intruder has to prepare well and implement
multiple actions.
Definition 2 (Single-Step Attack): Each attack action in

multi-step attack is called a single-step attack. A single-step
attack may correspond to one alert or multiple duplicated
alerts.

A variety of security devices are deployed in the SGMS.
The control center aggregates the original alerts into alert
log [4]. As shown in Fig. 3, the inputs are the original alerts
of the SGMS. After pre-processing, they are formed struc-
tureing, noiseless and analyzable alerts. Then they are sent
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FIGURE 3. Multi-step attack detection model framework.

to the preliminary attack chain building module for aggregat-
ing and traversing. After that, preliminary attack chains are
formed. Then they will be pruned and denoised by the Post-
processing module. Finally, interconnected attack chains are
drawn into individual subgraphs.

A. PRE-PROCEEING
The pre-processing module first reconstructs the origi-
nal alerts, and then performs de-duplication processing
to obtain the alert logs. The reconstructed alert con-
tains necessary fields for alert log analysis, which rep-
resented as a 10-tuple Alert(Starttime,Fintime,Content,
Type, SrcIP,DstIP, SrcPort,DstPort,Times,Level). In a
reconstructed alert, Starttime represents the start time of the
alert event. Fintime represents the finish time of the alert
event. Content represents the alert content. Type represents
the alert type. SrcIP represents the source address. DstIP
represents the destination address. SrcPort represents the
source port. DstPort represents the destination port. Times
represents the number of alert repetitions. Level represents
the alert level.

After reconstruction, the alert logs need to be
de-duplicated. A complete attack process involves at least
one attack step. For a single-step attack in multi-step attacks,
the security device may report multiple redundancy alerts.
But not all same alerts belong to the same attack.The dedu-
plication of the alert logs based on the retention of time
information can not only reduce the number of alerts, but also
retaining themost source data information. The deduplication
rule is: if the type, IP and port of an alert are the same as
any of the previous two, the latter alert will be removed. The
previous alert’s Finishtime will be updated to the removed
one, and Times will be accumulated.

B. ATTACK CHAINS BUILDING (PROCESSING)
In the attack chain building module, alert graph is structured
by the alert logs. Then the redundant information is removed
by aggregation. Finally, the attack chains are obtained after
the depth-first traversal. The detailed process is in Section III.

C. POST-PROCESSING
The post-processing module removes the unreasonable attack
chains. The negative causal association module prunes the
attack chains by negative causal rules, and the non-cascading
event noise reduction module denoises the attack chains
through the continuity of events. The detailed process is in
section IV and section V.

D. ATTACK GRAPH BUILDING
The attack graph building module presents the association
between attack chains intuitively. The process is mainly
divided into two steps: structureing the attack chains into a
directed graph; dividing interconnected parts into indepen-
dent subgraphs.

III. INITIAL CONSTRUCTION OF IP-BASED
ATTACK CHAINS
The construction of the attack chains based on IP is divided
into three steps: structureing node information, child node
aggregation, and alert graph depth-first traversal.

A. STRUCTUREING NODE INFORMATION
The alert log can be regarded as a network which is connected
by source and destination IPs. Nodes of the network are
host IPs. Node information structureing process can construct
such a network into a graph diagram struct.

The structured multi-step attack is an attack chain.
The single-step attacks in an attack chain meet three
conditions:
• IP Relevance: The destination IP of a single-step attack
is the source IP of the next one.

• Causal Relevance: A single-step attack has a causal
relationship with the previous one logically.

• Temporality: The Starttime of a single-step attack is later
than that of the previous one.

We indicate IP as the IP address of the single-step attack in
the attack chain and Alert as the alert information (including
Content, Starttime, Finishtime, etc.). The attack chain can
be represented asC1 = [(IP1, IP2,Alert1), (IP2, IP3,Alert2),
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FIGURE 4. An example of an attack chain.

TABLE 1. An instance of attack chain (Log representation).

(IP3, IP4,Alert3)]. Fig. 4 shows an example of attack chain,
Table 1 lists the corresponding alert log.

FIGURE 5. An instance of Alert graphs.

TABLE 2. An instance of alert log.

In the entire network, IP-based alerts in alert log can be
represented as a graph diagram. Table 2 shows an example
of alert logs. Fig. 5 shows the alert graph corresponding to
Table 2. The graph nodes represent IPs and directed edges
represent the alerts from source IPs to destination IPs. The
graph diagram of the alerts in the network can facilitate the
following child node aggregation and attack chain extraction
process.

Each IP node is modeled to a TNode class: TNode =
{SelfIP,ParentsIP,ChildrenInfo}. SelfIP is the node’s own
IP, ParentsIP is its parents’ IP set, and ChildrenInfo is its
children with their corresponding alert information. Alert
graphs are constructed while nodes modeling. Now each IP
is represented by a unique node.

B. CHILD NODE AGGREGATION
After structing alert logs, preliminary attack chains can
be obtained by depth-first traversal with root nodes.

However, there is still a lot of redundancy in alert logs.
In order to further aggregate these alerts while retaining the
alert information as much as possible, we proposed the Child
Node Aggregation Algorithm as Algorithm 1.

Algorithm 1 Child Node Aggregation Algorithm
Require: N: All TNode in alert logs; t: Aggregation interval
1: function CHILD NODE AGGREGATION(N , t)
2: Let ‘==’ be a symbol, where alertA== alertBmeans

A’s Type, Srcip, Dstip is equal to B’s
3: for each node ∈ N do
4: Children[1 . . . k]← node.ChildrenInfo
5: lastChild ← Children[1]
6:

7: //First time aggregation
8: for child ∈ Children[2 . . . k] do
9: if lastChild == child then
10: lastChild .Finishtime← child .Finishtime
11: delete child
12: else
13: lastChild ← child
14: end if
15: end for
16:

17: //Second time aggregation
18: Let i = 0
19: for child ∈ Children[2 . . . k] do
20: i← i+ 1
21: for lastChild ′ ∈ Children[1 . . . i] do
22: if child == lastChild ′ and (child .end −

lastChild ′.start < t) then
23: lastChild .Finishtime ←

child .Finishtime
24: delete child
25: break for
26: end if
27: end for
28: end for
29: end for
30: end function

The algorithm traverses the set N , and aggregates the child
nodes. This algorithm contains twice aggregations:

1034 VOLUME 8, 2020



H. Zhang et al.: Multi-Step Attack Detection Model Based on Alerts of SGMS

TABLE 3. An instance of alert log.

In the first aggregation, if same events from host A to B
have been continuously happening, and no other events trig-
gered by A occured during this period, then the continues
events are considered to be the same attack. The algorithm
first traverses each node’s child node set. Once the alert
type, source IP, and destination IP of one child node and the
previous child node are the same, update the Finishtime of the
previous one to the latter one and accumulate the Times. Then
delete the latter event.

The second aggregation is based on a premise that the same
events that occur in a small time window belong to the same
attack. The algorithm first traverses each node’s child nodes
set. Once the alert type, source IP, and destination IP of the
two child nodes are the same, while the time range between
the two alerts is not bigger than the setting time window,
update the Finishtime of the previous event to the latter one
and accumulate the Times. Then delete the latter event.

C. GETTING THE ATTACK CHAIN
After the node modeling and the child node aggregation,
we propose the Get Chains Algorithm as algorithm 2. This
algorithm is for deeply traversing the alert graphs and obtain
attack chains. The head nodes of the chains include two cases.

Algorithm 2 Get Chains Algorithm
Require: N: All TNode in alert logs
Ensure: C: A set of chains
1: function GET CHAINS(N )
2: for each node ∈ N do
3: if node has no parent then
4: C ′← DFS(node)
5: C ← C ∪ C ′

6: end if
7: end for
8: N ′← CheckNoVisited(N )
9: for each node ∈ N ′ do
10: C ′← DFS(node)
11: C ′← C ∪ C ′

12: end for
13: return C
14: end function

• The first one is that the root node in the attack graph.
• The second one is that the node has parents, but the
Starttime of its parent events are later than itself.

The two cases bothmeans the nodes have no former events.
The function CheckNoVisited() is corresponding to the
second case.

The function DFS() represents the depth-first traversal
algorithm, and the attack chain setC ′ obtained by each depth-
first traversal is added to the final attack chain set C .

IV. PRUNING BY NEGATIVE CAUSAL RULES
The idea of causal correlation is widely used in the field
of alert correlation analysis [16]–[18], [21], [24], [31], [33].
Due to the lack of attack rules in SGMS and the difficulty of
network vulnerability scanning, these methods are difficult
to use directly. Negative causal correlation is designed in
this paper. Using the negative causal correlation method to
prune the attack chains not only ensures the causal corre-
lation of the attack event, but also minimizes the depen-
dence of expert knowledge, attack tagging and simulation
works.

A. NEGATIVE CAUSAL RULES
In each multi-step attack, the adjacent attack steps are
causally related. In order to satisfy the causal relationship in
the attack chain, a method based on negative causal correla-
tion is proposed.
Definition 3 (Negative Causal Relationship): If two alerts

cannot meet the causal relationship, theymeet negative causal
relationship.
Definition 4 (Negative Causal Rules): The negative causal

rules are represented as a matrix that defines the negative
causal relationship between each two alert types. In the
matrix, 1 means there is a negative causal relationship
between the corresponding two alert types, and 0 means no
negative causal relationship. For example, In the alert set
{Alert1, Alert2, · · · ,Alertn}, (Alerti,Alertj) in the negative
causal rules means the relationship between Alerti and Alertj.
If (Alerti,Alertj) is 1, they meet negative causal relationship.

Table 3 shows two examples of attack chains extracted
from the alert logs of a SGMS. The events in the attack
chains 1 cannot constitute a causal relationship, that is, they
meet negative causal relationship. The events in the attack
chain 2 don’t meet negative causal relationship. In attack
chain 1, the first and the second events are ‘‘DDoS event’’
and ‘‘Illegal access’’. Usually, a complete DDoS attack may
contain 4 preparations and final flood attacks. The denial
of service attack is the last step, with the purpose to make
the target machine unresponsive. Therefore, the DDoS attack
and ‘‘Illegal access’’ cannot constitute a causal relationship.
Unlike the attack chains 1, the events of the attack chain 2
‘‘Abnormal access data’’ and ‘‘Illegal access’’ may constitute
a causal relationship. The alert that ‘‘Abnormal access data’’
can be a virus script. After being infected by the script,
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TABLE 4. Alert log examples and non-cascading event description.

the host IP becomes a stepping stones and continues to launch
further illegal access to IP6.

B. PRUNING
In an attack chain, if the two adjacent events have negative
causal relationship, such as DDoS event and illegal access
in Table 3, it is impossible to constitute an attack. To eliminate
this connection, pruning by negative causal correlation is
needed. As shown in Fig. 6, when Alert2 and Alert3 meet the
negative causal rules, the connection between them should
be cut off. As a result, this attack chain is broken into two
subchains C1 and C2, and each part of themmeet the negative
causal rules.

C = [(IP1, IP2,Alert1), (IP2, IP3,Alert2)

IP3, IP4,Alert3), (IP4, IP5,Alert4)]

C1 = [(IP1, IP2,Alert1), (IP2, IP3,Alert2)]

C2 = [(IP3, IP4,Alert3), (IP4, IP5,Alert4)]]

FIGURE 6. Chain breaking.

V. DENOISE BY NON-CASCADING EVENTS
After IP correlation and pruning by negative causal rules,
the attack chains are built by meeting three conditions: IP
relevance, causal relevance, and temporality. There are still
some unreasonable chains. Table 4 gives out some alert log
examples. After a series of processing, we obtained an attack
chain consisting of alert 3 and alert 4. In this attack chain,
the previous event is considered to be the cause of the latter
one. But after backtracking the relevant alert records of IP1,
it is found that IP1 has been reporting the alert ‘‘memory
usage threshold exceeded’’ for a period of time before receiv-
ing the abnormal data from IP2. Therefore, it can be inferred
that the ‘‘memory usage exceeds the threshold’’ is not directly
caused by ‘‘sending abnormal data’’ on a large probability.
The above situation is called non-cascading event. Cascading
event is defined as following:
Definition 5 (Cascading Event): When the events A, B

satisfy the following two conditions, then B is said to be a
cascading event of A.

• Temporality. B occurs after A
• B does not occur for a period of time tn before A
occurred.

Non-cascading events should be removed from the attack
chains.

Algorithm 3 Noise Reduction Algorithm
Require: C: A set of attack chains
Ensure: G: A set of attack chains without non-cascading

events
1: function NOISE REDUCTION(C, tn)
2: Let Q be a queue initially empty
3: for each chain[1 . . . k] ∈ C do
4: i← 1
5: last ← chain[1]
6: t2← chain[1].Starttime
7: t1← t2 − tn
8: for each item ∈ chain[2 . . . k] do
9: Alert ← (Type, SrcIP,DstIP, SrcPort,
DstPort)

10: if FindAlert(t1, t2,Alert)isTrue then
11: G ← G ∪ chain[1 . . . i] ∪

NoiseReduction(chain[i+ 1 . . . k])
12: return G
13: else
14: i← i+ 1
15: t2← item.Starttime
16: t1← t2 − tn
17: end if
18: G← G ∪ chain[1 . . . k]
19: end for
20: end for
21: return G
22: end function

The algorithm for removing non-cascading events is Noise
Reduction algorithm. For each attack chain, traverse its two
adjacent events. Denote the former one as ei and the latter
one as ej. The Starttime of ei is recorded as t2. From t2
rollback to t1 for a period of time tn. ei and ej are non-
cascading events if there is ej happened between t1 and t2. The
subchain between non-cascading events need to be broken.
The breaking operation is in section IV.B.

After noise reduction, the final attack chain is formed.

VI. MODEL EVALUATION ON SGMS DATA
In this paper, 2 months alert logs of the SGMS of an
area of China Grid are analyzed. We first developed a
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TABLE 5. Negative causal rules.

negative causal rules according to the characteristics of these
data. Then, we analyzed the data of the two time windows
and illustrated some of the suspicious attacks. In the global
analysis, we describe the processing data of deduplication,
aggregation, pruning and denoise, and the formation of the
attack graph. Finally, the efficiency analysis is carried out.
The balance between resource consumption and the number
of attack chains generated can be achieved when tw = 3.

A. NEGATIVE CAUSAL RULES SETTING
We got 73 kinds of alerts from 7,915,376 alert logs. Accord-
ing to the characteristics of alert types, the 73 kinds of alerts
were divided into 8 categories: database status abnormality,
database storage abnormality, DoS, abnormal access data,
memory exceptions, system exceptions, hardware exceptions
and hardware plug in/out. Negative causal rules can be
learned based on expert experience, as shown in Table 5.

1) DATABASE STATE ABNORMALITY
It represents an abnormal state in the database. This abnormal
state may be caused by an ongoing or completed attack.
It may generate local exception or subsequently launch
attacks after getting information from database.

2) DATABASE STORAGE ABNORMALITY
It indicates that the database storage space is insufficient. It is
usually caused by operational non-compliance. It cannot be
used as an intermediate step in a multi-step attack. Therefore,
it cannot cause other attacks.

It should be noted that the above two classes of alerts
are reported by user host rather than database server. It is
important to fully understand how alerts are generated for
making negative causal rules.

3) DoS
It indicates that the host may be subjected to a denial of
service attack. The attack’s goal is to cause unavailability
to the target. Therefore, we believe the target host will not
launch subsequent proliferation attacks.

4) ABNORMAL ACCESS DATA
It indicates that the destination host receives abnormal data.
In fact, the abnormal data may be any kind of attack. There-
fore, it may cause any kind of attack.

5) MEMORY EXCEPTIONS
It represents the memory abnormal state of the host. This
abnormal state may be caused by an ongoing or completed
attack. Therefore, it may subsequently launch attacks or gen-
erate local exception.

6) SYSTEM EXCEPTIONS
It represents the abnormal state of the system, which may be
caused by users or attackers. Any subsequent attacks except
hardware plug in/out may occur.

7) HARDWARE EXCEPTIONS
It represents hardware abnormal status, so any subsequent
attacks except hardware plug in/out may occur.

8) HARDWARE PLUG IN/OUT
It represents there is a device plugging in or out, which may
carry viruses. It may cause any attack.

FIGURE 7. An instance of pruning by negative causal rules.

Fig. 7 shows an instance of pruning by negative causal
rules. In this candidate attack chain, IP1 first sent abnormal
access data to IP2. Then some system exceptions occurred
on IP2. Finally, a USB plugs in IP2. In this chain, there are
two alert pairs need to be judged. The first is ‘‘abnormal
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TABLE 6. Data deduplication and aggregation effect of Experiment 1.

TABLE 7. Attack chains processing effect of Experiment 1.

access data’’ and ‘‘system exceptions’’, according to Table 5,
the corresponding number is 0. The second is ‘‘system excep-
tions’’ and ‘‘USB plugged in’’. The corresponding number
is 0, according to the definition 4, the second alert pair match
negative causal relationship and should be cut off.

B. SUSPICIOUS DATA ANALYSIS EXAMPLE
We take two time windows as examples. Window 1 is from
May 3th, 2018 toMay 5th, 2018.Window 2 is from June 10th,
2018 to June 12th, 2018. The time window tw is 3 days, and
the non-cascading event time interval tn is set to 2 hours.
Experiment 1: There are 101,101 alert logs in win-

dow 1. After reconstructing and deduplicating, we obtained
82,041 alert logs. Then node modeling and child node aggre-
gation were performed. The data deduplication and aggrega-
tion effect is shown in Table 6. After deduplication, the data
was reduced to 81.15% of the original data. After aggre-
gation, the branches was reduced to 5.47% of the original
branches.

As shown in Table 7, after the pruning by negative causal
correlation and the noise reduction by non-cascading events,
739 attack chains were finally obtained, which accounted for
6.58% of the original data. Graphviz tool were used to draw
the attack graphs.

Attack process can be inferred according to attack graphs.
Followings are three instances.

1) Suspected to be the victim hosts sending back data
Fig. 8 is centered on *.*.21.3 and *.*.21.5. These two
hosts had unauthorized access to other hosts for multi-
ple times. The latter hosts also sent back abnormal data
for multiple times. Based on these facts, we infer hosts
*.*.21.3 and *.*.21.5 suspicious for attack attempts.
The abnormal access data generated by *.*.29.4 and
*.*.20.129 may be the sensitive data that needed to be
send back after successful invation. In addition, hosts
*.*.27.170, *.*.27.33, *.*.25.1, *.*.76.2 also suffered
unauthorized access, but did not send abnormal data
back. The attack may fail.

2) Suspected to be the intruder controlling multiple
hosts and then launch a DDoS attack
DDoS attacks are generated by flooding a system
from several machines [25]. In some DDoS attacks,

the intruders need to detect vulnerabilities and spread
malicious applications to the hosts first for mak-
ing them zombie hosts. In Fig. 9, there were scan-
ning or abnormal data transmission events between
*.*.13.31, *.*.20.16, *.*.154.2, and *.*.20.17. These
events may be the detection, intrusion and malicious
program deployment process before the DDoS attack.
Host *.*.21.16 and *.*.20.17 are likely to be the zom-
bie hosts for launching DDoS attack to *.*.159.2,
*.*.143.2.
It should be noted that the DDoS events in alerts have
been aggregated. Its full alert content is ‘‘DDoS event:
DDoS event from [IP1] et al. to [IP2]’’. As a result,
the DDoS event detection of our method is not aimed at
flooding data, but the complete process of well-planned
attacks including preparation and invasion phase.

3) Suspected to be the host being compromised, and
launching large number of attack attempts
Fig. 10 shows an attack graph consisting of 18 hosts.
In this graph, host *.*.17.1 was first subjected to a large
number of scan events and abnormal access data from
hosts *.*.105.133, *.*.137.168, *.*.105.134. After that,
multiple attacks, including scan events, sending abnor-
mal access data, and DDoS events, were launched
to other hosts by *.*.17.1. It can be inferred that
*.*.17.1 may be compromised and then launched a
wide range of scan and attack attempts.

Experiment 2: There are 631,862 original alert logs in win-
dow 2. After reconstruction and deduplication of the alerts,
node modeling and child node aggregation were performed.
Table 8 shows the result. After deduplication, the alerts was
reduced to 66.68% of the original alerts. After aggregation,
the branches were reduced to 1.17% of the original.

After the pruning by negative causal correlation and noise
reduction by non-cascading events, as shown in Table 9,
165 attack chains were finally obtained, accounting for
2.57% of the original. Followings are three instances of
Experiment 2:

1) Suspected to be the intruder trying to raise local
privileges
Fig. 11 is centered on the host *.*.1.3, which is sub-
jected to a large number of unauthorized accesses
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FIGURE 8. Suspected to be hosts *.*.21.3 and *.*.21.5 sending back data in Experiment 1.

FIGURE 9. Suspected to be the intruder controlling zombie hosts *.*.21.16 and *.*.20.17 and launch
a DDoS attack in Experiment 1.

TABLE 8. Data deduplication and aggregation effect of Experiment 2.

TABLE 9. Attack chains processing effect of Experiment 2.

from *.*.1.2, and several illegal logins from 127.0.0.1.
There are also alerts about host *.*.1.3 itself, which
are opening illegal ports and attempting to access the
root user through SSH. Based on this, we can infer
that *.*.1.2 may be the source of the attack. The large
number of unauthorized access to *.*.1.3 may be attack
attempts. An illegal port of IP 127.0.0.1 may be utilized
to hijack a service on the host *.*.1.3 by the intruder.
Then the intruder may login the local user through this
service. Besides, it is suspicious that host *.*.1.3 tried
to login itself through SSH. This may be the intruder’s
action after getting the root privilege.

2) Suspected to be a continuous intrusion
Fig. 12 can be roughly divided into two lines. One
is that host *.*.1.30 invaded host *.*.1.32, and then

host *.*.1.32 invaded host *.*.1.2. The other is host
*.*.1.24 invaded host *.*.1.2. The targets of the two
intrusion lines are both host *.*.1.2. Therefore, the host
*.*.1.2 can be inferred to be the target of the attack.

Experiment 1 and Experiment 2 successfully extract the
attack events. It indicates that the negative causal correlation
can ensure the causal relevance of the attack chains and our
model is valid.

C. GLOBAL ANALYSIS
This section conducts experiments on the total of 7,915,376
alert logs from a certain area of the China grid from
April 16th, 2018 to June 19th, 2018. The time window tw is
3 days, and the non-cascading event time interval tn is 2 hours,
the time window slides forward every 1 day.
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FIGURE 10. Suspected to be *.*.17.1 is compromised after a large number of attack attempts in Experiment 1.

FIGURE 11. Suspected to be the intruder try to raise local privileges after the successful invasion in Experiment 2.

FIGURE 12. Suspected to be a continuous intrusion in Experiment 2.

As shown in Fig. 13, data preprocessing can effec-
tively remove redundancy. The average deduplication rate is
31.48%, the highest rate is 48.44% and the lowest rate is
13.75%. The denoise effect is better when the amount of data

FIGURE 13. Comparison of data volume before and after alert
deduplication in a region of China Grid.

is larger. As shown in Fig. 14, the child node aggregation
method can effectively reduce the number of branches of the
alert graph. The number of branches is reduced by an average
of 90.25%, up to 99.20%, and at least 97.85%.
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FIGURE 14. Comparison of number of branches before and after child
node aggregation in a region of China Grid.

FIGURE 15. Comparison of the number of attack chains before and after
the pruning and denoise in a region of China Grid.

As shown in Fig. 15, pruning and noise reduction can
greatly reduce the unreasonable noise in the attack chains,
and the number of attack chains is basically controlled to
102 magnitude. The number of the unreasonable chains is
reduced by an average of 95.68%, up to 99.71% and at
least 85.12%.

FIGURE 16. Attack graph related data in a region of China Grid, including
the number of attack graphs, the total number of nodes in all graphs,
the maximum number of nodes in a single graph, and the average
number of nodes per graph.

Fig. 16 describes the number of attack graphs, the total
number of nodes in all graphs, themaximum number of nodes
in a single graph, and the average number of nodes per graph.
The data of the attack graphs is relatively stable. The average
number of attack graphs is 32.02, with a maximum of 54 and
a minimum of 10, The average number of nodes per graph
is 6.68. Except for the ‘‘unauthorized access’’ alert which
broke out aroundMay 15th, the size of the other attack graphs
is reasonable, which is convenient for network administrator
to analyze. When the attack broke out around May 15th,
the attack graphs could become too large to analyze. In the

face of this problem, the information of the attack chains can
be used as an auxiliary analysis means to quickly locate the
abnormal point.

D. EFFICIENCY ANALYSIS
In this section, we will compare the results and efficiency
of the attack chain extraction under different time windows
tw and get a suitble window size. The parameter tw is set
to 1 day, 2 days, 3 days and 4 days, while the time range
is 1 week, 2 weeks, and 3 weeks. We recorded the data
of the attack chain initial construction, pruning by negative
causal correlation, noise reduction by non-cascading events,
the resource consumption, CPU usage, and memory usage.
The resource consumption is evaluated in terms of program
time consumption.

Fig. 17(a) shows that in the initial construction of the
attack chain, the program running time increases with tw
and time range. At the same time, Fig. 17(b) shows that the
number of attack chains also increases. Fig. 18(a) shows that
in the pruning by negative causal correlation phase, the time
consumption increases with tw and time range. At the same
time, Fig. 18(b) that the number of attack chains generated
also increases.

Fig. 19(a) shows that in the noise reduction by non-
cascading event phase, the time consumption increases with
tw and time range. At the same time, Fig. 19(b) shows that the
number of attack chains generated also increases.

The time consumption of Fig. 17(a)-19(a) shows that as
time window tw increase from 1 day to 4 days, the time
consumption also increases. When tw increases from 3 days
to 4 days, the total time consumption is increased by
5535.64 seconds. When tw is increased from 2 days to 3 days,
the total time consumption only increases by 995.96 seconds.
When tw increases from 1 day to 2 days, the total time
consumption increases by 1375.91. second.

Fig. 17(b)-19(b) shows that as the time window tw
increases from 1 day to 4 days, the number of attack chains
increases. Fig. 18(b) shows the number of final attack chains.
The number doesn’t increase as the time consumption. When
tw changes from 1 day to 2 days, the number of attack chains
increases by 2297. When tw changes from 2 days to 3 days,
it increases by 1851. When tw changed from 3 days to 4 days,
it increases by 579.

Fig. 20 and Fig. 21 show the CPU consumption percentage
and memory consumption of the program running under dif-
ferent windows.With the increasing of tw, the CPU consump-
tion is basically unchanged, and the memory usage increase
accordingly. The maximum memory consumption is 3.05GB
when tw = 4.

Considering the number of attack chains generated and the
consumption of resources by different windows tw, a good
balance is achieved when the value of tw is 3.

VII. MODEL EVALUATION ON DARPA 2000 DATA SET
To verify the validity of the model, we did another experiment
with DARPA 2000, a complete DDoS attack dataset [26].
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FIGURE 17. (a) Represents the time consumption of chains building under 4 windows sizes. (b) represents the number
of preliminary chains under 4 windows.

FIGURE 18. (a) Represents the time consumption of pruning under 4 windows. (b) represents the number of chains
after pruning under 4 windows.

FIGURE 19. (a) Represents the time consumption of denoise under 4 windows. (b) represents the number of chains
after denoise under 4 windows.

FIGURE 20. CPU consumption percentage under 4 windows.

Result shows the model can successfully detect the attacks
and draw the attack graphs.

A. DARPA 2000 LLS_DDOS1.0 DATA SET
LLS_DDOS 1.0 in the DARPA 2000 intrusion scenario data
set of MIT Lincoln Laboratory contains a complete real-time

FIGURE 21. Memory consumption under 4 windows.

distributed denial-of-service attack scenario. The scenario
includes four steps as followings:

1) Probing the network to find the hosts who had the
Solaris sadmind vulnerabilities.
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TABLE 10. Negative causal rules.

TABLE 11. Negative causal rules of LLDOS1.0.

2) Finding valid hosts and using Daemon Buffer Overflow
vulnerability in the Solaris operating system to install
malicious programs into the three hosts.

3) Using Sadmind Exploit to get root privileges of the
hosts.

4) Launching a DDoS attack against the final target.
Data span is 69 minutes and 44 seconds, which is less than

3 days. So tw is not set. The non-cascading event timewindow
tn is set to 10 minutes.

B. NEGATIVE CAUSAL RULES SETTING
Before prepocessing, we used snort as our IDS to transform
network traffic to alerts. Since the attacker used the random
IP address to attack the target host, MAC address detection
for DoS attack was also added to the transformation.There
are 32 kinds of alerts, 638 in total.

In order to formulate negative causal rules, we divided
the alerts into 12 categories: WEB access response (suc-
ceed), WEB access response (failed), Login (succeed), Login
(failed), WEB invalid access, SNMP invalid access, RPC

sadmind invalid access, TELNET/RSH access, DoS, MS-Sql
overflow attempt, Attack detection and Other abnormal
package. Table 10 shows the corresponding negative causal
rule and Table 11 shows the corresponding alerts for each
categories.

C. RESULT ANALYSIS
As shown in Table 12, after deduplication, the amount of data
has been reduced to 55.64% of the original. After aggrega-
tion, the branches were reduced to 67.83%. After the pruning
by negative causal correlation and noise reduction by non-
cascading events, as shown in Table 13, 64 attack chains
were finally obtained, accounting for 2.57% of the original
number 2773.

Fig. 22 shows the generated attack graph, in which the
DDoS attack are detected. Attacker with 202.77.162.213 first
probed several intranet hosts including 172.16.112.10,
172.16.115.20, 172.16.112.50 et. al with Sadmind Overflow
vulnerabilities. After gaining privileges, DDoS attack was
launched against target hosts 131.34.1.31.
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TABLE 12. Data deduplication and aggregation effect of LLS_DDOS.

TABLE 13. Attack chains processing effect of LLS_DDOS.

FIGURE 22. Attack graph of LLS_DDOS.

In addition to this truly completed attack, other attacks can
also be found in the attack graph. Host 172.16.114.50 used
TELNET to communicate with 172.16.112.149 after receiv-
ing two suspicious WEB visits from host 172.16.112.50, and
then 172.16.112.149 attempted to login 135.13.216.191 for
multiple times and failed; Similarly, host 172.16.112.194 used
TELNET to communicate with 194.7.248.153 after receiving
login attempt and Sadmind request, and then 194.7.248.153
attempted to login 135.13.216.191 for multiple times and
failed.

According to the above analysis, the first DDoS attack
is the real attack among the three events. The successful
extraction of the attack shows the validity of our model. The
other two attacks may be fake or failed attacks. It can be seen
that although the model of this paper is designed for SGMS,
it can also effectively detect the attack events in the internet
environment.

In this paper, the correlation time window tw is set to 3 days
for the balance between resource consumption and attack
chain generation. However, a smart attacker may attempt to
evade detection by slowing down the attack steps. If the time
difference between different attack steps is longer than the
window we set, it can be a challenge to find them.

From the experiment of DARPA 2000, we can see some
attacks detected are fake or uncompleted attacks. In order

to reduce the false positives rate, we will try to improve
the complexity of negative causal rules on the current basis.
In addition, as an openly available data set, DARPA 2000 is
classic but outdated. We only use it to verify our method.
If the method is applied in current network, the corresponding
negative causal rules should be constructed according to the
network and alert characteristics.

VIII. RELATED WORK
The current security event analysis methods mainly include
alert preprocessing and alert correlation.

A. ALERT PREPROCESSING
It mainly includes two parts: alert aggregation and false pos-
itives removal. The purpose of alert aggregation is to reduce
the number of alerts. In the process of alert aggregation,
either the source or destination IPs with the same alert content
are aggregated to form super alerts [17]; an alert event with
the same source and destination IP is aggregated [24]; alert
events with the proper time order and in an attack life cycle
are aggregated [28]. However, aggregation through the alert
content or IP will loss some information, thereby hiding the
path of the attack along the IP hops. Besides aggregation,
common security analysis system will also remove the low-
level or false-reported alerts judged by itself since to reduce
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the number of alerts [10]. This can apparently improve the
accuracy of attack detection.

B. ALERT CORRELATION METHODS
Alert correlation method is a method based on attack inten-
tion analysis. In order to achieve their goal without being
discovered, attackers usually carefully plan and take multiple
actions. The actions are related to each other and effect each
other. These methods using alerts’ correlation to find attacks
are called alert correlation analysis methods. Alert corre-
lation analysis methods are used in Early Warning System
(EWS) [29], which can detect attackers’ malicious inten-
tions at an early stage. The methods are usually divided
into following three ways [30]: similarity-based correlation
analysis, attack sequence-based approach and attack sample-
based machine learning.

1) Similarity-based association analysis method.
Yang et. al. [31] designed algorithm to calculate the
similarity between alerts and classify the alerts with
high similarity into one attack scenario. In addition to
clustering with alert similarity, alert level, frequency,
etc., Humphrey et. al. [15] also introduced supporting
evidence, such as vulnerability data, logs and network
resources to ensure clustering quality. Fredj [8] aggre-
gated the alerts of the same intruder. Actually, in smart
grid, it is possible to remove positive alerts or group
alerts belonging to different attacks into one category.

2) Attack sequence-based approach usually needs an
established attack pattern library, and then match the
attack behaviors with the patterns. Ramaki et. al. [17]
use the attack knowledge library to initialize the attack
correlation rules. New attack forms are continuously
discovered in the following data mining and cor-
relation. Then keep enriching the correlation rules.
Wang et. al. [32] traversed the vulnerability nodes to
generate attack graph according to the collected system
vulnerability information, network topology informa-
tion and attack sequences. After optimizing the attack
graph, the best attack route can be then calculated based
on the attack cost and benefit.

3) Attack sample-based machine learningmainly uses the
statististics to learn the attack mode in the sample.
BayesianModel [18], [33], HiddenMarkovModel [20]
and Deep Learning Model [34] are several common
models. Machine learning-based methods have devel-
oped rapidly and been widely used for the advan-
tages of high accuracy and the ability to discover the
unknown attacks. Compared with rule methods, these
methods usually have lower efficiency and higher false
positive rate for getting better generalization.

It is difficult to apply the above methods directly in SGMS,
since the labeling of attacks and the establishment of attack
pattern library are difficult. Therefore, the existing analysis
methods need to be adjusted based on the data, environ-
ment and requirement of the SGMS. We propose a multi-
step attack detection model based on alerts of SGMS, which

can automatically analyze the alert data and extract attack
events.

In order to make it more intuitive for network admin-
istrators to understand the attack situation in the network,
we usually visualize the attack events. A common kind of
attack graphs take alerts as the nodes. In these graphs, each
edge is assigned a weight that corresponds to the number of
repetition of the transition from an alert to another [8], [25].
Holgado et. al. [20] apply the Hidden Markov Model to ana-
lyze the attack events, and use the hidden state obtained to
describe the various stages of the attack. Therefore, the nodes
of the attack chains are the hidden states of the attack. These
two kinds attack graphs can judge the progress of the attack
through the alert or state change, but there is no concern about
the specific IPs involved. Ramaki et. al. [17] also use alerts as
the attack graph nodes. But the difference is the source and the
destination IPs of the nodes are indicated in the graphs.

IX. CONCLUSION
In this paper, a multi-step attack detection model based on a
small amount of priori knowledge is proposed for SGMS. The
paper takes the two-month alert logs in an area of China Grid
to verify the model and successfully extract attack chains.
The model first obtains the alert graphs through IP corre-
lation, and aggregates the child nodes of the alert graphs,
reducing the average branch by 90.25%. Then pruning by
negative causal correlation and non-cascading events denoise
are used, which caused the average removal of 95.68% of the
attack chains. After efficiency analysis, we found the model
resource consumption and the number of attack chains are
balanced when time window tw is 3 days. During tests, there
are on average of 32.02 attack graphs per window and on
average of 6.68 nodes per attack graph.
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