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ABSTRACT Monocular depth estimation is a foundation task of three-dimensional (3D) reconstruction
which is used to improve the accuracy of environment perception. Because of the simpler hardware require-
ment, it is more suitable than other multi-view methods. In this study, a new monocular depth estimation
algorithm based on graph convolution network (GCN) is proposed. The pixel-wise depth relationship is
introduced into conventional convolution neural network (CNN) to make up the disadvantage of processing
non-Euclidian data. And the remaining depth topological graph information on the spatial latent variables
are extracted based on a multi-scale reconstruction strategy. The final results on NYU-v2 depth dataset and
KITTI depth dataset demonstrate that our algorithm improves the quality of monocular depth estimation,
especially there are several little objects coexisting in the scenes.

INDEX TERMS Monocular depth estimation, reconstruction strategy, graph convolution network.

I. INTRODUCTION
In the field of image processing, the deep learning networks
have achieved a great success in object classification and
detection [1]. The main reason is that the features extracted
by deep learning model are better than artificial features.
In monocular depth estimation problem, the deep learning
network also has a great advantage over the traditional image
algorithm. Due to lack of disparity data, the traditional algo-
rithms can not infer depth information directly. And this
kind of task can be regarded as an ill posed problem [2].
At present, the main methods aim to find depth clues from
images, and estimate the depth based on the depth clues.
Therefore, the accuracy of depth estimation depends largely
on the quality of depth clues.

The previous researches [3]–[5] had constructed a frame-
work to estimate depth based on monocular camera. And it
was composed of an encoder network, a decoder network
and a refined network. In this framework, one image as input
would be projected into the sparse feature space through
the encode network. Those kind of sparse features repre-
sented depth clues. The decoder network projected the sparse
featrues into the dense depth space by upsampling layers.
And the refined network improved the coarse results from
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the decoder network. Recent evidences [6]–[9] suggest that
a delicate loss function based on graphic mechanism could
effectively improve the training results.

Most of the depth estimation algorithms use CNN to extract
feature information, but they always ignore the charactistic of
depth information. Because the distribution of depth map is
unconsistent with RGB images. For example, each pixel value
in the depth map is not only related to the neighboring pixel
values, but also to other pixels of the same depth value. CNN
will be limited by the receptive field of convolution kernel.
In order to solve this problem, the dilation convolution layer
is proposed in [10], which expands the convolution kernal to a
scale, and fills the unoccupied area with zero. The purpose of
this layer is to expand the receptive field of kernel with same
size of parameters. In addition, it further reduces the informa-
tion loss in deep networks than the pooling operation. In this
way, the model keep a balance between expanding receptive
field and maintaining image size. The other method improv-
ing the receptive field is to introduce attention mechanism.
Xu, et al. [7] proposed an attention-based CRF. Li, et al. [11]
proposed a channel-wise attention mechanism for diverse
scenes. Through the attention mechanism, the learning ability
of the model for local features can be enhanced.

Recenlty, Zeller’s [12] work proposed a conception about
motifs which represents the regularly appearing substructures
in scene graphs. They proved that the performance of the
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tasks such as scene detection, scene classification and pre-
diction classification can be significantly improved by the
relationship information of objects. Dai, et al. [13] proposed
a deep relational network based on object detection, pair
filtering and joint recogition, which improve the accuracy
of visual recognization when the visual cues are ambigu-
ous. The scene graph is a data structure proposed by [14],
which is composed of object nodes and relationship edges.
They extracts the scene graph from text based description to
generate scene images. Those mentioned algorithms inspired
us that the relationship of pixel-level depth clues have the
potential of improving the quality of monocular depth esti-
mation. And the challenge of monocular depth estimation can
be divided into two problems: 1. How to extracted the depth
association information in pixel-level. 2. How to process the
non-Euclidean information from the former problem.

Our main contributions are as follow:
1. A reconstruction strategy of depth topological graph is

proposed to extract non-Euclidean depth information.
2. The graph convolution network has been firstly

employed in the monocular depth estimation task. And a
reconstructed depth topological graph loss has is proposed to
constrain the training processing.

3. A multi-scale graph nerual network module has been
proposed to ifmprove the accuracy of depth map.

In this paper, Sect. II introduces the related works about
monocular depth estimation. Sect. III describes the method
proposed in this paper, introducing the reconstruction strategy
of depth topological graph and the graph nerual network in
detail. Sect. IV shows the experiments and corresponding
analysises. Sect. V is our conclusion.

II. BACKGROUND
A. BACKBONE NETWORK
The structure of encoder networks is mainly derived from
several popular network structures in the image recognition
tasks. For example, residual neural networks (ResNet) [15],
which introduces the residual learning into the model to
deepen the layers of network and improve the accuracy.
Densely connected convolutional networks (DenseNet) [16]
is proposed to alleviate the problem of gradient vanishing
and reduce the number of parameters. Recently, squeeze and
excitation networks (SENet) [17] give an excellent idea about
learning importance of each feature map channels. Those
three networks all achieve sound performance on image
recognition benchmarks. And we select the above ResNet
and SENet for comparison in our experiments to project
high-dimensional features into low-dimensional space with
ImageNet initial parameters.

B. SKIP CONNECT
The degeneration of neural networks is one of the main
difficulties of training deep networks. In [18], the researchers
point out that only a small number of hidden units in each
layer change their activation values for different inputs,

and most hidden units make the same respond to different
inputs. Thus, the rank of the whole weight matrix is not
high. With the increase of network layers, the whole rank
becomes lower after multiply operation. In order to enhance
the sensitivity of features in deep layer, the features of shallow
layers are directly passed to the deep layers. It is so called
skip-connect, making up the feature lost in deep layer. It is
employed in the CNN encoder network and decoder network
to improve the representation of low-dimensional feature
maps.

C. GRAPH NEURAL NETWORK
Graph neural network(GNN) was first proposed by [19].
The representation of the target node was learned through
recurrent neural network(RNN) to propagate the neighbor-
ing information, which is further illustrated by [20]. But it
consumes too much computation when updating the state of
each node. Bruna, et al. [21] proposed convolution based on
spectral graph theory, which directly performs convolution
on the graph structure by aggregating the information of
adjacent nodes. Deferrard, et al. [22] employed Chebyshev
polynomials to fit convolution kernels and to reduce compu-
tational complexity, and this model was called ChebNet. [23]
proposed the first-order approximation method to simplify
ChebNet, which verifies that the graph neural network model
can be used to deal with the semi-supervised classification of
nodes in graph data in a fast and scalable way. In our work,
the depth graph convolution network is designed based on the
first-order ChebNet.

III. PROPOSED METHODS
Monocular depth estimation is an ill-posed problem, because
it loses many depth clues when 3D objects are mapping
into 2D plane. In previous researches, most of researchers
focus on training a model based on a deep CNN with an
elaborate loss function. However, there is no method to rep-
resent the depth relationship among nearest pixels. Inspired
by Johnson’s work [24], we regard the pixels as the targets.
It is assumed that the location relationship of targets can
be obtained when we are observing a scene, the distance
of the targets can be inferred according to this kind of clue.
And the greatest problem is how to process the non-Euclidean
location relationships.

In this section, we firstly introduce the depth topological
graph as the depth clue, and then the GNN is employed to
process this kind of information insteading of CNN. The
principle is to estimate the depth value by calculating the
adjacencymatrix and eigenvector in the depthmap. The detail
of our model is described through the following sections:

A. DEPTH GRAPH CONSTRUCTION STRATEGY
Generally speaking, any data can establish its corresponding
topological graph in the normed space. For example, an image
could be projected into a regular grid in the Euclidean space,
but the relationships of all pixels are in the non-Euclidean
domain. The main disadvantage is that CNN is unable to
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handle the data of non-Euclidean domain. In the early stage,
the target node information can be learned from neighbor
node information by recurrent neural networks [25]. This
learning process is computationally expensive and can not be
applied in the complex graphs.

The previous researches have been considered that the
results of encoder network play an essential role in domain
translation between image and depth. It aims to represent hid-
den latent into a low-dimensional vector space, but node topo-
logical graph and node information are applied into encoder
network hardly. In order to introduce explicit relationship into
the depth estimation network, we propose a GNN module,
which introduces topological structure and node features into
the network through graph convolution operation to enhance
the feature representing of hidden layer.

Algorithm 1 Reconstruction Strategy of Depth Topological
Graph
Input: Coarse depth: dcoarse
Output: Adjacent matrix: A
1: function ExtractGraph(dcoarse,Rscale,m, n)
2: dpool ← Pooling(dcoarse)
3: dnoised ← Noised(dpool,Rscale)
4: θ ← Interval(dpool,m, n)
5: ReconGraph(dnoised , θ,m, n) :
6: (1)Set{Ni,Nj} ← Paired(dnoised , θ,m, n)
7: (2)A← Dropout(Set{Ni,Nj})
8: return A
9: end function

The biggest challenge of monocular depth estimation
based on GNN is the construction of depth topological graph,
because there is no gound truth for supervised learning.
A strategy is proposed to generate a depth topological graph
from coarse depth map dcoarse which is obtained by the
pre-trained model. The Rscale is the scale of Guass noise. And
m, n are the width and height of scale. The summarization of
this strategy is described as Algorithm.1, which is composed
of four steps:

1. Down-sampling the predicted depth map from coarse to
fine, operation is Pooling(•) and output is dpool ;

2. Adding the Gauss noise to improve the robustness. The
Operation is Noised(•) and the output is dnoised ;

3. Calculating the depth interval threshold θ by Interval(•);
4. Generating the graph by operation ReconGraph(•)

which is composed two sub-steps: first step is obtained the
adjcent nodes Set{Ni,Nj} by the operation Paired(•), and the
dropout operationDropout(•) is employed in the second step.

Finally, the multi-scale depth topological graphs are
obtained.

1) DOWN-SAMPLING OPERATION
In the first step of the depth graph construction, the depth
reconstruction error will be brought into the depth graph
inevitably based on the coarse depth map. For reducing the
error and obtaining different scales, there are three pooling

method, max pooling [26], stochastic pooling [27] and mean
pooling, are applied in down-sampling operation.

The depth map are divided into several blocks with same
shape. Those kind of blocks can be regarded as nodes in the
graph, whose edge information is composed of the depth val-
ues and the location of blocks. The purpose of down-sampling
operation is to obtain the depthmaps for graph reconstruction.

Max pooling: for each channel (assuming there are N
channels), the maximum value of the feature map of the
channel is selected as the representative of the channel.
An N-dimensional vector representation can be obtained.
In Fig.1, the block depth value is selected by the biggest value
of d1, d2, d3, d4.

FIGURE 1. Down-sampling processing.

Stochastic pooling: the value of feature graph in a pooling
window is normalized. It is selected according to the prob-
ability value of normalized feature graph. In other words,
the probability of being selected with large element value
is also high. In Fig.1, the probability of those four blocks
are calculated depend on the depth value and the summa-
tion of depth value. The d value is chosen according to the
probability.

Average pooling: all the pixel values of the feature map of
the channel is averaged so that each channel gets a real value.
In Fig.1, the d value is obtained by mean operator on d1, d2,
d3, d4.

FIGURE 2. Depth map from different pooling method (a)Max pooling
(b)Stochasitc pooling (c)Average pooling.

The following three pooling method provides a solution to
get appropriate depth map in different scales, which is shown
in Fig.2. According to the comparsion results of the exper-
iment in Sect. IV-D(1), the max pooling method achieves
the best performance. This method will be employed in the
strategy of depth graph construction.

2) NOISE TOLERANT
Due to the reconstruction error of the coarse-grained depth
map, the Gauss noise is proposed to be added into the
coarse-grained depth map to avoid the reconstruction error
learned by the model during training. It is well known that
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adding noise into the model in training can improve the
generalization ability of the model [28]. Equation (1) shows
the processing of ading noise. However, how to set the appro-
priate noise is still an unsolved problem. At present, Gaussian
noise in any direction is added to the depth map. However,
after this operation, there is negative values existing. It obvi-
ously does not conform to the physical meaning of depth map
and the depth value needs to ensure non negativity. In addi-
tion, there is a upper bound constraints on depth values.When
adding Gauss noise, we need to ensure that the depth values
do not exceed the upper bound constraints, shown in (2,3).

dnoised = dpool + Rscale • Noise(0, 1) (1)

s.t. max(dnoised ) ≤ max(dgt ) (2)

min(dnoised ) ≥ 0 (3)

where Rscale is used to constrain the scale of Gauss noise
Noise(0, 1). As a hyperparameter, the optimal parameters
need to be determined in Sect. IV-D(2). The depth of dnoised
should be limited by max depth of ground truth dgt . And the
Fig.3 shows the result of adding the Gauss noise.

FIGURE 3. Depth map in different scale based on max pooling with the
Gauss noise and Rscale = 0.2.(a) 8 × 10 (b)15× 19 (c)29× 38 (d)57× 76.

3) MULTI-SCALE INTERVAL THRESHOLD
Convolution neural network is composed of several convo-
lution layers. For the same input, the features extracted by
different convolution layers are different. With the deepen-
ing of network layers, the information structure of feature
information is from high dimension to low dimension, and
the expression ability is from shallow layer to deep layer.
And the output of the last convolution layer have lost a lot
of original information. Using this kind of feature has a good
performance in classification tasks, but the effect is not ideal
in information reconstruction tasks such as depth estimation.
In order to improve the quality of reconstruction, we propose
a multi-scale method according to the image pyramid tech-
nology, which combines the feature information of different
scales with the depth topology graph. So that the features of
different scales can retain the topology information.

Depending on multi-layer CNN, the multi-scale features
can be obtained easily. But the depth topological graph with
different scales still need to be determined. According to
the perspective principle of camera, the depth information
is featured with the characteristic that there are dense depth
interval at near and sparse depth interval at far. Based on this
principle, the depth relationship of all adjacent pixels can not
be interpreted through a simple linear function. In addition,
the non-linearity relationship of depth value is very obvi-
ous. In order to obtain multi-scale depth topological graph,
a multi-scale interval threshold is proposed to determine the
depth interval between nodes in different scales. And this
parameter is also regarded as the radius of depth scope. If the
node is one adjacent pixel of the central node and their depth
value locates in the depth scope, they are considered to be
connected. The threshold can be obtained by (4):

θ(m,n) =
max(d̃)−min(d̃)

min(m, n)
(4)

where d̃ is the coarse-grained depth map. m is the rows
number. n is the columns number.

FIGURE 4. Depth graph based on prediction depth map with different
thresholds.

As shown in Fig.4, the nodes are connected with similar
depth value and position to construct the depth topological
graph. The θ(m,n) is depth interval threshold. The red circle
indicates the bigger scale of depth topological graph. And the
green circle indicates the smaller. Different values determine
the sparsity of graph.

4) GRAPH DROPOUT
In order to avoid the over-fitting phenomenon of graph con-
volution module in training, dropout operation is used during
constructing depth graphs at different scales. Different from
its usual applications in the feature layer of the network [29],
the dropout is applied in optimizing the value of adjacent
matrix that represents depth topological graph. In training,
we randomly drop edges from this matrix based on probabil-
ity p using samples from a Bernoulli distribution, which is
shown in (5,6):

Adrop = dropout(A) (5)

dropout(k, p) =

{
p if k = 1
1− p if k = 0

(6)
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FIGURE 5. Multi-scale depth graph with dropout. The first and second
rows show depth topological graphs with dropout probability p = 0 and
p = 0.5.

where p is the value of graph edge probability, and k is the
value of 0-1.

During testing, the dropout layer will be ignored. The depth
topological graph with dropout rate is shown in Fig.5:

B. GRAPH NEURAL NETWORK
As shown in Fig.6, our model contains three sub-networks.
There are two CNN networks and one GNN network. The
upper CNN networks freeze parameters according to the pre-
trained model which could infer a rough depth map. Depend-
ing on the depth topological graph strategy, the depth graph
can be obtained. In our experiments, the parameters of CNN
encoder networks are initialed by the ResNet or SENet based
on ImageNet. The output of bottom CNN networks will be
transformed to a new style processed by GNN.

1) GRAPH CONVOLUTION NETWORK
The goal of graph convolution network(GCN) is to
learn a function of mapping the depth features to the
low-dimensional vectors. GCN will preserve the topological
architecture of depth graph G = {X ,E}. Suppose that an
depth graph is constructed by the method in Sect. III-A, and
it is composed of X as xi for every node feature and E as ei for
every link between nearest nodes. In our model, the feature
X comes from the output of encoder layer and it is composed
of N nodes with (1 × D) feature. The node relationship can
be described as adjacency matrix A, which is a N ×N sparse
matrix.

The simplest neural network is Multi-Layer Percep-
tron(MLP) [30], which is composed of an input layer, a hid-
den layer and an output layer. This architecture is competent
for fitting the non-linear data. The GCN layer has the similar
structure of neural network, it can be written as a non-linear
function and shown in (9):

H (l+1) = f (H (l) ,A) (7)

where H(0) = X , l is the number of layers, A is adjacency
matrix, f (•) is the non-linear function shown in (10):

f (H (l) ,A) = σ (AH (l)W (l) ) (8)

where A is an adjacency matrix with N ×N and it represents
the relationship of nodes. H (l) are node features of the l − th
layer with N × D. When l is 0, H (0) is input X which is the
output of encoder network. W (l) is a trainable weight matrix
of the l − th layer with N × D(N is node number, D is the
shape of node feature). And the result is a matrix with N ×D.
σ (•) is a non-linear activation function like ReLU.
AH (l) means that summation of all the feature vector of

neighboring nodes. The first problem is that the node itself
is not considered in (10). Secondly, there is no available
method to normalize the adjacent matrix completely change
the scale of the feature vectors. The identity matrix is added to
adjacencymatrix for obtaining self-loop as Ã. And symmetric
normalization is applied in adjacent matrix, which is shown
in (11): AH (l) means that summation of feature vector of all
nodes and remains two problems. The first problem is that
the feature of node itself is not considered in AH (l), because
the diagonal values of A matrix are all 0. Secondly, there is
no available method to normalize the value of AH (l), because
every feature summation of nodes has different degree. Too
big degree or too small degree will lead to gradient vanishing
or explosion. To address the first problem, the identity matrix
is added to adjacency matrix for obtaining self-loop as Ã,
which is shown in(7):

Ã = A+ I (9)

where I is an unit diagonal matrix with N × N .

FIGURE 6. Network architecture. There are three sub-networks, depth graph generation network, feature network and depth graph
convolution network.
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And symmetric normalization is applied in ÃH (l) to avoid
graident vanishing and explosion, which is shown in (8):

H (l+1)
= σ (D̃−

1
2 ÃD̃−

1
2H (l)W (l) ) (10)

where D̃ is a degree matrix of Ã, D̃−
1
2 ÃD̃−

1
2 means that the

value of each row in the adjacency matrix is divided by the
degree of the corresponding node.

The GCN layer is defined as following Algorithm.2:

Algorithm 2Message Propagation of GCN

Input: Feature H l ,Adjacent Matrix,A Layer l
Output: New feature: H l+1

1: function Propagation(X ,A, l)
2: Ã← A+ I
3: H (l) ← Linear(H (l) )
4: H (l) ← Normlization(H (l) )
5: Hi(l+1)←

∑
j∈N (i)∪(i)

1√
D̃(i)
√
D̃(j)

(W (l)hj(l))

6:

7: H (l+1)
← σ (H (l))

8: return H (l+1)

9: end function

FIGURE 7. The architecture of depth graph convolution network.

2) NETWORK ARCHITECTURE
The graph model architecture is designed for keeping topo-
logical information within the latent variables. The model
is composed of two parts, which are encoder network and
decoder network.

As shown in Fig.7, the encoder network is composed of a
two-layer GCN, and the methmatical expressions are shown
in (11,12):

H (l)
= ReLU (GCN1(X ,A)) (11)

H (l+1)
= ReLU (GCN2(H (l),A)) (12)

It has to be noted that ReLU activation function has ability
of setting the output of some neurons as zero [31]. This oper-
ation reduces the interdependence of parameters and helps
avoid over-fitting problem. Thus, it is employed in the first
layer and second layer.

In the process of extracting depth relation feature in con-
volution module, only using depth map reconstruction error
to constrain model parameters constraints on graph data
also needs adding. Inspired by graph autoencoder(GAE)

model [32], we add a depth graph reconstruction layer in the
decoder network, and introduce a loss function to measure
the error of depth topological graph. This decoder layer is
composed of a simple inner production operation. The input
of decoder layer is the lantent variable vector H (l+1)(N ×D)
from encoder network. The reconstructed adjacency matrix
and prediction depth can be calculated by (13,14):

Â = sigmoid(H (l+1)H (l+1)T ) (13)

depth = GCN3(H (l+1),A) (14)

Since the adjacency matrix of depth topological graph is
a sparse matrix, the difference is too sparse to be observed
when using Euclidean distance to calculate similarity. The
dice loss [33] is introduced to measure the similarity between
reconstructed depth graph and ground truth depth graph.
In addition, multi-scale reconstruction errors are obtained by
averaging the dice losses at different scales, which is shown
in (15,16):

Dices =
2|Âs

⋂
As|

|Âs| + |As|
(15)

ldice = 1−
1
S

S∑
s=1

Dices (16)

where |Âs
⋂
As| represents the intersection of prediction adja-

cency matrix and ground truth. |Âs| and |As| representing pre-
diction adjacency matrix and ground truth. In (16), the coef-
ficient 2 in the molecule is due to the existence of common
elements between prediction adjacency matrix and ground
truth in the denominator. When they become more similar,
dice coefficients tend to be 1, and vice versa, to be 0.

Depthmaps from the natural scene can bemodeled roughly
by a limited number of smooth surfaces and step edges
according to [34]. Especially in the boundary of different
objects, the depth values between show obvious step changes.
Error depth value is often found on the discontinuous bound-
ary of an object. Errors around such strong edges are well
penalized by lgrad . The gradients of depth error is proposed
in [35], as shown in (17):

lgrad =
1
n

n∑
i=1

[
(∇xdi)2 + (∇ydi)2

]
(17)

where ∇x is the gradient operation on x axis, and ∇y is the
gradient operation on y axis. di is the depth value of i-th
pixel, n is the total number of pixels. Eigen’s [36] proposed a
scale-invariant mean squared error (SI-MSE) to measure the
relationships between points in the scene, irrespective of the
absolute global scale as shown in the (18):

lsi =
1
n

∑
i

di2 −
1
n2

(
∑
i

di)
2

(18)

where di is the depth value of i-th pixel, n is the total number
of pixels.

Finally, we define the loss by (19) as follow:

L = lsi + lgrad + λldice (19)

1002 VOLUME 8, 2020



J. Fu et al.: Monocular Depth Estimation Based on Multi-Scale GCNs

In traditional image recognition tasks, using one single
classifier is not good enough. The results of multiple clas-
sifiers are significantly improved by adding different weights
which is called boosting [37]. Inspired by this method,
we propose depth estimation structures at different scales.
The depth results at different scales are normalized into one
scale by bilinear interpolation method, and a set of weights
are obtained by training. The structure of GNN module is
shown in Fig.8.

FIGURE 8. Multi-scale GNN Module. S1 is 8 × 10, S2 is 15 × 19, S3 is 29 ×
38, S4 is 57 × 76.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
The NYU-v2 depth dataset [38] is composed of video
sequences from a variety of indoor scenes as recorded by
the RGB-D camera, Microsoft Kinect. The official splits for
464 scenes, 284 scenes for training and 180 scenes for testing.
The training dataset contains 50688 pairs of RGB images
and depths. Following [36], the original size (640 × 480) is
downsampled to (320 × 240) by bilinear interpolation, and
then crop their central parts to obtain images with (304 ×
228) pixels. For testing, we use the same official subset
of 654 samples.

To verified our method is capable in both indoor and
outdoor scenes, the KITTI depth dateset [39] is introduced
in our experiment. The ground truth depth information is
sampled by Lidar sensor which is extensively different from
samlped by rgbd camera sensor. The former provides us a
sparse depth value and the later provides a dense depth value.
In the surpvised training problem, dense depth value hasmore
reliable than sparse one. Following eigen’s spilt plan [36],
the training set contains 22600 RGB images and sparse depth
maps, then we crop the images into (1216 × 352) and resize
into (512 × 256). The testing set contains 697 RGB images
and sparse depth maps.

We implement our depth estimation networks based on
the public deep learning platform pytorch. And two NVIDIA
1080Ti GPUs have been used for training. The feature
encoder layer in the model is initialized by the pre-trained
with the ImageNet dataset [40]. And the parameters of coarse
depth networks are frozen according to [41]. The Adam
optimizer with an initial learning rate of 0.01. The learning is
reduced to one tenth of former value after 2000 iterations. The
weight of ldice are set as λ = 1. In all experiment, the batch
size is set as 8.

B. EVALUATION METRICS
The following accuracy measurements are used to evaluated
depth maps which are commonly employed in [6], [41]–[43],
d is the ground truth depth, d̃ is the prediction of depth:

Root mean squared error(rms):
√

1
n

∑
i
(di − d̃i)

2

Average log10 error(log10): 1
n

∑
i
|log10di − log10d̃i|

Average abstruct relative error(rel): 1
n

∑
i

|di−d̃i|
di

Accuracy with threshold(t): max( di
d̃i
, d̃idi

) = δ < t .

C. PERFORMANCE COMPARISION
In this section, we compare our method with [2], [6], [36],
[41]–[45], which represent the different typical methods
in monocular depth estimation. Reference [42] proposed
a multi-task model generating two predictions, depth and
surface normal. [6], [43] introduces the continuous CRF
into the CNN model. Eigen, et al. [36] is a multi-scale
model composed of coarse network and refined network.
Liana, et al. [41] is the encoder-decoder networks with
up-sampling blocks. Godard’s work [2] proposed a left-right
consistency constrain in training to improve the quality of
depth images.Atapour-Abarghouei, et al. [44] introduced the
style transfer to train models on a large amount of gener-
ated data and enhance the robust in the different scenes.
Fu, et al. [45] regards the depth regression problem as an
ordinal regression which is based on a depth discretization
strategy. This work achieved the first place in the Robust
Vision Challenge 2018.

According to the Table.1, the results based on NYU-v2
depth dataset of our method are compared with those of
existing methods in terms of the above-mentioned measure-
ments. The results of our method are close to the Fu’s work in
log10 and abstruct relative error and outperform in δ < 1.25,
δ < 1.252. Compared with the other four methods in rms,
log10, rel, our model with GNN network can reduce the error
in local depth estimation. The results in δ < 1.25, δ < 1.252

and δ < 1.253 indecate that our model improve the accuracy
of depth estimation.

Final predictions of five monocular depth estimation meth-
ods are shown in Fig.9, including the [6], [36], [41], [45],
and our models based on SENet. The results of following
algorithms have been listed in an ascending order. The predic-
tions of [36] are blur in the boundary of objects. According to
RMSE statistics of models in [36], [41], we can find that the
prediction error of later one is much smaller. In [6], the global
depth value achieves a desired accuracy, but the boundary
of objects still suffer from distortion. Our method shows
significant improvement, especially in terms of reconstructed
edges of objects. We can find the obvious boundary of small
structures, such as feet of chairs and bottles on the tables.
Those details are easy to be ignored by other exsiting work.

According to the Table.1 and Fig.10, our model outper-
forms [2], [36], [43] in KITTI depth comparision. Because
of introducing the synthetic depth training data, [44] is more
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FIGURE 9. Results of NYU-v2 depth dataset. The first row shows the input images. The second row shows the
ground truth depth map. From the third row to the last are the prediction of different algorithms [6], [36], [41], [45]
and ours model based on SENet-154.

TABLE 1. Comparision on the depth datasets.

robust than those three models. However, it is sensitive with
lighting. Once the scene changed suddenly, the result of depth
estimation is not accurate. Our model avoids the unstability
of the changing scenes by reconstruction of depth topology
graph which provides one kind of efficient depth clues to
improve the quality of depth images. There is still a small gap
between Fu’s [45] work, but the results show that our method
adapt the indoor and outdoor scenes.

D. ABLATION STUDY
Due to the sparsity of the depth values from KITTI depth
dataset, the color information can not match the depth one

pixel by one pixel. Thus, the depth topological graph may
produce large errors in different scales. In this part of experi-
ments, we use the NYU-v2 depth dataset to train and validate.

1) POOLING METHOD
According to [46], the error of feature extraction mainly
results from two aspects: (1) the increasing of neighbor-
hood domain leads to the increasing of variance of eigen-
values; (2) errors in convolution layer parameters lead to
deviations in estimating mean values. In Sect. III-A(1),
three pooling methods are introduced to reduce this kind
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FIGURE 10. Results of KITTI depth dataset. The first row shows the input images. The second row shows the ground truth depth
maps. From the third row to the last are the prediction of different algorithms [2], [36], [44], [45] and ours model based on
SENet-154.

TABLE 2. Comparision of three pooling methods.

of error. The mean-pooling operation reduces the first error
and background information of the image remaining. The
Max-pooling operation improves the second error and retains
texture information. As for the stochastic pooling operation,
the probability is firstly assigned to the pixels according to
their numerical size, then the depth map is down-sampled
according to the probability. It is similar to a mean-pooling
operation in global feature maps and the max-pooling opera-
tion in local feature maps.

According to the relative depth error from Table.2,
the experimental results show that the max pooling operation
achieves the best performance among other pooling meth-
ods on the relative error. Thus, the max pooling operation
is chosen to improve the depth map error in the following
experiments.

2) THE SCALE OF GAUSS NOISE
The stochastic pooling method introduces randomness to
enhance the generalization ability of the network. But it is

TABLE 3. Comparision of different Rscale of the Gauss noise.

more complex because the occurrence of the current depth
value needs to be selected according to the probability. To bal-
ance the generalization ability and the complexity, the Gauss
noise directly introduced into the depth information. How-
ever, the scale of Gaussian noise needs to be determined
through experiments. Rscale is defined as a factor reflecting
the scale of the Gaussian noise. And the evaluation metrics
of results is shown in Table.3:

When the scale of Gauss noise is too small, the predicted
depth changes slightly, and the result is infinitely close to the
situation without noise, which is not conducive to improve
the generalization ability of the model. When the scale of
Gaussian noise is too large, the predicted depth will be dis-
torted, and the results of the model will deviate from the true
value. According to the evaluation metrics graph in Fig.11,
we find that when Rscale = 0.4, the performance of the model
is outstanding. And the model has faster convergence speed.
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FIGURE 11. GNN model with different scale of the Gauss noise.

3) THE PROBABILITY OF GRAPH DROPOUT
When training the depth map based on small scale, the model
is prone to over-fit. In traditional convolutional neural net-
works, dropout operation is introduced to avoid over-fitting.
When residual values propagates forward, it can stop the acti-
vation of a neuron with a certain probability p, which makes
the model more generalized. Probability p does not depend
too much on some local features. But in the process of graph
convolution, it is necessary to disconnect the edges between
nodes in the graph properly to prevent to over-fitting. In this
way, some residual can not be transmitted back, improving
the diversity of features.

As shown in Fig.12 and Table.4, when the probability is
close to 1.0, the converge speed is slow. When the probability
is close to 0.5, the model display the best performance in first
1K step and achieve convergence quickly.

4) DICE LOSS
According to the GNN networks, two results will be obtained,
one is the depth map, and the other is the reconstruction graph
of the node topology. Previous studies use scale interval depth
loss and grad loss to directly calculate the error of depth value,
so as to improve the training of parameters. The purpose of
reconstructing depth topological graph is to ensure that the
output features of GNN encoder could remain this kind of
information. In order to measure the reconstructed result of
the topological graph, the Dice loss function is introduced as

the criterion. The value range of Dice loss is between 0 and 1.
When the value of loss closes to 0, the reconstruction result
is more similar with ground truth. However, the parameter λ
of Dice loss will be determined by experiments with single-
scale. When λ is set as 1.0, the dice loss convergence faster
and more stable. The results are shown in Fig.13.

5) MULTI-SCALE GNN MODULE
In order to further improve the performance of the network,
a multi-scale GNN model is proposed. At the beginning,
the model is desgined to remain the depth topological infor-
mation of feature maps in every layer, in order that the depth
of the pixels can be predicted more robustly. The multi-scale
model is composed of several single-scale models. Once the
scale of the model increases, the complexity of the model
increases. The number of parameters at different scales can
be obtained by (20):

Numparam =
S∑
s=1

(
Nodes

L∑
l=1

Cinls × Cout
l
s + B

l
s

)
(20)

And the complexity of the different scales are shown
in Table.5:

We use SENet as backbone network to extract the fea-
tures of each layer. The size of the input image is 114 ×
152, and the characteristic scales are 8 × 10, 15 ×
19, 29 × 38, 57 × 76. In the comparison experiemnt,
the evaluation metrics of the CNN model, the single-scale
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FIGURE 12. GNN model with different probability of graph dropout.

TABLE 4. Comparision of different probability of graph dropout.

FIGURE 13. Dice loss with different λ.

GNN model, the single-scale GNN model with multi-loss
and the Multi-scale GNN model with dice loss are shown
in Table.6, the results and the detail of prediction depth are
shown in Fig.14:

The difference between the CNN model and the single
scale GNN model is that the latter has a graph convolution

TABLE 5. Parameter statistics of Multi-scale.

TABLE 6. Comparision with different models.

module layer to instead the depth regression layer of the
former. And the comparison results show the GNN mod-
ule outperform the depth regression layer in all indicators.
Although a ResNet-based model is proposed by [41] which
achieves similar performance as ML-GNN does, the decoder
layer of former is composed of multi-layer fast-up convolu-
tion networks, which is different with the depth regression
layer of the CNN model. This comparision shows that our
GNN decoder layer can be regarded as a candidator decoder
layer for the monocular depth estimation. Table.6 shows that
the multi-scale GNN model achieves the best performance.
Thus, the multi-scale GNN model really contributes to the
performance. According to the Fig.14, most depth deviation
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FIGURE 14. GNN model with different scales.(a)Single-scale GNN
(b)Single-scale GNN with multi-loss(c)MS-GNN with multi-loss.

of single-scale model are rectified by the multi-scale model,
especially there are several little objects coexisting in the
scenes.

V. CONCLUSION
In this paper, we have proposed a monocular depth estimation
based on the multi-scale graph convolution networks. Com-
pared with the traditional convolution methods, it has three
improvements. First, a new construction strategy of depth
topological graph is proposed. It guarantees the quality of
the extracted information through 3 steps, down-sampling,
adding the Gauss noise, linking nodes with multi-scale inter-
val threshold. Second, a new multi-scale graph convolu-
tion networks is proposed to remain the depth relationships
according to the depth topological graph. Third, a multi-
task loss function is proposed, which includes the depth
loss and the reconstruction depth topological graph loss. The
former constrains the prediction of depth directly. The latter
is competent for the sparse adjacency matrix and accelerates
convergency of GNN. Finally, our method is verified in the
NYU-v2 depth dataset and KITTI depth dataset, and has
the better performance in comparison with other existing
methods, especially in estimating the depth of small objects
and boundaries.
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