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ABSTRACT Compared with ground magnetic measurement and aeromagnetic survey, downhole magnetic
measurements can provide more abundant and accurate distribution information of ore deposits. Measure-
ment of the full magnetic tensor gradient affords more information than either traditional magnetic total
field or three, orthogonal axes, vector field measurements. Gradient field measurements are less influenced
by any time and/or spatial changes of the Earth’s magnetic field during the measurement period. CSIRO
has developed the world first downhole magnetic full tensor gradiometer and carried out field tests. This
gradiometer is based on a rotation of two fluxgate vector field sensors to enable frequency separation of the
common mode from the gradient signals. Reposition of the gradiometer about three, nominally orthogonal
axes, enables measurement of the full gradient tensor with one pair of fluxgate sensors. This paper describes a
method to improve the accuracy of this type of gradiometer. System errors have been analyzed and classified
according to the effect of the errors on the measurement accuracy. Major errors include scale factor error
of the two fluxgates, misalignment and motion errors of these two sensors relative to the model system,
and transformation errors when moving from the sensor to the instrument coordinate frame of reference.
Minor errors include errors of finite length measurement parameters, errors associated with ignoring high-
order tensors, the deviation of the rotation axis from ideal, and the temperature co-efficient of the fluxgates’
signals. We have developed the error models for the major errors and calibrated the full-tensor gradiometer
by using the two independent tensor rotation invariants. 1000 simulations with random errors show the root
mean squares of relative error are less than 8% after calibration. The calibration technique was applied to
field trail measurements made using a gradiometer that was re-oriented multiple times around a fixed point
while measuring a known gradient. Applying the calibration method resulted in an improvement of the tensor
magnitude accuracy by a factor of 3.74. This result validated the calibration method.

INDEX TERMS Downhole measurement, error analysis, invariant calibration, magnetic tensor gradiometer,
rotating modulation.

I. INTRODUCTION
Large scale, total field, airborne and ground-based geophys-
ical magnetic surveys are routinely used for the detection,
localization and characterization (DLC) of magnetic targets
[1]. Such surveys are undertaken both in the iron ore industry
and in the non-ferrousminerals sector for determining the dis-
tribution of copper, nickel, chromium, diamonds [2]. In these
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surveys the signal to noise ratio (SNR) of any magnetic
anomaly is influenced both by the sensor sensitivity and the
separation between the sensor system and the anomaly. For
ground based or airborne surveys, the minimum achievable
separation is dictated by physical constraints which may
result in a low SNR. Another limitation of any total field
survey is the inability to detect magnetic anomalies with spe-
cial structures whose magnetic potential is constant [3], for
example a uniformly magnetized slab [4]. By contrast, when
deploying a down-hole magnetic sensor, there is a potential to
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enhance the SNR due to the closer proximity between sensor
and target and also the potential for determiningmore detailed
structural information about the target by measuring three,
nominally orthogonal, vector field components [5]. While
it is common for downhole instruments to include vector
magnetometers, the measured signals are highly dependent
on the orientation of the probe with respect to the Earth’s
magnetic field, thus leading to difficulties in interpreting the
vector measurements [2]. These difficulties can be overcome
by measuring the magnetic field gradients [6].

Measurement of the gradients of the three orthogonal mag-
netic field components [7] is becoming a powerful technique
for adding value to geophysical surveys. Compared with the
total magnetic field and three-component magnetic vector
measurements, the magnetic full tensor gradient measure-
ment can provide more information [8] and is less influenced
by the temporal and spatial changes of the Earth’s magnetic
field [9]. It also has the advantage of relative insensitivity to
orientation errors [10].

The three main methods used for measuring the magnetic
gradient tensor are [11]: First-order Taylor series approxi-
mation [12], rotation modulation [13], and string vibration
[14]. First-order Taylor series approximation seems suitable
for a full-tensor SQUID gradiometer system with a small
baseline, but it cannot be applied practically in a downhole
environment because of the requirement for cryogenic cool-
ing and the limited space available inside the drill hole. The
string vibration method can only measure partial components
of magnetic gradient tensor and it is difficult to combine
multiple modules inside a drill hole to enable a full tensor
measurement.

The rotation modulation method separates the different
derivatives of a magnetic scalar potential through rotating
sensors to obtain second-order gradient tensor components.
The DC and low-frequency performance of the instrument
is not limited by the performance of the sensors and the
gradiometer imbalance [15] is no longer directly determined
by the engineering precision [13]. CSIRO has developed
the world first downhole magnetic full tensor gradiome-
ter using two fluxgates based on the principle of rotation
modulation [2].

To further improve the measurement accuracy of the ten-
sor gradiometer, the system errors have been analyzed and
classified according to the effect of errors. Major errors
include scale factor errors of the two fluxgate magnetome-
ters, misalignment and motion errors of these two sensors
relative to the model system, and errors that occur when
transforming from sensor coordinates to the instrument frame
of reference. Minor errors considered are errors due to the
finite length of the measurement, errors due to ignoring
high-order tensors, errors due to mechanical deviation of the
rotation axis, and temperature drift. We have developed the
error models for major errors and calibrated the full-tensor
gradiometer by using the two independent tensor rotation
invariants. The correctness of the calibration method was
initially verified by simulation experiments and then by a

field experiment in an area with a low gradient, magnetic
field.

II. PRINCIPLE OF MEASUREMENT AND PROPAGATION
OF ERROR
A. PRINCIPLE OF MEASUREMENT
The core idea of the rotation modulation method is to convert
the signal in the spatial domain into the time domain through
rotating magnetic sensors, to transform the measurement
into the frequency domain using a Fourier Transform thus
enabling separation of the different order magnetic gradient
tensors by frequency selection.

Assume thatB denotes themagnetic field vector, with three
components Bx , By, and Bz. Define the centre point of the
gradiometer as the origin. The Taylor series about the origin
of a function B (x, y, z) is

B (x, y, z) =
∑∞

n=0

1
n!
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∂
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Accordingly, three components of the magnetic fieldBα (r)
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where α = x, y, and z. Bαx = ∂Bα
/
∂x, Bαy = ∂Bα

/
∂y,

Bαz = ∂Bα
/
∂z are the second derivatives of the magnetic

scalar potential. Similarly, Bαxx denotes the components of
the third-order gradient tensor.

When α takes x, y, and z respectively, we can get nine
components of second-order tensor which can be expressed
by

G =


∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By
∂x

∂By
∂y

∂By
∂z

∂Bz
∂x

∂Bz
∂y

∂Bz
∂z

 =
 gxx gxy gxz
gyx gyy gyz
gzx gzy gzz

. (3)

Only five components of G are independent because
the divergence and curl of the magnetic field are equal
to zero in source-free regions [4]. G can be rewritten
as

G =

 gxx gxy gxz
gxy gyy gyz
gxz gyz −gxx − gyy

. (4)

A magnetic full-tensor gradiometer can measure all these
five independent components.

If we ignore the third- and higher order of the magnetic
gradient tensor due to the fact that higher-order gradients fall
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FIGURE 1. Schematic of two magnetic vector sensors, S1 and S2 placed at
two points r1 and r2, relative to the origin of the coordinate system, and
which rotate about the Z-axis with angular velocity ω.

off more rapidly with distance than lower-order ones, and
only consider the x-y plane, (2) can be simplified to

Bα (r) + Bα (0)+ xgαx + ygαy = Bα (0)+ gα · r. (5)

where gα denotes the vector (gαx , gαy). Therefore, the differ-
ences in the magnetic field components at two points are

Bα (r1)− Bα (r2) + gα · (r1 − r2) . (6)

That means the second-order tensor can be obtained
according to the magnetic fields measured by the sensors.
In the rotating modulation method, two magnetic vector sen-
sors are placed at two points r1 and r2 relative to the origin of
the coordinate system, called the sensor coordinate system,
tangentially to a circle of radius ρ, and rotate about a Z-axis
with angular frequency ω, as shown in FIG. 1.

Magnetic sensitivity vectors and position vectors of the two
sensors are respectively expressed by

S1 = S1 (cos θ, sin θ) , S2 = −S2 (cos θ, sin θ). (7)

r1 = ρ (cosθ, sinθ) , r2 = −ρ (cosθ, sinθ). (8)

According to (5), the magnetic fields at the points of the
sensors can be respectively expressed by

Bα (r1) + Bα (0, 0)+ ρgαx cos θ + ρgαysinθ. (9)

Bα (r2) + Bα (0, 0)− ρgαx cos θ − ρgαysinθ. (10)

The sensor output voltage can be expressed by

V = [S1 · B (r1)+ S2 · B (r2)]. (11)

where B(r1) and B(r2) are the components of the magnetic
field vector in the direction of the sensitive axis of the fluxgate
sensor [13].

The output voltage is also a function of time due to the
rotation of the sensors in an arbitrary magnetic field. After
combining the trigonometric functions, expanding, and col-
lecting harmonics, the output voltage is

V = V0 +
∑∞

n=1
[Vne cos (nωt)+ Vno sin (nωt)] . (12)

where V0 is the dc term, and Vne and Vno are the magnitudes
of the real part and the imaginary part of the nth harmonic of
the rotation frequency, obtained from the Fourier transform
of the output voltage V , respectively.

In (12) the coefficients

V1e + ςvBx (13)

V1o + ςvBy (14)

V2e + ξv
(
gxx − gyy

)
(15)

V2o + 2ξ vgxy. (16)

where

ξv =
1
2
ρ (S1 + S2) , ςv = (S1 − S2) . (17)

Similarly, when sensors are re-oriented to rotate about the
X-axis and the Y-axis, four more equations for second-order
tensor components can be obtained.

U2e + ξu (gzz − gxx) , U2o + 2ξugxz,

W2e + ξw
(
gyy − gzz

)
, W2o + 2ξwgyz. (18)

The diagonal tensor components can be solved by

gxx +
V2e
3ξv
−
U2e

3ξu
, gyy +

W2e

3ξw
−
V2e
3ξv

, gzz +
U2e

3ξu
−
W2e

3ξw
.

(19)

Accordingly, the full tensor can be expressed by
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V2e
3ξv
−
U2e

3ξu

V2o
2ξ v

U2o

2ξu
V2o
2ξ v

W2e

3ξw
−
V2e
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2ξw
U2o

2ξu

W2o

2ξw

U2e

3ξu
−
W2e

3ξw

. (20)

However, as there was insufficient space within the down-
hole probe to accommodate three gradiometers rotating
simultaneously about three orthogonal axes, the mechanical
design was configured to enable a pair of rotating sensors
to measure the full magnetic gradient tensor as is shown in
FIG. 2.

The main idea is to meet the limitation of space at the
expense of time. We rotate the sensors on a disk into three
different sensor coordinate systems, C i (i = 1, 2, and 3)
in sequence. The equations in sensor coordinates are trans-
formed to a common instrument coordinate system, C , and
solved to yield the magnetic gradient tensor in C , which is
called data extraction. The X-Y plane is defined by the base
of the instrument. The Z-axis is normal to the X-Y plane and
forms an axis of symmetry for the instrument in the sense that
the azimuths of spin axes for the three sensor coordinate sys-
tems are distributed about the instrument’s Z-axis. The three
different sensor coordinate systems are obtained by rotating
to angles of 0◦, 120◦, and 240◦ about the instrument Z-axis
respectively and tilting the X-Y plane through an angle 35.2◦

to form an orthogonal set of C i axes. Design consideration
may dictate a choice of tilt angle other than 35.2◦ [16]. For
all angles other than those close to 0◦, the system design is
capable of measuring the full magnetic gradient tensor.
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FIGURE 2. Schematic of the mechanical structure and rotation principle.
There are two modes of rotations about two axes: one mode is rotation
about the Z-axis through discrete 120◦ increments and the other is
continuous rotation about the Z’-axis. The optimal angle between Z’- and
Z-axis is 35.2◦. The angle of rotation of the two sensors about the Z’ axis
is measured using an optical shaft encoder.

III. PROPAGATION OF ERROR
The measurement process of the downhole tensor gradiome-
ter includes four steps, shown in FIG. 3. Each step contributes
different types of measurement errors that then propagate to
the following steps. At the final step their overall combination
limits the accuracy of the measurement of the magnetic gra-
dient tensor components relative to the instrument coordinate
system. The functions of each step and their relevant errors
are described as follows:
Step 1: Rotate the magnetic sensors into three sensor coor-

dinate systems and measure the magnetic field signals when
rotating about Z’-axis with angular frequencyω. Errors in this
step are the two individual fluxgate scale factor errors, non-
zero offsets, temperature induced change in their sensitivities

FIGURE 3. Schematic of propagation of error. The measurement process
is divided into four steps. The first three steps describe the measurement
in a single sensor coordinate system, including rotation of the sensor
system into one of the three discrete positions 0◦, 120◦ or 240◦, see FIG
6(a), transforming time domain single into frequency domain signal by
FFT, and calculating the magnetic gradient components, relative to the
single sensor coordinate. The final step is to determine the full magnetic
gradient tensor, relative to the instrument coordinate system, from the
three sets of gradient components measured with respect to their
individual sensor coordinates.

and positional errors in the sensor coordinate system such as
misalignment of the fluxgates from ideal positioning and any
offset of the rotation center.
Step 2: Transform the time domain signal into the fre-

quency domain by a Fast Fourier Transform (FFT). The
errors in this step are determined by the number of samples
per rotation of the two sensors and the number of rotations
per FFT.
Step 3: Solve the magnetic gradient tensor in the single

sensor coordinate system one by one using (13) - (16). The
errors in this step are that higher order terms are ignored when
extracting the real and imaginary parts.
Step 4: Solve themagnetic gradient tensor in the instrument

coordinate system C by transforming between the C i and C
systems using linear equations. Errors in this step include
angle errors when rotating into C i systems, and any mechan-
ical installation error that results in non-overlapping of the
Z-axis origins for three orientations of the sensor system as
described in FIG 6 (a).

The errors are classified into major and minor errors and
analyzed respectively.

IV. ANALYSIS AND MODELING FOR MAJOR ERRORS
A. ERROR MECHANISMS AND REPRESENTATIONS
1) FOR SCALE FACTOR ERROR
Magnetic sensors with the same specifications may not have
exactly the same sensitivity, which means that two sensors
may have slightly different output voltages in an identical
magnetic field; this can be described as a scale factor error.
FIG. 4 shows the equivalent schematic of the scale factor error
in the downhole magnetic tensor gradiometer.

2) MISALIGNMENT ERRORS WITH RESPECT TO THE MODEL
SYSTEM
There are two kinds of installation errors in a sensor coordi-
nate system. One is misalignment of sensors, which makes
the sensors non-tangential to the disk and leads to changes of
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FIGURE 4. Schematic of scale factor error in the downhole magnetic
tensor gradiometer. Differing scale factors are represented by the
different sizes of the tangentially mounted sensors.

FIGURE 5. (a) Schematic of misalignment of sensors. The ideal sensor
positions are tangential to the black solid line. (b) Schematic of offset
between the rotation center and the center of the disk. The black dot is
the ideal rotation center and the red dot is the actual rotation center. The
red dashed lines are the actual motion tracks of two sensors.

the directions of the magnetic sensitivity vectors. The other
is the offset between the rotation center and the center of the
disk, which makes the two sensors asymmetric to the rotation
center and affects the motion tracks of two sensors and the
directions of the magnetic sensitivity vectors. FIG. 5 shows
schematically the two types of installation errors.

3) FOR DATA EXTRACTION
The axis about which the two sensors are rotated is optimally
tilted at an angle, λ, of 35.2◦ with respect to the overall
system’s Z-axis, see FIG 6 (b). Re-orientation of the sensor
system about the Z-axis in three increments of 120◦, FIG 6
(a), will then generate an orthogonal set of axes that allows
measurement of the full tensor with just one set of rotating
sensors. Manufacturing constraints introduce offsets in the
accuracy of the 120◦ re-orientations and in the angle λ. Pro-
vided that these angular offsets are constant variations over
repeatedmeasurement cycles they can be corrected by system
calibration. Any variation of these offsets from one measure-
ment cycle to the next will impact on the accuracy of the
determination of the tensor components.

B. ERROR MECHANISMS AND REPRESENTATIONS
1) FOR SCALE FACTOR ERROR
Considering the scale factor error and zero offset, the error
model can be expressed by

BM = SBR + E . (21)

where BM is the measured value of the magnetic sensor, BR
is the true magnetic field, S denotes the scale factor, and E

FIGURE 6. (a) The rotation angles about Z-axis are 0◦, 120◦ and 240◦ with
a small angle error εi , respectively. (b) The rotation angle about Y-axis is
35.2◦ with a small angle error 1λ.

FIGURE 7. Schematic of the misalignment of two sensors. α1 and α2 are
angles that sensors deviate from the Y-axis. The blue dashed lines
represent the ideal locations of sensors.

denotes the near static, non-zero offset of themagnetic sensor.
Extraction of the gradient signal using frequency domain
filtering of the sensor signal, ensures that the offset term is
excluded from the measurement of gradient.

2) MISALIGNMENT ERRORS
First, assume that the misalignment of two sensors leads two
error angle α1 and α2, which are very small and generally
within 3◦. The magnetic sensitivity vectors of the two sensors
in the sensor coordinate system can be expressed by

S1 = S1cos α1 (cosθ, sinθ)

S2 = −S2cos α2 (cosθ, sinθ). (22)

Second, there is an offset between the rotation center and
the center of the disk due to limited manufacturing precision.
Therefore, the ideal coordinate origin O (0, 0) is shifted to the
actual coordinate origin O’ (x0, y0).
Let the ideal radius of the disk be ρ, so the positions of

the two sensors change from (ρ, 0) and (−ρ, 0) in the ideal
coordinate system to (ρ+ x0,−y0) and (−ρ+ x0,−y0) in the
actual coordinate system, Ca. The actual rotation radii of the
two sensors in Ca are

ρ1 =

√
(ρ + x0)2 + y20 ρ2 =

√
(ρ − x0)2 + y20. (23)
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FIGURE 8. Schematic of the actual coordinate system with a red center. θ1
and θ2 are the actual starting angles, ρ1 and ρ2 are the actual rotation
radii. ρ is the ideal rotation radius of the disk.

The position vectors of the two sensors in Ca are

r1 = (ρ1cos (θ − θ1) , ρ1sin (θ − θ1))

r2 = − (ρ2cos (θ + θ2) , ρ2sin (θ + θ2)) . (24)

where

θ1 = arctan
−y0
ρ + x0

, θ2 = arctan
−y0
−ρ + x0

. (25)

The magnetic sensitivity vectors of the two sensors in Ca
are

S1 = S1 (cos (θ − θ1) , sin (θ − θ1))

S2 = −S2 (cos (θ + θ2) , sin (θ + θ2)) (26)

The combination of these two installation errors is shown
in FIG. 9.

Combining (22) and (26), the magnetic sensitivity vectors
are

S1 = S1cosα1 (cos (θ − θ1) , sin (θ − θ1))

S2 = −S2cosα2 (cos (θ + θ2) , sin (θ + θ2)) . (27)

The output voltage is

V = S1· B1+S2· B2 + υ. (28)

In the sensor coordinate system, the voltage harmonic
coefficients for the magnetic tensor components with errors
can be expressed by

V2e

+
1
2
ρ (S1cos α1cos θ1+S2cos α2cos θ2)

(
gxx−gyy

)
−ρgxy

×

[
S1cos α1sin θ1−

1
2
S2cos α2 (sin θ2+sin (2θ2))

]
(29)

V2o

+
1
2
ρ (S1cos α1sin θ1−S2cos α2sin θ2)

(
gxx−gyy

)
+ρgxy

×

[
S1cosα1cosθ1+

1
2
S2cosα2 (cosθ2+cos (2θ2))

]
(30)

FIGURE 9. Schematic of combination of the misalignment of two sensors
and offset between the rotation center and the center of the disk.

Equation (29) and (30) can be rewritten as:

V2e =
1
2
ρ
(
gxx − gyy

)
R− ρgxyS

V2o = ρgxyT +
1
2
ρ
(
gxx − gyy

)
U . (31)

where

R = S1cos α1cos θ1 + S2cos α2cos θ2

S = S1cos α1sin θ1 −
1
2
S2cos α2 (sin θ2 + sin (2θ2))

T = S1cos α1cos θ1 +
1
2
S2cos α2 (cos θ2 + cos (2θ2))

U = S1cos α1sin θ1 − S2cos α2sin θ2

3) FOR DATA EXTRACTION
Let gixx , g

i
yy, andg

i
xy (i = 1, 2, and 3) be the magnetic tensor

components in a three axes coordinate systemC i, and gxx , gyy,
and gxy be the magnetic tensor components in the instrument
coordinate system C .

Gsi = RiGIRTi ,Ri = UQFi. (32)

where i = 1, 2, and 3.
Gs1,Gs2, andGs3 represent three magnetic gradient tensors

in the C i system obtained by rotating the sensor system to
angles of 0◦, 120◦, and 240◦ about the instrument Z-axis. GI
represents the tensor in the C i system. F, Q, and U represent
rotation matrixes which are formed by the Z-X-Z’ rotation
order with the rotation angles ϕi, λ, and ψ respectively.

GI =

 gxx gxy gxz
gxy gyy gyz
gxz gyz gzz

 , Gsi =

 gixx gixy gixz
gixy giyy giyz
gixz giyz gizz


(33)

Fi =

 cosϕi sinϕi 0
−sinϕi cosϕi 0

0 0 1


Q =

 cosλ 0 −sinλ
0 1 0
sinλ 0 cosλ


U =

− cosψ sinψ 0
sinψ cosψ 0
0 0 1

 . (34)
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where ϕ1 = 0◦, ϕ2 = 120◦, ϕ3 = 240◦, and λ = 35.2◦.
ψ represent the angle between the 0◦ output of the shaft
encoder used to determine the angle of the rotating sensor
pair with respect to the system’s Z’ axis, see FIG 2.

To include the contribution of the error in these angles, the
coordinate transformation matrixes can be re-expressed as

Fi =

 cos (ϕi +1εi) sin (ϕi +1εi) 0
−sin (ϕi +1εi) cos (ϕi +1εi) 0

0 0 1


Q =

 cos (λ+1λ) 0 −sin (λ+1λ)0 1 0
sin (λ+1λ) 0 cos (λ+1λ)


U =

− cos (ψ +1ψ) sinψ (ψ +1ψ) 0sin (ψ +1ψ) cosψ (ψ +1ψ) 0
0 0 1

 . (35)

The variation in these angles is not expected to exceed (say)
1◦ in which case, the non-linear trigonometric function can be
reasonably linearized by a Taylor series expansion.

cos (x +1x) + cos x + cos′x ·1x = cos x − sinx ·1x

sin (x +1x) + sin x + sin′x ·1x = sin x + cosx ·1x.

(36)

Therefore, the trigonometric functions in the three coordi-
nate transformation matrices can be expressed by

cos (ϕi +1εi) + pi − qi1εi, sin (ϕi +1εi) + qi + pi1εi,

cos (λ+1λ) + a− b1λ, sin (λ+1λ) + b+ a1λ,

cos (ψ +1ψ) + c− d1ψ, sin (ψ +1ψ) + d + c1ψ

(37)

The combined coordinate transformation matrix between
the sensor coordinate system and the instrument coordinate
system is

Ri =

 PiAC − QiD PiD+ QiAC −BC
−PiAD− QiC PiC − QiAD BD

PiB QiB A

 (38)

where

Pi = pi − qi1εi, Qi = qi + pi1εi, A = a− b1λ

B = b+ a1λ.C = c− d1ψ, D = d + c1ψ.

The tensor components in C i system can be expressed by
the tensor components in C system

gixx = (QiD− APiC)
2 gxx + 2 (APiC − QiD)

× (PiD+AQiC) gxy
+ 2BC (APiC − QiD) gxz
+ (PiD+ AQiC)2 gyy − 2BC (PiD+ AQiC) gyz
+B2C2gzz (39)

gixy = (DAPi + CQi) (QiD− APiC) gxx
+ [(DQiA− CPi) (QiD− APiC)

− (DAPi + CQi) (PiD+ AQiC)] gxy

+

[
DB (QiD+ 2APiC)+ C2QiB

]
gxz

+ (DAQi − CPi) (PiD+ AQiC) gyy

+

[
DB (PiD+ 2AQiC)− C2PiB

]
gyz − DB2Cgzz

(40)

giyy = (DAPi−CQi)
2 gxx+2 (DAQi−CPi) (DAPi+CQi) gxy

− 2BD (CQi − APiD) gxz
+ (DAQi−CPi)2 gyy+2BD (CPi−DAQi) gyz
+B2D2gzz. (41)

Equations (39), (40), and (41), the tensor components and
their differences can be rewritten as follows:

gixx − g
i
yy = M1igxx +M2igxy +M3igxz
+M4igyy +M5igyz +M6igzz

gixy = N1igxx + N2igxy + N3igxz
+N4igyy + N5igyz + N6igzz. (42)

where Mmi and Nni represent coefficients in front of the
tensor components and their differences in the C system.
Combining (31) and (42), the error model of the rotating

magnetic tensor gradiometer can be expressed by
V2e (1)
V2o (1)
V2e (2)
V2o (2)
V2e (3)
V2o (3)

 = 0102


gxx
gxy
gxz
gyy
gyz
gzz

 . (43)

where V2e(i) and V2o(i) represent the voltage harmonic coef-
ficients V2e and V2o measured in the ith sensor coordinate
system and

01 =



1
2ρ 0
0 ρ

0 0
0 0

0 0
0 0

0 0
0 0

1
2ρ 0
0 ρ

0 0
0 0

0 0
0 0

0 0
0 0

1
2ρ 0
0 ρ



02 =


a11b11 a21b21 a31b31
b11a11 b21a21 b31a31
a12b12 a22b22 a32b32

a41b41 a51b51 a61b61
b41a41 b51a51 b61a61
a42b42 a52b52 a62b62

b12a12 b22a22 b32a32
a13b13 a23b23 a33b33
b13a13 b23a23 b33a33

b42a42 b52a52 b62a62
a43b43 a53b53 a63b63
b43a43 b53a53 b63a63


where amibni = MmiR+ NniS, bmiani = NmiT +MniU

V. ANALYSIS FOR MINOR ERRORS
A. ERRORS OF FINITE-LENGTH PARAMETERS AND
IGNORING HIGHER-ORDER TENSORS
The signals from the two rotating sensors are sampled at
regular angular increments of their rotation. The size of these
increments is determined by an optical shaft encoder. Sam-
ples from a number of complete rotations are converted via
a Fast Fourier Transform (FFT) into the frequency domain
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to enable filtering of gradient signals from other signal com-
ponents, e.g. the background field. The finite sample length
and number of samples per revolution limits the spectral
resolution of the FFT and thus introduces errors. The size
of these errors can be reduced by averaging a number of
FFTs. Provided that the signals are pre-filtered to meet the
Nyquist sampling criteria, the sensor rotation rate was found
experimentally to have little influence on the size of error sig-
nals. For both modelling and during experiments, the samples
per revolution (SPR) was 512 and the number of revolutions
included in each FFTwas 64, thus the total number of samples
per FFT was 32,768. Thus the FFT’s spectral resolution is
1/32,768 times the rotation frequency. This provides sharp
filtering of the desired signal at the second harmonic from
any background signal which occurs at the fundamental fre-
quency. The sensors were rotated at 3.90 r/s. Total time for a
measurement along any one axis was 25 seconds, comprised
of 16 seconds for sampling and 9 seconds for movement from
one axis to the next.

Another kind of error is introduced if, when solving
the second order tensor in the sensor coordinate system,
the higher-order tensors are ignored.

In order to demonstrate the effect of errors caused by finite-
length parameters and ignoring higher-order tensors, we cal-
culated the relative errors of tensor magnitudes between the
true value and the measured value of tensors with these two
errors in simulation experiments. Tensor magnitude is often
used to evaluate the whole performance of the magnetic ten-
sor gradiometer and can be obtained by the tensor contraction√∑

i,j=x,y,z G
2
ij.

The simulation procedure was undertaken as follows.

1) A magnetic dipole was placed near to the center of the
disk and the true value of the magnetic gradient tensor
at the center formed by the magnetic dipole calculated
using an equation described in Sui [17], [18]. The true
value of the tensor magnitude was computed by the
equation of tensor contraction

2) The distributions of the magnetic field formed by the
magnetic dipole was calculated. Two ideal sensors were
placed in the simulated magnetic field and rotated
through 512 equal angles per revolution. 64 cycles of
these modelled rotations were processed using a FFT.
The second harmonic in-phase and quadrature terms
were used to derive the tensor components for each of
the three sensor coordinate systems describe by (15)
and (16). The full tensor components were obtained
using the data extraction process described in FIG 3.

3) The relative error between the magnitude of the mod-
elled measured tensor and the modelled true tensor was
calculated for each simulation.

The simulation was repeated 1000 times. During these
simulations the magnitude of the magnetic dipole moment
was changed randomly from 10 A·m2 to 10 000 A·m2 cor-
responding to the range of expected moments for ore bodies
containing magnetite with different concentrations and grain

FIGURE 10. The modelled relative errors of tensor magnitudes are small
when changing the magnitudes and directions of the magnetic dipole
moment.

sizes. The direction of the magnetic dipole moment, with
respect to the overall system’s Z-axis, was varied randomly
through a range of ± 180◦ in both the inclination and dec-
lination angles. The simulation results for the relative errors
of the measured tensor magnitudes with respect to the actual
tensor magnitudes are shown in FIG. 10.

The maximum relative error is less than 0.025%, which
proves that the combined errors, caused by the finite sample
length and from ignoring the higher-order tensors, are very
small and can be ignored.

B. ERROR OF THE DEVIATION OF THE ROTATION AXIS
FROM IDEAL
Theoretically, when the measurement system rotates about
the Z-axis through the angles 0◦, 120◦ and 240◦, the origins
of three sensor system coordinates should coincide at a single
point O, as shown in FIG. 11(a). However, because any prac-
tical rotation mechanism will be non-ideal, the three origins
will be displaced from the Z-axis, as is depicted by the red
lines in FIGs 11 (a) and 11 (b).

According to equation (5), if the application satisfies the
condition of ignoring higher order tensors when calculating
the second-order tensor, the second-order tensor will be con-
stant around the rotation center. Therefore, the error caused
by the deviation of the actual Z-axis is very small and can be
ignored.

C. THE TEMPERATURE CO-EFFICIENT OF THE FLUXGATES’
SIGNAL
The scaling of a fluxgate’s output is to some extent temper-
ature sensitive. This variability in sensitivity is due to tem-
perature induce changes in the magnetic permeability of the
fluxgate’s core material [19]. For example, for the Bartington
Mag612 fluxgate, the stated temperature coefficient of scale
factor is 0.007% of full scale /◦C. The normal temperature
gradient downhole is of the order 3 ◦C /100 m [20]. If the
survey depth is 1000 meters and the full range of magnetic
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FIGURE 11. (a) Schematic of the deviation of the Z-axis. The red dashed
lines represent the actual Z-axis. (b) Schematic of actual positions of
three origins. The black point is the ideal position of the disk center and
the red dashed circle is the actual motion of the disk center.

field is 70 000 nT, then the change of temperature can reach
30 ◦C and the scaling of the fluxgate can vary by up to 147 nT.
FIG 12 shows the result of an experiment that measured

the temperature coefficient of two similar fluxgates over the
expected temperature range of downhole operations. The
plots of variation of measured field as a function of tempera-
ture show that the two fluxgates have near identical tempera-
ture coefficients with the greatest mismatch of 0.94% of the
measured field about 50000 nT. The difference structure used
in our downhole tensor gradiometer can reduce the influence
of temperature drift effectively to introduce 0.12% error in
the tensor components.

VI. INVARIANT CORRECTION OF THE DOWNHOLE
MAGNETIC TENSOR GRADIOMETER
Tensor invariants are the constant quantities after the rotation
of the tensor’s frame of reference. Two non-zero independent
invariants of the magnetic gradient tensor are:

I1 = −
1
2

∑
µ,ν=x,y,z

G2
µν (44)

I2 = |G| . (45)

Optimal correction coefficients can be obtained by using
these two rotation invariants [21].
Step 1: As the second-order tensor only has 5 independent

components, the error model shown in (43) can be rewritten
by

Vm =


V2e (1)
V2o (1)
V2e (2)
V2o (2)
V2e (3)

 = 0′
10

′
2


gxx
gxy
gxz
gyy
gyz

 = KGt (46)

FIGURE 12. The variation of the measurements of two fluxgates with the
magnetic field of 54183 nT and the temperature varies from 63 ◦C to
36 ◦C.

where 0
′
1 and 0

′

2 are 5∗5 sub-matrixes of 01 and 02. Vm =
(V2e(1), V2o(1), V2e(2), V2o(2), V2e(3))T, Gt = (gxx , gxy, gxz,
gyy, gyz)T.
The invariant calibration method needs the error matrix

K to be an approximate unit matrix, so we transform it into
approximate unit matrix by using elementary row operations
and thus (46) can be re-expressed as

Vu = KuGt . (47)

Then the correction model is

Gt = K−1u Vu = HVu. (48)

where Ku is the error matrix, H is the reverse matrix of Ku.
There are 25 coefficients in H, denoted as hij.
Step 2: Obtain the correction coefficients by using the

property of two invariants and the least squares method [22].
Then the corrected tensor value can be calculated by (48).

VII. SIMULATIONS AND EXPERIMENTS
A. SIMULATION OF A SURVEY IN A BOREHOLE
For the purpose of simulation, take a magnetic dipole whose
magnetic moment vector is (250 000, 250 000, -353 553.39)
A·m2 as a survey target located 50 meters under the ground.
This dipole is equivalent to the moment of a typical cubic
magnetite deposit of size 40 m× 40 m× 10 m, concentration
of 52%, grain size of 20 µm and thermoremanent magneti-
zation of 60 A/m. Simulate a vertical survey path with the
closest point of approach (CPA) to the source being 15meters,
as shown in FIG. 13. For each simulated 100-meter survey
line, 2000 observation points were calculated.

The procedure of simulation of a survey was as follows.

1) Compute the true value of themagnetic gradient tensors
on the survey line formed by the magnetic dipole.

VOLUME 8, 2020 135



Y. Sui et al.: Error Analysis and Correction of a Downhole Rotating Magnetic Full-Tensor Gradiometer

FIGURE 13. Schematic of a simulated downhole survey with a CPA to a
magnetic dipole of 15 m.

TABLE 1. Error matrix.

2) Compute the measurements of the magnetic gradient
tensors by the combination of true value and error
coefficients determined by the range of actual errors.

3) Obtain the correction coefficients by the tensor invari-
ant correction method and apply them to correct the
measurements on the survey line.

4) Repeat the process for 2000 discrete points along the
simulated survey.

5) To provide an estimate of the effect of the error coef-
ficients, repeat the simulated survey 1000 times using
different error coefficients.

An example of a single simulated survey follows. For this
example, the parameters were:
θ1 = 0.625429◦, θ2 = −1.17968◦, α1 = −2.34883◦, α2 =
−0.190553◦,1ε1 = −0.543473◦,1ε2 = 0.340307◦,1ε3 =
0.345963◦, 1ψ = −0.973129◦, 1λ = −0.0852217◦, S1 =
1.00372, S2 = 0.995143.

Using equations (43), (46) and (47), the error matrix Ku
is formed by the propagation of error and elementary row
operations, shown in TABLE 1:

Correction matrix Hc obtained by the tensor invariant cor-
rection method from the modelled measurements is shown in
TABLE 2:

Actual correction matrix H calculated from the modelled
true tensor is shown in TABLE 3:

FIGURE 14. Comparison of the actual (red line with circle markers),
corrected (black line with point markers), and uncorrected (purple line
with point markers) tensor magnitudes of 2000 observation points on the
survey line.

TABLE 2. Calculated correction matrix.

TABLE 3. Actual correction matrix.

The mean square root error (RMSE) between the actual
correction matrix and the calculated correction matrix is
0.0308.

FIG. 14 shows the comparison of the actual, corrected, and
uncorrected tensor magnitudes of 2000 observation points on
the survey line.

FIG. 15 shows the comparison of the actual, corrected, and
uncorrected tensor component gzz of 2000 observation points
on the survey line. The results for other tensor components
are similar.

As shown in FIGs. 14 and 15, the corrected tensor com-
ponents and tensor magnitudes are much closer to the actual
value than the uncorrected value. RMSE of relative errors
of observation points on the survey line is reduced from
16.943% to 0.788% after the correction and the improvement
ratio is 21.504.

B. PERFORMANCE ASSESSMENT
In order to assess the performance of the correction method,
the simulation of a survey line was repeated 1000 times
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FIGURE 15. Comparison of the actual, corrected, and uncorrected tensor
component gzz of 2000 observation points on the survey line.

TABLE 4. Error coefficients in 1000 simulations.

and all error coefficients were randomly varied according to
Table 4. The error coefficients keep constant in each line and
randomly varied in different lines

The RMSEs between the actual correction matrixes and
the calculated correction matrixes in 1000 simulations are
shown in FIG. 16. The average RMSE is 0.06 and the max-
imum RMSE is 0.17, which means the calculated correction
matrixes are very close to the actual correction matrixes.

RMSEs of the relative errors between the actual, the cor-
rected and the uncorrected tensor magnitudes are shown in
FIG. 17. Before correction, the average RMSE of the relative
error is 10% and the maximum value can reach 31%. After
correction, the average RMSE of the relative error is 1% and
the maximum value is reduced to 3%.

C. FIELD EXPERIMENTS
In order to verify the effectiveness of the calibration method,
we designed an experiment to check tensor corrections as
a function of orientation of the rotating gradiometer while
measuring a fixed magnitude, gradient tensor. For this exper-
iment, a replica of the CSIRO gradiometer was built at Jilin
University. The chosen fluxgate sensors have noise charac-
teristics of 10 pT at 1Hz and physical dimensions of length
30 mm and outside diameter (O.D.) of 7 mm. These two
fluxgates were placed parallel to each other on a 77 mm
diameter disk with a separation (ρ1 + ρ2) of 60 mm. The
rotating gradiometer was fitted into a downhole probe of
length 1450 mm long and O.D. of 88 mm.

FIGURE 16. RMSEs between the actual correction matrix and the
calculated correction matrix in 1000 simulations.

FIGURE 17. RMSEs of the relative errors between the actual, the corrected
and the uncorrected tensor magnitudes in the 1000 simulations.

We placed a small magnet, with a magnetic moment
of 0.375A·m2, in an area of uniformmagnetic field to provide
a constant magnetic gradient at a fixed distance between
the magnet and gradiometer. The tensor gradiometer was
mounted on a simple two-axis, non-magnetic mount which
allowed it to be rotated about a fixed point (the disk center),
see FIG. 18. The distance between the small magnet and the
fixed point was 67 cm. The extent of possible angular move-
ment of the gradiometer around the center of rotation was
360◦ around the vertical axis and approximately 270◦ around
the horizontal axis, i.e. conceptually about three-quarters of
a sphere.

Tensor measurements were made for 82 orientations of
the gradiometer with these varying orientations arranged to
uniformly cover the accessible surface of the sphere. Tensor
corrections coefficients were calculated for each orientation
of the gradiometer and the effectiveness of the applied correc-
tion evaluated by calculating the ratio of the tensor magnitude
before correction to that after correction.
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FIGURE 18. Photograph of the field experiment for rotation correction.

FIGURE 19. Comparison of the corrected and uncorrected tensor
magnitudes for the rotation correction experiment.

TABLE 5. Correction matrix.

Comparison of the 82 tensor magnitudes before and after
correction is shown in FIG. 19.

The correction matrix Hc of the experiment is shown in
TABLE 5.

The standard deviations of tensor magnitudes are
233.27 nT/m and 62.33 nT/m before and after correction
respectively.

We have observed that the calibration method does
improve the calculated tensor components. However, the cor-
rections are not as effective as for the simulated results.
Some suggested reasons for this reduced effectiveness are:
Firstly, the center of the gradiometer sensor was located
approximately 3 cm above the fixed point in the mount, thus
the gradiometer did not rotate about its center and so the
distance between this center and the magnet varied. Secondly,
magnetic field measurements made using an Overhauser

magnetometer showed that the background field was non-
uniform. The measurement site has a total vertical gradient
of 20 nT/m. As a result, the actual measured tensor values
differed significantly from the simulated values, and thus
the actual correction improvement ratio could not match the
simulated results.

VIII. CONCLUSION
The proposed use of two independent tensor rotation invari-
ants to provide corrections for errors associated with the non-
ideal mechanical construction of a rotating gradiometer was
investigated both via simulation and experimentally. The sim-
ulation results indicate that it is possible to use the proposed
method to obtain significant improvement in the accuracy of
the measured tensor components. Our experimental results
showed some improvement in accuracy thus confirming the
potential value of the method. The error analysis and correc-
tion method is not dependent on the type of vector magne-
tometer used to construct the rotating gradiometer. Rotation
correction experiments can be further improved from the fol-
lowing two aspects. The first is to search a uniform gradient
field that meets our experimental requirements, the second is
to improve the experimental rotation holder to ensure that the
distance between magnet and gradiometer is fixed.
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