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ABSTRACT With the rapid development of the Internet of Things (IoT) and the dramatic increase of IoT
devices, the desire to outsource huge amounts of IoT data to the cloud becomesmore urgent than ever. In order
to ensure the confidentiality, IoT data are usually encrypted before they are outsourced to the cloud, which
will inevitably hinder the statistical analysis of them. Homomorphic encryption is an alternative to achieve
the computation of encrypted data, but its inefficiency makes it not practical in the IoT environment. Another
problem comes with the encryption is how to enable IoT data to be accessed by users who possess a
certain set of attributes defined by data owners. In this paper, we propose a novel and practical IoT data
outsourcing scheme based on Corrigan-Gibbs et al. ’s computation of aggregate statistics and the ciphertext-
policy attribute-based encryption (CP-ABE). It supports both secure aggregation and fine-grained access
control of outsourced IoT data. Users only have to bear a small amount of computation in the process of data
upload and recovery. Security analysis demonstrates that our scheme well protects the confidentiality of IoT
data. A thorough and detailed performance comparison shows that our scheme enjoys a better performance
on both the client side and the fog server side.

INDEX TERMS Access control, aggregation, data confidentiality, data outsourcing, fog computing, Internet
of Things.

I. INTRODUCTION
Internet of Things (IoT) is developing rapidly and the use of
IoT devices has dramatically increased in recent years. It was
forecasted that the IoT market would grow from more than
15 billion devices in 2015 to more than 75 billion in 2025
[1]. These devices have the potential to improve the living
standard of their users significantly through interactions with
the physical and digital worlds [2]. For example, users with
smart home and wearable devices can obtain seamless and
customized services from digital housekeepers, doctors, and
fitness instructors [3]. Managing a constant stream of data
collected from a variety of devices is a significant burden
for IoT users with limited storage and computing resources.
The ‘‘pay-as-you-go’’ Cloud Computing model is an efficient
alternative to manage data for customers. Users can outsource
a large amount of IoT data to the cloud and recover whenever

The associate editor coordinating the review of this manuscript and
approving it for publication was Vyasa Sai.

they need it. However, since IoT embeds different kinds of
sensors and other devices into a variety of things in our daily
life, IoT data usually involvesmuch private information about
users [12]. It might be the heart rate of the user at a certain
moment collected from the smart sphygmomanometer, user
exercise data collected from the smart watch, and the like.
In order to protect the security of the outsourced data, an intu-
itive way is to encrypt the data before outsourcing it. But there
will be some new problems coming with encryption.

The first challenge is how to perform aggregate statisti-
cal analysis on encrypted data as accurate as possible. For
example, we may want to learn about our health condition
in a certain period of time or whether our exercise has
reached the average level of people in a certain area [10],
[11]. Several attempts have been made to solve this prob-
lem. Sun et al. [12] use homomorphic encryption to encrypt
the IoT data so that the service providers can process the
needs of users without acquiring the plaintext data. However,
the homomorphism technology is not mature currently. As we
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all know, its encryption and decryption are quite inefficient,
and only a few homomorphism properties are supported by
the privacy homomorphism. All these bottlenecks will hin-
der the widespread use of the Internet of Things. What’s
more, the cloud service provider process all the data anal-
ysis, which will inevitably cause transmission latency and
degraded service when traffic between IoT devices and the
cloud becomes extraordinary huge. The most important is
that the trusted third party is in charge of homomorphism
encryption and decryption, meaning that it can obtain all the
plaintext data. Such a strong security assumption is quite
problematic. In addition to homomorphic encryption, there
is no better solution yet.

The second problem is how to achieve precise access con-
trol of encrypted data. The data owner may want to define
an access policy and enable users that satisfy the policy to
access the corresponding data. The attribute-based encryp-
tion (ABE) is a promising approach to realize this. It enables
the data owner to define access policy over a universe of
attributes that the user needs to possess in order to decrypt
the ciphertext and enforce it on the data. ABE has two
variants, key-policy attribute-based encryption (KP-ABE) [7]
and ciphertext-policy attribute-based encryption (CP-ABE)
[8]. The latter turns out to be well suited for access control
in IoT due to its expressiveness in describing access policy
of ciphertext. Huang et al. [9] achieves secure data access
control using exactly the ciphertext-policy attribute-based
encryption (CP-ABE) in IoT data outsourcing. But they did
not consider aggregation of these encrypted data, thus data
analysis is impossible.

Besides, due to the extraordinary huge volume of traffic
between IoT devices and the cloud, the centralized cloud
computing systems will suffer from unbearable transmission
latency and degraded service. Fortunately, fog computing is a
promising technology to solve this problem. Fog computing
extends the cloud computing paradigm to the edge of the
network, and it is characterized by low latency and wide-
spread geographical distribution [5], [6]. Fog computing is
actually a tool for cloud-based services that can be considered
as an interface between the users and the cloud. In this paper,
we also adopt fog as an auxiliary tool and propose a secure
IoT data outsourcing scheme. As far as we know, our scheme
is the first to achieve encrypted data aggregation and precise
access control simultaneously in IoT data outsourcing. The
main contributions of this paper are summarized as follows.
• We propose a novel and practical IoT data outsourc-
ing scheme. Specifically, we make a combination of
Corrigan-Gibbs et al.’s computation of aggregate statis-
tics and Bethencourt et al.’s ciphertext-policy attribute-
based encryption (CP-ABE) to support both secure
aggregate statistics and fine-grained access control of
outsourced IoT data. And the introduction of fog com-
puting enables our scheme to provide real-time and low-
latency services.

• Security analysis demonstrates that our scheme well
protects the confidentiality of outsourced IoT data,

and ensures that only users whose attributes sets satisfy
the access policy can recover the corresponding data.

• A comprehensive performance comparison between our
scheme and several present works is given, showing that
our scheme behaves better in the computation overhead.

II. RELATED WORK
A. AGGREGATION OF OUTSOURCED IoT DATA
The secure aggregation of outsourced IoT data is an urgent
need, but there are very few works that have solved this
problem. In fact, a large number of researchers have begun
to pay attention to security and privacy issues on the internet
of things (IoT) [17]–[19]. Fan et al. [20] designed secure
and privacy-preserving RFID protocols from the perspective
of data collection and transmission, to make sure that the
IoT data collected by RFID tags could only be transmit-
ted to legitimate readers. Doukas et al. [11] proposed to
encrypt IoT data using public key encryption to ensure the
confidentiality of data. But as we all know, the computation
overhead of public key encryption is extremely huge, espe-
cially in Internet of Things where quite a lot of devices are
limited in computation capability. And none of the above
schemes consider the aggregation and analysis of encrypted
IoT data. Both Sun et al. [12] and Gong et al. [21] attempted
to protect data using homomorphic encryption. Specifically,
Sun et al. introduced a trusted third party to encrypt and
decrypt IoT data for resource-constrained users. It means that
all the private data is transparent to the trusted third party.
Gong et al.’s scheme is a bit simpler, and encryption and
decryption are all on the user side. But they can only decide
if the result is in the region [0,1]. Another problem with these
two works is that the cloud server engages in the computation
of every data, meaning that the cloud needs to interact with
countless IoT users frequently and can become the bottleneck
of the whole system easily. Recently, Guan et al. [22] pro-
posed an anonymous and privacy preserving data aggregation
scheme for fog-enhanced IoT systems. They adopted pail-
lier encryption, which could achieve additive homomorphism
property, to outsource the aggregation of IoT data to the cloud
through fog nodes. However, the smart devices still need to
bear expensive computation in the process of data collection
and data aggregation.

B. ACCESS CONTROL OF OUTSOURCED IoT DATA
Secure access control is another desirable function in IoT
data outsourcing since IoT users may want to share their
data with certain people. Attribute-based cryptography is a
well-known technology to guarantee data confidentiality and
fine-grained data access control. Early in 2011, Yu et al. [23]
adopted KP-ABE to achieve fine-grained data access control
in wireless sensor networks. Then Hu et al. [24] employed
CP-ABE to realize secure data communication betweenwear-
able sensors and data consumers. Yeh et al. [25] proposed
a cloud-based fine-grained health information access con-
trol framework, which was the first scheme suitable for
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lightweight IoT devices. Only symmetric cryptography is
required for IoT devices, such as wireless body sensors.
However, the computational cost in the encryption and
decryption phase is linear with the complexity of policy when
using ABE in fog computing directly. Zhang et al. [26] and
Huang et al. [9] introduced fog computing to alleviate the
burden of IoT users. They outsourced expensive encryption
and decryption operations partially to the fog servers, so that
the computation that users needed to do in encryption and
decryption was irrelevant to the number of attributes in the
policies. Even so, users still have to bear a certain amount of
computation, and such an encryption will inevitably hinder
the aggregation and statical analysis of data. To our best
knowledge, there is no scheme that supports both fine-grained
access control and encrypted data aggregation in the context
of Internet of Things (IoT).

C. FOG COMPUTING IN INTERNET OF THINGS
In this paper, we adopt fog computing as the intermediate
layer between IoT users and the cloud to alleviate the bur-
den of cloud as many previous works [4]–[6]. The main
characteristics of fog computing include low latency, loca-
tion awareness, wide-spread geographical distribution, and
so on. So it can play an essential role in the Internet of
Things (IoT) such as healthcare and activity tracking, con-
nected vehicle, and smart grid. Reference [13] proposed a
distributed dataflow programming model as a basis for fog-
based IoT applications. They discussed the core requirements
that fog-based IoT applications needed to meet and identi-
fied several issues that had not been considered in previous
works. The above works focus primarily on the principles
and concepts of fog computing and its significance in the
context of internet of things (IoT). Sarkar and Misra [14] first
proposed a mathematical formulation for fog computing and
proved its significance by experiment. They showed that for
a scenario where 25% of the IoT applications demand real-
time and low-latency services, the mean energy expenditure
in fog computing was 40.48% less than the conventional
cloud computing model. Farahani et al. [15] discussed the
applicability of IoT in healthcare and medicine specifically,
and they presented a holistic architecture of IoT eHealth
ecosystem. Oteafy and Hassanein [16] gave a recent survey
on advancements and challenges in IoT, and they also pre-
sented a number of high-yield directions that would further
propagate IoT development in the fog.

III. PRELIMINARY
A. PRIO: CORRIGAN-GIBBS’S COMPUTATION OF
AGGREGATE STATISTICS
Corrigan-Gibbs and Boneh [27] gives a simplified version
and an extended version of Prio, respectively. The former
does not provide robustness, meaning that a single malicious
client can corrupt the protocol output completely by submit-
ting an invalid value, while the latter provides robustness.
In this paper, we just adopt the simplified version of Prio.

It is because that the simplified version also provides privacy,
i.e., the servers can only learn the result of aggregation but
nothing else about the clients’ private inputs. The other reason
is that in our IoT data outsourcing scheme, clients may want
to recover their data stored in the cloud at any moment, so we
assume that the clients would not like to upload invalid values.

Suppose each client holds a private value xi and that servers
want to compute the sum of clients’ private values

∑
i xi. The

simplified Prio scheme for computing sums proceeds in three
steps:

• Upload. Each client i splits its private value xi into s
shares, one per server, using a secret-sharing scheme.
In particular, the client picks random values xi,1, . . . xi,s,
subject to the constraint: xi = xi,1+· · ·+xi,s. The client
then sends, over an encrypted and authenticated channel,
one share of its submission to each server.

• Aggregate. Each server j computes the sum of its own
shares

∑
i xi,j = Sj.

• Publish. All servers publish their values Sj, and the sum∑
i xi will be

∑
j Sj.

B. BEAVER’S MULTI-PARTY COMPUTING (MPC)
PROTOCOL
As in Corrigan-Gibbs and Boneh Prio [27], the implemen-
tation of multiplication needs a combination with Beaver’s
multi-party computing (MPC) protocol [28], which proceeds
as follows.

Suppose servers want to compute the product of a private
value x and a constant A, and that each server i holds a share
[x]i, then ith server can compute a share of Ax locally by
multiplying [x]i by A, namely [Ax]i = A[x]i.
Suppose servers want to compute the product of two private

values x and y, and that each server i holds the shares [x]i
and [y]i. Beaver showed that servers could use pre-computed
multiplication triples to implement the multiplication. Amul-
tiplication triple is a one-time-use triple of values (a, b, c)
chosen at random, being subject to the constraint that a·b = c.
Each server i holds a share ([a]i, [b]i, [c]i) of the triple to
jointly compute the product xy. To do so, each server i uses
its shares [x]i and [y]i along with the first two components
of its multiplication triple to compute the following values:
[d]i = [x]i − [a]i, [e]i = [y]i − [b]i, and then it broadcasts
[d]i and [e]i. Using the broadcasted shares, every server can
reconstruct d and e and compute: σi = de/s + d[b]i +
e[a]i + [c]i, where s is the number of servers - a public
constant. Thus σi is a share of the product xy since

∑
i σi =∑

i(de/s + d[b]i + e[a]i + [c]i) = de + db + ea + c =
(x − a)(y− b)+ (x − a)b+ (y− b)a+ c = xy− ab+ c = xy.

C. ACCESS TREE
Let T be a tree representing an access structure.
Each non-leaf node of the tree represents a threshold gate,
described by its number of children numx and a threshold
value kx , where 0 < kx ≤ numx . When kx = 1, the threshold
gate is an OR gate and when kx = numx , it is an AND gate.
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Each leaf node x of the tree is described by an attribute and a
threshold value kx = 1. Besides, the parent of the node x in
the tree is denoted as parent(x), and the attribute associated
with the leaf node x in the tree is denoted as attr(x). The
access tree T also defines an ordering between the children
of every node by numbering the children of the node from 1 to
num. The function index(x) returns such a number associated
with the node x, where the index values are uniquely assigned
to nodes in the access structure for a given key in an arbitrary
manner.

Let Tx be a sub tree of T rooted at the node x. If a set
of attributes S satisfies the access tree Tx , we denote it as
Tx(S) = 1. We compute Tx(S) recursively as follows. If x
is a non-leaf node, evaluate Tx ′ (S) for all children x ′ of node
x. Tx(S) returns 1 if and only if at least kx children return 1.
If x is a leaf node, Tx(S) returns 1 if and only if attr(x) ∈ S.

D. CIPHERTEXT-POLICY ATTRIBUTE-BASED
ENCRYPTION (CP-ABE)
In the ciphertext-policy attribute-based encryption (CP-ABE)
system, a user’s private key is associated with an arbitrary
number of attributes expressed as strings, and the encrypting
party specifies an associated access structure over attributes
when he encrypts a message. Only if a user’s attributes
set satisfies the access structure, is he able to decrypt the
corresponding ciphertext. A ciphertext-policy attribute-based
encryption scheme consists of the following four fundamental
algorithms:

• Setup(λ) → (PK ,MK ) is the key generation algorithm
that takes the security parameter λ as input and outputs
the public parameters PK and a master key MK ;

• Enc(PK ,m, T ) → C is the encryption algorithm that
takes the public parameters PK , a message m, and an
access structure T over the universe of attributes as
inputs and outputs a ciphertext C ;

• KeyGen(PK ,MK , S)→ SK is the key generation algo-
rithm that takes the public parameters PK , the master
key MK , and a set of attributes S that describe the key
as inputs and outputs a private key SK .

• Dec(PK ,C, SK ) → m is the decryption algorithm that
takes the public parameters PK , a ciphertext C , and a
private key SK as inputs and outputs the original mes-
sage m only if the set S of attributes satisfies the access
structure T .

IV. PROBLEM FORMULATION
A. SYSTEM MODEL
There are five types of entities in our IoT data outsourcing
model, including data owners, trusted authority (TA), cloud
service provider (CSP), fog servers, and users, as shown
in Fig. 1. The black arrows and blue arrows in the figure rep-
resent the information transmission in the process of data
upload and data recovery, respectively. Note that the data
recovery process begins with the download request initiated
by IoT users. The concrete role that each entity play is
described as follows.

FIGURE 1. System Model.

• The data owner has a considerable amount of data col-
lected from IoT devices, and he is limited in computation
and storage ability. So he wants to outsource the data
to the cloud and enable legal users to access them later.
Besides this, he also wants the fog servers to do some
real-time aggregate statistical analysis either for his own
data or for his and others’ data together.

• The Trusted Authority (TA) is a party fully trusted by
all the other parties. It is in charge of generating system
parameters, as well as generating CP-ABE secret keys
and pre-compute one-time-use multiplication triples for
fog servers.

• The Cloud Service Provider (CSP) is an entity that pro-
vides cloud storage service. Explicitly, it stores t shares
of ciphertext for each IoT data, where t is the number
of fog servers that help encrypt the plaintext. It is also
responsible for verifying if the attributes set of a user
who wants to recover a data satisfies the access tree
defined by the data owner.

• Fog servers are nodes deployed at the network edge.
They can offer a variety of services, such as helping
encrypt data shares and upload ciphertexts to the CSP
for storage.What’s more, some real-time data operations
such as the summation, the product, and the variance are
also their responsibility.

• The user equipped with IoT devices is also limited
in computation and storage ability. Only when his
attributes set satisfies the access policy defined by the
data owner, can he gain the access of the corresponding
ciphertext data stored in the CSP.

B. SECURITY MODEL
Our threat model considers two types of attackers:
1) An inside attacker refers to the CSP or fog servers. They
are assumed to be ‘‘honest-but-curious’’ in our scheme,
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namely that they will execute the assigned tasks honestly, but
would like to learn as much secret information as possible.
For instance, they may attempt to extract useful information
of data. In addition to this, we allow the collusion between
fog servers. However, we require that the number of colluded
fog servers is not more than t − 2 if the number of fog
servers is t , namely at least two fog servers are honest, such
that original data cannot be guessed by the colluded fog
servers. 2) An outside attacker refers to a malicious user that
intends to obtain some knowledge about data, which is not
owned by him nor does he have access to. Therefore, all
the sensitive IoT data need to be fully protected against both
inside attackers and outside attackers.

Moreover, pairwise authenticated and encrypted channels
must be established between each IoT client and each fog
server to protect data shares. Toward this end, we assume
the existence of a public infrastructure and the basic crypto-
graphic primitives (public-key encryptions, digital signatures,
etc.) that make secure channels possible.

C. DESIGN GOALS
In this paper, we construct a secure IoT data outsource scheme
supporting fine-grained access control and data aggregation.
Specifically, the scheme aims at achieving the following
security goals and functions.

• Data Confidentiality: Our scheme should guarantee the
confidentiality of data, implying that the user whose
attributes set does not satisfy the access tree of the data
can not get any knowledge about it. Besides, fog servers
can not know or infer the data that are being operated
in the process of aggregate statistical analysis. The data
should also be protected well against the curious CSP,
even the trusted authority (TA).

• Fine-Grained Access Control: The data owner can
define expressive and flexible policies so that the data
can only be accessed by the users whose attributes sat-
isfy these policies.

• Real-Time Data Aggregation: Some real-time data
aggregation such as the addition, the multiplication, and
the variance can be realized with the fog servers as an
intermediate layer between users and the CSP. Besides,
the computational complexity on the user side should be
as small as possible.

V. SCHEME DESCRIPTION
Our scheme takes two aspects of both secure storage and
computation of outsourced IoT data into consideration, and
achieves fine-grained access control simultaneously. When a
user wants to upload a data D to the CSP, he first splits it
into t shares using a secret-sharing scheme, where t is the
number of fog servers. For example, he can choose t random
numbers such that their sum equals D. He also defines an
access tree T for dataD so that only the user whose attributes
set S satisfies T can recover D later. Then he sends each
share along with T to a fog server through an encrypted and

authenticated channel. The fog servers will store shares of
multiple data temporally so that they can jointly compute
the summation, the product, and the variance of these data,
without revealing the original data. They also use ciphertext-
policy attribute-based encryption (CP-ABE) and symmetrical
encryption to encrypt their shares, then send the encrypted
data shares to the CSP for storage. The CSP finally stores a
set of encrypted data shares and an access tree for data D.
If a user with attributes set S wants to access a data D stored
on the CSP, he sends a download request to the CSP. Once
the CSP has checked that S satisfies the access tree T of
data D, it sends S to the Trusted Authority (TA) and each
encrypted data share to the fog server who uploaded it. Then
TA generates a CP-ABE secret key using attributes set S and
sends it to each fog server. Upon receiving the encrypted data
share from the CSP and the CP-ABE secret key from the
TA, each fog server can decrypt the data share and sends it
to the user respectively over the encrypted and authenticated
channel. Finally, the user can recover the data easily. The
construction details of our scheme are described as follows.

A. SYSTEM SETUP
In this phase, two encryption schemes that will be used in
our construction are initialized as follows: (1) A symmetric
encryption scheme with the primitive functions (KeyGenSE ,
EncSE , DecSE ); (2) A ciphertext-policy attribute-based
encryption (CP-ABE) scheme consisting of four algorithms
(SetupCP−ABE , EncCP−ABE , KeyGenCP−ABE , DecCP−ABE ).
Specifically, the SetupCP−ABE algorithm will produce the
following materials: public parameters PK = (G0, g, h =
gβ , e(g, g)α), where G0 is a bilinear group of prime order
p, g is a generator of G0, e : G0 × G0 → G1 denotes the
bilinear map, α, β ∈ Zp are two random exponents. We also
define the Lagrange coefficient1i,S for i ∈ Zp and a set S of
elements in Zp:1i,S (x) =

∏
j∈S,j 6=i

x−j
i−j . We will employ a hash

function H : {0, 1}∗ → G0 additionally that we will model
as a random oracle. The master key MK is (β, gα), which is
kept by the trusted authority (TA).

B. DATA UPLOAD
1. Supposing that the user i wants to upload a private data Di,
he first splits it into t shares using a secret-sharing scheme,
one per fog server. Specifically, the user chooses t random
values (Di,1, . . . ,Di,t ) subject to the constraint: Di = Di,1 +
. . . + Di,t . Then he sends each share of Di along with the
access policy Ti he defined to a fog server over an encrypted
and authenticated channel.

2. Upon receiving the secret share Di,j, each fog server j
stores the share temporarily (hours, days, or weeks, depend-
ing on the needs) for data aggregation such as addition and
multiplication. In addition to this, it CP-ABE-encrypts and
then symmetrically encrypts the share using its secret key kj.
The specific encryption process is as follows.

(1)The fog server j invokes the EncCP−ABE algorithm to
encrypt the share Di,j under the access Ti. It first chooses
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a polynomial px for each node x in Ti in a top-down manner
starting from the root node Ri. For each node x in the tree,
let the degree dx of the polynomial px to be one less than the
threshold value kx of that node, that is, dx = kx − 1. Starting
with the root node Ri, the algorithm chooses a random si,j ∈
Zp and sets pRi (0) = si,j. Then, it chooses dRi other points of
the polynomial pRi randomly to define it completely. For any
other node x, it sets px(0) = pparent (x)(index(x)) and chooses
dx other points randomly to define px completely. Besides,
the fog server j chooses another random DKi,j ∈ Zp as the
key to symmetrically encrypt Di,j. Let Yi be the set of leaf
nodes in Ti, the fog server j outputs a partial ciphertext

C̃T i,j = {Ti, C̃i,j = DKi,j · e(g, g)αsi,j ,

ci,j = EncDKi,j (Di,j),C
′
i,j = hsi,j ,

∀y ∈ Yi : Ci,j,y = gpy(0),C ′i,j,y = H (attr(y))py(0)}.

(1)

(2)The fog server j uses its secret key kj to symmetrically
encrypt C̃i,j computed in the previous step and obtains the
new ciphertext

CTi,j = {Ti,Ci,j = Enckj (DKi,j · e(g, g)
αsi,j ),

ci,j = EncDKi,j (Di,j),C
′
i,j = hsi,j ,

∀y ∈ Yi : Ci,j,y = gpy(0),C ′i,j,y = H (attr(y))py(0)}.

(2)

Finally, fog server j uploads CTi,j to the cloud server.
3. Upon receiving ciphertexts of all the shares of Di from

t fog servers, the cloud server stores CTi = {CTi,j}j=1,...,t for
each data Di. Note that the first component of CTi,j uploaded
by each fog server j is the same, namely Ti, the cloud server
just needs to store only one.

C. DATA AGGREGATION
1) ADDITION
Suppose n data (D1,D2, . . . ,Dn) are to be added, and that
each fog server j(j = 1, 2, . . . , t) stores a set of data shares
DSj = {Di,j|i ∈ 1, 2, . . . , n}. The addition is implemented
as following: each fog server j computes Sj = D1,j + D2,j +

. . . + Dn,j and publishes Sj. Then the sum of these n data is
S = S1 + S2 + . . .+ St = D1 + D2 + . . .+ Dn. If the mean
value of these data is needed, it can be easily computed by
diving S by n.

2) MULTIPLICATION
When fog servers need to compute the product P of a constant
A and a data D they stored together, each fog server j can
compute a share Pj of P by multiplying Dj they stored with
A, that is Pj = A · Dj. Then P = P1 + P2 + . . . + Pt =
A·D1+A·D2+. . .+A·Dt = A·(D1+D2+. . .+Dt ) = A·D,
where t is the number of fog servers. Note that in this case,
the private data D can be easily inferred by fog servers, but in
real-life, fog servers usually need to compute more complex
algebraic formulas such as A ·D1+B ·D2 or A ·D1+D2 ·D3,

and we just give the basic multiplication of a constant and a
private data here.

The multiplication of two data D1 and D2 can be imple-
mented through Beaver’s multi-party computing (MPC) pro-
tocol. Suppose each fog server j holds a share (aj, bj, cj),
where (a, b, c) is a one-time-use multiplication triple pre-
computed by the trusted authority (TA) and subject to the
constraint that a ·b = c. Fog server j computes dj = D1,j−aj,
ej = D2,j − bj and then broadcasts dj and ej. Thus each
fog server j can construct d and e and further compute Pj =
de/t + dbj + eaj + cj. Then fog server j publishes Pj and the
product ofD1 andD2 will beP = P1+P2+. . .+Pt = D1·D2.

3) VARIANCE
If we need to know the variance of n data (D1,D2, . . . ,Dn),
fog servers can compute the variance V = D2

i − D
2
i , i =

1, 2, . . . , n as following.
Suppose fog server j stores a share Di,j of Di, and that it

also holds a set of shares {(ai,j, bi,j, ci,j)}i=1,2,...n of one-time-
use multiplication triples {(ai, bi, ci)}i=1,2,...n, which are pre-
computed by the trusted authority (TA) and subject to the
constraint that ai · bi = ci.
For each data share Di,j, the fog server j computes Sj =

D1,j+D2,j+ . . .+Dn,j, di,j = Di,j−ai,j, ei,j = Di,j−bi,j and
then broadcasts Sj, di,j and ei,j. In this way, all fog servers can

compute D
2
i = ( S1+S2+...+Stn )2, di =

t∑
j=1

di,j = Di − ai, and

ei =
t∑
j=1

ei,j = Di − bi.

Fog server j further computes Pi,j = diei/t + dibi,j +

eiai,j + ci,j and publishes Pi,j. Thus D2
i =

t∑
j=1

Pi,j and D2
i =

n∑
i=1

(
t∑
j=1

Pi,j)

n .

Finally, fog servers can compute V = D2
i − D

2
i =

n∑
i=1

(
t∑
j=1

Pi,j)

n − (

t∑
j=1

Sj

n )2.

D. DATA RECOVERY
1. When a user with an attributes set S wants to recover a
data Di stored in the cloud, he sends a download request for
Di to the cloud server. Since the server stores the access tree
Ti of Di, it first checks if Ti(S) = 1. If not, the server will
reject the download request. Otherwise, the server sends the
attributes set S to the trusted authority (TA) and the ciphertext
CTi,j(j = 1, . . . , t) to each fog server j.

2. The trusted authority (TA) runs theKeyGenCP−ABE algo-
rithm to generate the secret key. It first chooses a random
r ∈ Zp and then random ra ∈ Zp for each attribute a ∈ S.
Then it computes the key as

SK= (K=g(α+r)/β ,∀a ∈ S : Ka=gr · H (a)ra ,K ′a=g
ra ) (3)

and sends SK to all fog servers.
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3. Upon receiving CTi,j from the cloud server and SK from
the trusted authority (TA), fog server j first uses its secret key
kj to symmetrically decrypt Ci,j in CTi,j by C̃i,j = Deckj (Ci,j)
and obtains C̃T i,j. Then it can invoke the DecCP−ABE algo-
rithm to recover the data share Di,j.
The DecCP−ABE algorithm is realized by a recursive algo-

rithm DecryptNode(C̃T i,j, SK , x). If the node x is a leaf node
and if a = attr(x) ∈ S, then DecryptNode(C̃T i,j, SK , x) =
e(Ka,Ca)
e(K ′a,C ′a)

=
e(gr ·H (a)ra ,gpx (0))
e(gra ,H (a)px (0))

= e(g, g)rpx (0). If a = attr(x) /∈

S, then C̃T i,j, SK , x) =⊥.
If the node x is a non-leaf node, the algorithm

DecryptNode(C̃T i,j, SK , x) proceeds as follows: For all
nodes c that are children of x, it calls
DecryptNode(C̃T i,j, SK , c) and stores the output as DNc. Let
Sx be an arbitrary kx-sized set of child nodes c such that
DNc 6= 1. If no such set exists, then the node is not satisfied
and the function returns ⊥. Otherwise, it computes

DNx =
∏
c∈Sx

DN
1i,S′x

(0)
c

=

∏
c∈Sx

(e(g, g)r ·pc(0))1i,S′x
(0)

=

∏
c∈Sx

(e(g, g)r ·pparent(c)(index(c)))1i,S′x
(0)

=

∏
c∈Sx

(e(g, g)r ·px (i)·1i,S′x
(0)

= e(g, g)r ·px (0) (4)

and returns the result, where i = index(c) and S ′x =
{index(c) : c ∈ Sx}. Therefore, if the tree Ti is
satisfied by S, the fog server j can obtain DN =

DecryptNode(C̃T i,j, SK ,Ri) = e(g, g)r ·pRi (0) = e(g, g)rsi,j
and then decrypt by computing

C̃i,j/(e(C ′i,j,K )/DN )

= DKi,j · e(g, g)αsi,j/(e(hsi,j , g(α+r)/β )/e(g, g)rsi,j )

= DKi,j. (5)

Finally, each fog server j decrypts Di,j by Di,j =
DecDKi,j (ci,j) and sends Di,j to the user respectively, over the
encrypted and authenticated channel.
4. After receiving all the t shares of Di, the user is able to

recover Di by a simple additionDi = Di,1 + . . .+ Di,t .

VI. SECURITY ANALYSIS
Our scheme aims at achieving secure data aggregation and
precise access control for outsourced IoT data. First of all,
we should guarantee the correctness of data aggregation on
the fog server side, meaning that the results of addition,
multiplication, and variance computed by fog servers are all
correct. Through the detailed description in Section V-C, and
the hypothesis in the security model that fog servers are hon-
est but curious, it is obvious that correctness is fulfilled. As is
described in Section IV-C, the security goal of the scheme is

to realize data confidentiality and fine-grained access control.
We will demonstrate the security of our scheme in these two
aspects in the security analysis below.

A. DATA CONFIDENTIALITY
In our scheme, an IoT data D is first split into shares
D1, . . . ,Dt by its owner before being uploaded, where t is
the number of fog servers and D = D1 + . . . + Dt . Then
these data shares are sent to fog servers over an encrypted
and authenticated channel. It can be observed that the data
is secure as long as at least two fog servers do not collude.
Even if fog servers 1, 2, . . . , t − 2 collude, they can not infer
D without Dt−1 and Dt .
These t data shares will be encrypted by fog servers using

the ciphertext-policy attribute-based encryption (CP-ABE)
and symmetrical encryption before being uploaded to the
cloud service provider (CSP) finally. Concretely, the data
share Dj is symmetrically encrypted in the form cj =
EncDKj (Dj) by fog server j as in Equation 2. Here the encryp-
tion key DKj is uniformly chosen at random in Zp, thus the
encryption of Dj can be regarded as ‘‘one-time pad’’. Katz
et al. have given a formal proof in [29] that one-time pad
encryption scheme is perfectly-secret.
The symmetric encryption key DKj is not kept by the fog

server j in our scheme. Instead, it is first encrypted using
the ciphertext-policy attribute-based encryption (CP-ABE) as
in Equation 1. Bethencourt et al. have demonstrated in [8]
that their CP-ABE scheme is secure against chosen plaintext
attacks (CPA-Secure). They argued that no efficient adversary
that acts generically on the groups underlying their CP-ABE
scheme could break the security of CP-ABE scheme with
any reasonable probability, and they proved their argument
using the generic bilinear group model and the random oracle
model. Then DKj is further symmetrically encrypted by fog
server j using its secret key kj as in Equation 2, which will
enhance the security of DKj undoubtedly.
Another more critical consideration for further symmet-

rically encrypting DKj using the fog server j’s secret key
is to protect DKj against other fog servers during the data
recovery process. Specifically, when a user whose attributes
set S satisfies the access policy of data D wants to recover D,
the trusted authority (TA) generates the secret key SK using
S and sends SK to each fog server who has uploaded a share
of D. If DKj is just encrypted using CP-ABE scheme and
that the ciphertext C̃T j is, somehow, obtained by another fog
server, DKj will be decrypted by this fog server. It is because
that every other fog server can recover DKj by calling the
CP-ABE decryption algorithmDec(PK , C̃T j, SK ). But in our
scheme, the final encryption of DKj is CTj = {T ,Cj =
Enckj (DKj · e(g, g)

αsj ), cj = EncDKj (Dj),C
′
j = hsj ,∀y ∈

Y : Cj,y = gpy(0),C ′j,y = H (attr(y))py(0)}. No other fog
servers except fog server j can decryptCj, nor can they call the
CP-ABE decryption algorithm to obtain DKj. Based on the
above analysis, the confidentiality of data is achieved in our
scheme.
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TABLE 1. Overall comparison.

B. FINE-GRAINED ACCESS CONTROL
The purpose of access control is to make sure that data can be
correctly recovered by the user whose attributes set satisfies
the associated access policy, while those who do not meet
the policy cannot obtain anything about data. It can be easily
observed in the data recovery process of our scheme that the
former is achieved. For an invalid user, his attributes set can
not pass through the check by the cloud on the access tree,
namely T (S) 6= 1, so he is unable to proceed the normal
process of data recovery. On the other hand, even if he gets
the ciphertext of a data D somehow, he can not decrypt any
CTj to obtain C̃T j, let alone recover the data.
Fine-grained is reflected in the ability to specify differ-

ent access rights of individual users flexibly. By utilizing
the ciphertext-policy attribute-based encryption (CP-ABE)
in our scheme, the data owner is able to enforce expressive
and flexible access policies. Specifically, the access policy
of encrypted data supports complex operations to represent
any desired attributes set. For example, we can represent
a tree with ‘‘AND’’ and ‘‘OR’’ gates by using 2 of 2 and
1 of 2 threshold gates respectively. Therefore, our scheme
achieves fine-grained access control by construction.

VII. PERFORMANCE ANALYSIS
In this section, we evaluate the performance of our secure
IoT data outsourcing scheme, which is proposed to achieve
both real-time aggregate statistics and fine-grained access
control of outsourced IoT data. Since [12], [21], [22] are
the very few works that consider secure IoT data aggre-
gation, and [9], [26] are two state of the art works deal-
ing with the access control in IoT, we will analyze our
scheme in contrast to these five schemes. A overall com-
parison of these schemes is given in Table 1. ‘‘

√
’’ repre-

sents that the scheme supports the corresponding function,
while ‘‘×’’ the opposite. We will concentrate on the com-
putation overhead on the client side and fog server side,
including data upload and data recovery processes. In order
to facilitate comparison, we choose the Advanced Encryp-
tion Standard (AES)-256 in Cipher-Block Chaining (CBC)
mode as the symmetric key encryption scheme. Moreover,
we utilize PBC library [30] and jPBC library [31] and choose
type A pairing with 160-bit security level to conduct sim-
ulation experiments. Specifically, we adopt a desktop with

Intel(R) Core(TM) i7-8700 CPU @3.20GHz and Linux ver-
sion 4.19.36-1-MANJARO as a fog node, and an Android
phone MI 6X with MIUI 10.3 and Android 9.0, Snapdragon
660 CPU, and 6 GB memory as the IoT device.

A. COMPUTATION OVERHEAD
We will analyze the computation overhead on the client side
and fog side theoretically in this section. Let Pair denote one
pairing operation on e : G1 × G2 → GT , Exp denote one
exponentiation in group G1, Mul denote one multiplication
in group G1, and Add denote one addition in group Zp.

In Sun et al. [12], a data owner needs to perform 2n
multiplications to encrypt a data before uploading it, where
n is the number of shares that a data is divided into. Data
decryption needs 2n+4 multiplications and 2n+1 additions.
In Gong et al. [21], a data owner needs to perform 512 mul-
tiplications and 448 additions, which is derived from their
adoption of eight rounds eight-order matrix multiplication.
This does not include the overhead of other operations such
as XOR and HASH of DES encryption. Data recovery needs
the same amount multiplications and one more eight-order
matrix addition. In Guan et al. [22], to enable the cloud and
the fog to achieve data aggregation, the data owner needs to
perform 2 exponentiations and 1 multiplication during data
collection and data aggregation. Note that they outsource
the data aggregation but not data storage to the cloud, thus
with no need to consider data recovery. In Huang et al. [9],
upon receiving the partial ciphertext computed by fog nodes,
the data owner needs to perform 4 exponentiations and 3 mul-
tiplications to finally encrypt the data. In Zhang et al. [26],
the computation overhead is similar, being 3 exponentiations
and 3 multiplications. In the above two schemes, the com-
putation required by the user to decrypt a data is the same,
that is 2 multiplications and 1 paring operation. While in our
scheme, a data owner only needs to perform n−1 additions to
upload an IoT data, where n is the number of fog servers, also
the number of shares that the data is divided into. Since data
upload and data recovery are symmetric processes, the com-
putation overhead of data recovery is also n − 1 additions.
The detailed computation overhead on the client side is listed
in Table 2.

In terms of the computation overhead on the fog server
side, Huang et al. [9], Zhang et al. [26] and our scheme
all adopt fog computing and utilize the ciphertext-policy
attribute-based encryption (CP-ABE) to accomplish fine-
grained access control of IoT data, thus the computation
overhead on the fog server side is related to the access policy.
While Guan et al. [22] just use fog nodes to perform out-
sourced aggregation of IoT data, with no need to consider
uploading data to the cloud or helping users recover data
from the cloud. And the the computation overhead on the
fog side in their scheme is related to the number of smart
devices in fog. Therefore, we will compare our schemes with
Huang et al. [9] and Zhang et al. [26]. Let |Y | denote the
number of leaf nodes of the access tree. In Huang et al. [9],
the fog server needs to perform (2|Y | + 2) exponentiations to
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TABLE 2. Computation overhead on the client side.

TABLE 3. Computation overhead on the fog server side.

FIGURE 2. The variation of computation overhead on the client side with the number of divided shares.

compute the partial ciphertext for an IoT data that needs to
be uploaded, and 2 pairing operations and 2 multiplications
to recover a partial ciphertext. In Zhang et al. [26], the com-
putation overhead for data recovery is the same, while they
save |Y | exponentiations during data upload. In our scheme,
the computation needed by each fog server for uploading
a data is (2|Y | + 2) exponentiations and 1 multiplication,
and that for recovering a data is 1 pairing operation and
2 multiplications. The detailed computation overhead on the
fog server side of these three schemes is listed in Table 3.

B. EXPERIMENTAL ANALYSIS
According to the above analysis, our scheme is intuitively
more efficient than the other five schemes, especially on
the client side. We will demonstrate the effectiveness of our
scheme through experiments in this section. Based on the
experimental setting, our experiment results are as following:

1) The time required by a modular addition in Zp, multiplica-
tion and exponentiation in G1, and paring on e : G1 ×G2→

GT on the fog side are 2.19 us, 2.19 us, 0.94 ms, and 0.75 ms,
respectively. 2) The time required by a modular addition in
Zp, multiplication and exponentiation in G1, and paring on
e : G1 × G2 → GT on the IoT device are 0.14 ms, 0.13 ms,
31.57 ms, and 50.39 ms, respectively.

Combining the experiment results with Table 2 and Table 3,
we can obtain Fig. 2 and Fig. 3, which provide a more clear
and intuitive comparison between our scheme and the other
works. In Fig. 2, the number of shares that an IoT data
is divided into is assumed to be from 3 to 10. In Fig. 3,
the number of attributes in an access policy is assumed to be
from 5 to 50.

It can be seen from Fig. 2 that on the client side, our
scheme has the lowest computation overhead in the process of
both data upload and data recovery. Sun et al.’s computation

VOLUME 8, 2020 95065



L. Liu et al.: Secure IoT Data Outsourcing With Aggregate Statistics and Fine-Grained Access Control

FIGURE 3. The variation of computation overhead on the fog server side with the number of attributes in the access policy.

overhead is slightly higher than ours. Gong et al. [21] has the
highest computation overhead. In Fig. 2 (a), the computation
overhead during data upload of Huang et al. [9], Zhang et al.
[26] and Guan et al. [22] is decreased in turn. And Guan
et al.’s computation overhead is much higher than ours even
when the number of divided shares in our scheme reaches ten.
Fig. 2 (b) shows that during data recovery, Huang et al. [9] and
Zhang et al. [26] have the same computation overhead on the
client side.

On the fog server side, Fig. 3 (a) shows that our scheme
has the highest computation overhead during data upload,
followed closely by Huang et al. [9] with a gap of 2.19 ms.
The computation overhead of Zhang et al. [26] is the lowest,
nearly half of ours. However, during data recovery, the com-
putation overhead of our scheme is the lowest, which can be
seen from Fig. 3 (b). Huang et al. [9] and Zhang et al. [26]
have the same computation overhead, almost twice that of
ours.

Based on the above comparison, we can draw a conclusion
that our scheme enjoys a better performance as a whole,
considering that we achieve both secure data aggregation and
fine-grained access control of outsourced IoT data, while the
other schemes just achieve one of the two functions.

VIII. CONCLUSION
In this paper, we propose a secure IoT data outsourcing
scheme, which can support both real-time aggregate statis-
tical analysis and fine-grained access control of outsourced
IoT data. By utilizing Corrigan-Gibbs et al.’s computation
of aggregate statistics - Prio and Beaver’s multi-party com-
puting (MPC) protocol, fog servers can perform aggregation
such as addition, multiplication, and variance on the IoT data
uploaded by the data owner, without knowing the original
data. Ciphertext-policy attribute-based encryption (CP-ABE)
helps us realize fine-grained access control, only allowing the
user whose attributes set satisfies the access policy to recover
the corresponding data. The security analysis shows that
our scheme ensures correctness and data confidentiality. The
extensive performance analysis and experiment demonstrate
the efficiency of our scheme, meaning it is suitable for the

resource-constrained IoT devices such as the MI phone used
in our experiment, thus can be further used in real-time health
monitoring and many other IoT environments. For our future
work, we will try to seek ways to protect the confidentiality
of results computed by fog servers, which is not considered
in this scheme. Another problem is that the storage overhead
in our scheme increases with the number of shares that a data
is divided into, which is also the focus of our further research.
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